ХИМИЧЕСКАЯ ФИЗИКА БИОЛОГИЧЕСКИХ ПРОЦЕССОВ

УДК 577.322.75

ОКИСЛИТЕЛЬНАЯ МОДИФИКАЦИЯ КОАГУЛЯЦИОННОГО ФАКТОРА XIII: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ АСПЕКТЫ

© 2020 г. А. Д. Васильева^{1*}, Л. В. Юрина¹, В. Б. Леонова¹, Д. Ю. Азарова¹, А. Е. Бугрова¹, Т. С. Константинова¹, М. И. Индейкина^{1, 3}, А. С. Кононихин^{1, 2, 3}, Е. Н. Николаев^{1, 2, 4}, М. А. Розенфельд¹

¹Институт биохимической физики им. Н.М. Эмануэля, Российской академии наук, Москва, Россия ²Федеральный исследовательский центр химической физики им. Н.Н. Семёнова, Воссийской академии наук. Москва, Россия

Российской академии наук, Москва, Россия

³Московский физико-технический институт (национальный исследовательский университет), Москва, Россия

⁴Автономная некоммерческая образовательная организация высшего профессионального образования "Сколковский институт науки и технологий", Москва, Россия

*E-mail: ms.kadaver@mail.ru

Поступила в редакцию 23.10.2019; после доработки 23.10.2019; принята в печать 20.11.2019

Плазменный коагуляционный фактор XIII (pFXIII) является ключевым белком системы свертывания крови, основная функция которого заключается в ферментативной ковалентной стабилизации полимерной структуры фибрина. Белок обладает гетеротетрамерой структурой, состоящей из двух каталитических, FXIII-A₂, и двух регуляторных, FXIII-B₂, субъединиц. Впервые с использованием масс-спектрометрии высокого разрешения изучено гипохлорит-индуцированное окисление молекул рFXIII и его ферментативной формы – FXIIIa. Показано, что серосодержащие и ароматические аминокислотные остатки наиболее уязвимы к окислительной атаке. Данные масс-спектрометрии свидетельствуют о том, что в исследуемом нами белке за исключением активационного пептида, окисленные аминокислотные остатки обнаруживаются во всех структурных элементах каталитической субъединицы FXIII-А, в то время как в регуляторной субъединице FXIII-В целый ряд доменов остается в нативной форме. При обработке гипохлоритом FXIIIa были выявлены дополнительные сайты модификаций как в субъединице FXIII-A2, так и в FXIII-B2. Полученные данные позволили постулировать, что в процессе превращения профермента в FXIIIa новые аминокислотные остатки, ранее недоступные окислителю, мигрируют к поверхности белковой глобулы, становясь уязвимыми мишенями для молекул окислителя, в то время как некоторые из исходно поверхностно-экспонированных аминокислотных остатков перемещаются внутрь белка, теряя способность вовлекаться в окислительные модификации. Электрофорез восстановленных образцов ковалентносшитого фибрина выявил снижение трансглутаминазной активности окисленного FXIIIa, проявляющееся в ингибировании реакции образования у-у-димеров. Обсуждается способность молекулы pFXIII противостоять окислительной атаке за счет ее антиоксидантной структурной адаптации к действию активных форм кислорода.

Ключевые слова: плазменный коагуляционный фактор XIII, окислительные посттрансляционные модификации, окисление, структура, масс-спектрометрия высокого разрешения, ферментативная активность.

DOI: 10.31857/S0207401X20060138

введение

Плазменный коагуляционный фактор XIII (pFXIII), будучи одним из ключевых белков системы свертывания крови, принадлежит к широкой группе трансглутаминаз (эндо-ε-глутамин: ε-лизин-трансфераза). Подобно другим факторам свертывания крови, pFXIII циркулирует в плазме крови как неактивный профермент. Основная функция pFXIII заключается в поддержании гемостаза путем ковалентной стабилизации фибринового сгустка, сопровождающейся увеличением его механической прочности и устойчивости к деградации плазмином [1, 2]. В присутствии активной формы коагуляционного фактора XIII (FXIIIa, EC 2.3.2.13) полипептидные цепи фибрина вовлекаются в ковалентное сшивание посредством образования изопептидных связей ε/γ-глутамил-лизиновых связей [3]. При этом СООН-концевые части γ -цепей контактирующих периферических D-областей молекул мономерного фибрина ковалентно связываются друг с другом, образуя межмолекулярные γ – γ -димеры [4]. Дополнительно FXIIIa катализирует образование изопептидных связей между α -цепями соседних молекул мономерного фибрина, так что α -цепь одной молекулы взаимодействует с α -цепями двух других молекул, в результате чего образуются α -полимеры, содержащие более пяти полипептидных α -цепей [5]. Также pFXIII наделен многими другим потенциально важными функциями [6, 7].

Плазменный коагуляционный фактор XIII обладает гетеротетрамерной структурой, FXIII-A₂B₂, которая состоит из двух идентичных одноцепочечных каталитических субъединиц А (FXIII-A₂), каждая из которых имеет молекулярную массу ~83 кДа, и двух идентичных одноцепочечных регуляторных субъединиц В (FXIII-В₂) с молекулярной массой ~80 кДа. Субъединицы скреплены между собой слабыми нековалентными связями [1, 2]. Образование комплекса между двумя гетеросубъединицами играет важную роль в поддержании гемостаза, так как полагают, что основная роль FXIII-В заключается в защите каталитических субъединиц от протеолитической деградации, продлевая тем самым "время жизни" FXIII-А в кровеносном русле [8]. Другая функция субъединиц FXIII-В обусловлена их способностью прикрепляться к молекуле фибриногена, доставляя таким образом каталитические субъединицы к белку-мишени [1].

Каталитическая субъединица FXIII-А представляет собой полипептидную цепь, состоящую из 731 остатка (исключая остаток инициаторного метионина (Met)), в том числе девяти остатков цистеина, не образующих ни одной дисульфидной связи. Третичная структура FXIII-А характеризуется наличием пяти различных структурных доменов: N-концевой активационный пептид (FXIII-AP), включающий 37 аминокислотных остатков, домен β-сэндвич (Gly38-184Phe), каталитический домен (Asn185-515Arg), разделенный на NH₂-(189-332) и СООН-терминальные (333-515) субдомены, домены β-barrel 1 (Ser516-628Thr) и β-barrel 2 (Ile629-731Met) [1, 9, 10]. Активный сайт состоит из остатков Cys314, His373 и Asp396, свойственных каталитической триаде цистеиновых протеаз. Первичная структура некаталитической субъединицы FXIII-В составлена из 641 аминокислотного остатка, которые образуют десять коротких тандемных структур (sushi-домены), каждая из которых образована приблизительно 60 аминокислотными остатками, не имеющими в отличие от каталитической субъединицы ни одной свободной тиоловой группы. В свою очередь, структура каждого sushi-домена стабилизирована двумя дисульфидными связями [11].

Превращение pFXIII в FXIIIа является многоступенчатым процессом, который физиологически индуцируется в заключительной фазе каскада свертывания крови при совместном действии тромбина и Ca²⁺. На первой стадии процесса активации происходит катализируемое тромбином протеолитическое расщепление связи Arg37-Gly38 на NH₂-концевой части субъединицы FXIII-А. Это приводит к высвобождению активационного пептида FXIII-АР и превращению гетеротетрамера FXIII- A_2B_2 в гетеротетрамер FXIII- A'_2B_2 , который по-прежнему не обладает ферментативной активностью. Вторая стадия активации требует ионов кальция, необходимых для диссоциации гетеротетрамера FXIII-А'2В2 на субъединицы FXIII-A' и FXIII-B2. На последнем этапе в присутствии ионов кальция субъединицы FXIII-А'2 претерпевают крупномасштабные конформационные перестройки, обуславливающие экспонирование остатков Cys314, His373 и Asp396, что приводит к образованию активной формы фермента FXIII-A₂^{*} [1, 12]. В последнее время были получены данные, свидетельствующие в определенной степени о том, что димерная молекула FXIII-А^{*}₂ склонна разделяться на два мономера FXIII-А^{*}, каждый из которых сохраняет трансглутаминазную активность [13].

В процессе циркуляции в кровотоке коагуляционный фактор XIII, как и другие белки плазмы крови, постоянно подвергается воздействию различных активных форм кислорода (АФК). Хорошо известно, что, будучи высокочувствительной мишенью для АФК, белки подвергаются окислительным модификациям, вызывающим в них химические и структурные превращения, в свою очередь, обуславливающие нарушения их биологических функций [14, 15], причем характер этих нарушений во многом зависит как от структуры белка, так и от природы АФК. В общем случае окисление белков вызывает химические модификации аминокислотных остатков, превращая белки в производные, высокочувствительные к протеолитической деградации, образование межцепочечных перекрестных сшивок или разрыв пептидных связей, приводящий к фрагментации белка [15].

Ранее было показано, что индуцированное озоном окисление коагуляционного фактора XIII [16, 17] влияет на трансглутаминазную активность FXIIIa. Оказалось, что она в значительной степени зависит от стадии превращения pFXIII в FXIIIa, на которой проводилось окисление белка. Впервые с помощью масс-спектрометрии высокого разрешения нами был идентифицирован набор окислительных сайтов в каталитической субъединице FXIII-А₂ при индуцированном озо-

ном окислении pFXIII на разных стадиях его активации, и была исследована степень, а также химическая природа этих модификаций. Было показано [17], что набор аминокислотных остатков, подверженных окислительной атаке, и степень окисления этих остатков в FXIII-А2 неактивированного pFXIII, активированного Ca²⁺ pFXIII и полностью активированного pFXIII, обработанного тромбином и Ca²⁺, значительно различаются. Полученные данные позволили постулировать, что в процессе превращения профермента в FXIIIа новые аминокислотные остатки, ранее недоступные окислителю, мигрируют к поверхности белковой глобулы, становясь, таким образом, уязвимыми мишенями для молекул окислителя, в то время как некоторые из исходно поверхностно-экспонированных аминокислотных остатков перемещаются внутрь белка, теряя способность вовлекаться в окислительные модификации [17]. Это убедительно свидетельствует о том, что превращение pFXIII в FXIIIa действительно сопровождается значительными конформационными перестройками FXIII-А2 на всех стадиях ее активации.

В данной работе впервые исследуются влияние другого окислителя, гипохлорита, на фактор XIII и последствия образования окислительных модификаций на траснсглутаминазную активность FXIIIa. В отличие от озона гипохлорит является физиологическим окислителем. Плазменные белки, которые защищены антиоксидантными ферментами в несопоставимо меньшей степени по сравнению с внутриклеточными белками, непрерывно подвергаются окислительным атакам со стороны нейтрофилов [18]. Активация нейтрофилов как in vitro, так и in vivo при определенных заболеваниях (например, при воспалительных процессах, атеросклерозе и др.) вызывает генерацию $A\Phi K$, таких как O_2^- и H_2O_2 , и высвобождение фермента миелопероксидазы. Реакция последней с Н₂О₂ в присутствии физиологических концентраций Cl⁻ приводит к образованию мощного окислителя HOCl, который рассматривается главным представителем АФК в плазме крови, а сама миелопероксидаза - маркером оксидативного стресса [19]. Идентификация окисленных аминокислотных остатков в каталитической субъединице может предоставить необходимую информацию как о механизме повреждения структуры рFXIII в условиях, приближенных к физиологическим, так и о снижении ферментативной активности FXIIIа вследствие ее окислительной модификации. Кроме того, полученные результаты позволяют сделать определенные выводы о пространственной доступности аминокислотных остатков в FXIII-А для АФК и о структурных перестройках в окисленном белке.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Фактор FXIII выделяли из донорской плазмы крови человека (получена из Московской центральной станции переливания крови) методом фракционного осаждения сульфатом аммония с последующей ионообменной хроматографией с использованием сорбента DEAE-ToyoPearl M650 (Tosoh, Япония) [20]. Превращение pFXIII в FXIIIа в присутствии ионов тромбина и кальция было выполнено, как сообщалось ранее [21].

Образцы фактора XIII перед окислением находились в буферном растворе, содержащем 44 мМ HEPES (4-(2-гидроксиэтил)-1-пиперазинэтансульфоновая кислота) и 150 мМ NaCl с pH 7.4. Окисление образцов pFXIII и FXIIIa с концентрацией 1мг/мл проводили раствором гипохлорита (Sigma-Aldrich, USA) при температуре 37 °C в течение 1 ч при постоянном перемешивании. Количество окислителя составляло 150 мкМ. Реакцию останавливали добавлением десятикратного молярного избытка L-метионина. Для последующих работ образцы переводились в буфер 50 мМ Tris-HCl с 150мМ NaCl (pH 7.4) с использованием центрифужных фильтров Amicon Ultra с размером пор 10 кДа (Millipore, Ирландия).

Влияние окисления на ферментативную активность FXIIIa, полученного из контрольных и окисленных образцов профермента и фермента, оценивалась методом электрофореза в полиакриламидном геле (4% - концентрирующий гель, 10% – разделяющий гель) по накоплению продуктов реакции FXIIIа и фибриногена. Электрофорез восстановленных образцов проводили в присутствии долешилсульфата натрия (SDS) по методу Леммли (Laemmli). Белок был окрашен красителем "кумасси бриллиантовый синий" R250 (Pharmacia, Uppsala, Sweden). Для определения молекулярных масс полипептидных цепей использовали смесь белков-маркеров с молекулярной массой от 10 до 250 кДа (Page Ruler Plus Prestained Protein Ladder, Thermo Scientific, USA).

Для достижения удовлетворительного уровня детекции некаталитической субъединицы FXIII-В образцы после инкубации в растворе с гипохлоритом и контрольные образцы были поделены на две группы. Первая группа была подвергнута ферментативному расщеплению трипсином без предварительной обработки. Вторая группа образцов перед трипсинолизом подверглась процедуре восстановления дисульфидных связей с последующим алкилированием.

Восстановление дисульфидных связей осуществляли с использованием 5 мМ дитиотреитола, алкилирование проводили 15 мМ йодацетамидом. Ферментативное расщепление образцов трипсином осуществляли в соответствии с протоколом производителя (Trypsin Gold, mass spectrometry grade, V5280, Promega, США). Белок раз-

Тип модификации	Изменение моноизотопной массы пептида	Аминокислоты, в которых обнаружена модификация
Окисление	15.99	Cys
		Asp
		Lys
		Met
		Asn
		Pro
		Trp
		Tyr
Диокисление	31.99	Cys
		Phe
		Met
		Trp
		Tyr
Триокисление	47.98	Cys
Окисление	13.98	Pro
пролина		
до пироглутаминовой кислоты		
Хлорирование	33.96	Tyr

Таблица 1. Типы модификаций идентифицированных аминокислотных остатков рFXIII

бавляли 50 мМ трис-HCl-буфером с 0.15 М NaCl (pH 8.0) и гидролизовали трипсином при соотношении фермент : образец в смеси 1 : 50 (2 мкг трипсина/100 мкг pFXIII) в течение 16 ч при 37°С. Реакцию останавливали добавлением муравьиной кислоты до конечной концентрации в 0.1%.

Эксперименты по высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией (ВЭЖХ-МС/МС) выполняли с помощью хроматографа Agilent 1100 с системой автоматического отбора проб (Agilent Technologies Inc., США) и тандемного масс-спектрометра 7T LTQ-FT Ultra (ThermoFisher Scientific Inc., США). Для хроматографического разделения 1 мкл каждого образца впрыскивали в колонку C18 (75 мкм × 12 см, Reprosil-Pur Basic C18, Ammerbuch-Entringen, Германия). Использовали следующую подвижную фазу: растворитель А – 0.1% муравьиная кислота в H₂O; растворитель В – ацетонитрил. Хроматографию осуществляли с линейным градиентом путем увеличения относительного содержания растворителя В с 3% до 50% в течение 60 мин. Масс-спектрометрический анализ пептидных фракций проводили с использованием программного обеспечения Xcalibur (Thermo Electron, Бремен, Германия) с автоматическим измерением спектров в двухстадийном режиме. На первом этапе точные массы пептидов были измерены в ячейке ICR в диапазоне m/z = 300-1600 с разрешением R = 50 при m/z == 400 (количество ионов в ячейке ICR было установлено равным $5 \cdot 10^6$). На втором этапе пептилы. характеризующиеся пятью наиболее интенсивными пиками первой стадии, подвергались столкновительной диссоциации; спектры фрагментов регистрировались в линейной ионной ловушке (число ионов в LTQ было установлено равным $3 \cdot 10^4$). После фрагментации соответствующие массы родительских пептидов были динамически исключены из рассмотрения в течение следующих 30 с. Для каждого типа образцов (неокисленный профермент; профермент, обработанный 150 мкМ гипохлорита; неокисленный фермент; фермент, обработанный 150 мкМ гипохлорита) выполняли три биологических повторения, для каждого из которых измерения проводились трижды.

Триптические пептиды образцов pFXIII и FXIIIa были идентифицированы путем поиска в базе данных UniProtKB (UP000005640-9606 HUMAN, Homo sapiens) с использованием программного обеспечения PEAKS Studio (v.8.5, Bioinformatics Solutions Inc., Canada). Точность определения массы для иона-предшественника была установлена равной 15 ppm/млн. Точность массы фрагментов MC/MC – до 0.50 Да.

Фильтрация результатов по средней доле ложных отклонений (FDR) для пептидов была установлена на уровне < 0.1%. Пептиды от шести аминокислотных остатков и максимум с тремя модификациями рассматривались для идентификации. Список обнаруженных окислительных модификаций приведен в табл. 1.

Идентификация с использованием программы PEAKS достигается путем интеграции результатов поиска в выбранной базе данных и результатов анализа спектров с помощью алгоритма de novo. Алгоритм поиска в базе данных используется для идентификации белков. При поиске в базе данных в качестве вариабельных модификаций указывается только ограниченное число посттрансляционных модификаций (ПТМ) для максимизации чувствительности (например, окисление (+15.99), диокисление (+31.99)). Алгоритм поиска модификаций используется для выявления большего количества ПТМ. На этом этапе анализируются только спектры с высокими показателями достоверности при анализе de novo, но не идентифицированные при поиске в базе данных. Список вариабельных модификаций расширяется и включает более специфические модификации из находящихся в базе данных UNIMOD.

Точные сайты модификации идентифицировались по наличию определяющих сайт фрагментов ионов. Определение достоверных сайтов модификаций было достигнуто с помощью параметра Ascore, включающего доверительную оценку идентификации модификации пептида в конкретной позиции (аминокислотного остатка), рассчитанной с помощью программного обеспечения PEAKS, в качестве вероятности — 10log *p* того, что модификация произошла в сообщенной позиции, сравнительно с другими возможными позициями. В этой работе мы использовали порог фильтрации для параметра Ascore > 100.

Все эксперименты повторялись трижды. Аминокислотный остаток, который оказывался модифицированным только в одном из образцов, исключался из дальнейшего анализа. Каждый из аминокислотных остатков, окисленных по меньшей мере на 1% (степень модификации > 1%), считался модифицированным.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Важным параметром в анализе окислительных модификаций белка является идентификация его аминокислотной последовательности - так называемое покрытие. Для субъединицы FXIII-А в контрольном образце pFXIII была детектирована следующая последовательность пептидных фрагментов: 6-11, 13-73, 96-107, 114-129, 144-151, 159-171, 200-221, 245-269, 286-310, 334-363, 380-408, 446-462, 468-513, 516-531, 547-565, 570-616, 652-657, 662-678, 697-727, в то время как для окисленного образца pFXIII детектированными участками субъединицы FXIII-А оказались фрагменты 6-11, 13-73, 96-107, 114-129, 144-156, 159-171, 200-221, 245-269, 286-310, 334-363, 381-418, 446-513, 516-531, 535-565, 570-621, 662-678, 704-727. Это составило 61 и 64%, соответственно, от общего числа аминокислотных остатков каталитической субъединицы.

В контрольном образце каталитической субъединицы FXIIIa были картированы следующие пептидные фрагменты: 6-11, 13-73, 77-107, 144-151, 159-171, 214-221, 245-252, 261-269, 286-310, 334-363, 380-408, 446-462, 468-513, 516-531, 535-540, 547-565, 570-616, 652-657, 662-678, 697-727, а в окисленном образце: 6-11, 13-73, 96-133, 144-156, 159-171, 207-221, 245-269, 286-310, 327-363, 390-418, 433-513, 516-531, 535-565, 570-621, 624-635, 638-657, 662-678, 704-727, что составляет 61 и 76%, соответственно, от первичной структуры белка. Обрашает на себя внимание тот интересный факт, что покрытия для окисленных форм каталитической субъединицы как в образце pFXIII, так и в FXIIIа несколько выше, чем в неокисленных образцах. Это, по-видимому, обусловлено разрыхлением структуры белка при окислении и раскрытием новых пептидных связей, доступных для гидролитических ферментов.

Для субъединицы FXIII-В в контрольном и окисленном образцах рFXIII были идентифицированы слелующие послеловательности пептилных фрагментов: 4-66, 70-85, 96-127, 154-187, 197-208, 265-306, 314-332, 346-360, 363-412, 456-487, 533-543, 578-613; 1-66, 70-85, 96-127, 154-187, 198-208, 265-306, 314-339, 346-360, 363-412, 424-443, 450-487, 492-497, 502-511, 533-543, 572-613, 619-625, что составляло 58 и 66%, соответственно, от суммарного числа аминокислотных остатков субъединицы. В неокисленном и окисленном образцах FXIIIа были картированы следующие участки полипептидной цепи субъединицы FXIII-В: 1-66, 70-85, 90-127, 154-187, 198-208, 254-360, 363-412, 424-497, 502-511, 533-543, 578-613, 619-625 и 1-66, 70-85, 96-127, 154-163, 165-187, 198-208, 265-360, 363-412, 424-443, 450-497, 502-511, 533-543, 578-613, 618-625, что составляло 71 и 69%, соответственно, от всех аминокислотных остатков субъединицы.

Полученные масс-спектрометры пептидов, принадлежащих неокисленным и окисленным образцам коагуляционного фактора XIII, позволили нам составить список молекулярных масс этих пептидов для обнаружения модифицированных сайтов и типа их модификации, обусловленных индуцированны гипохлоритом повреждением pFXIII (табл. 1). Следует отметить, что аминокислоты в исследуемых пептидах модифицированы до различных продуктов окисления. Можно наблюдать, что среди модификаций имеются случаи с присоединением одного (+15.99), двух (+31.99) и трех (+47.98) атомов кислорода одновременно, а также другой тип окислительной модификации для остатка пролина и хлорирования остатка тирозина.

Окислительные модификации аминокислотных остатков Met, Trp, Tyr, Lys, Cys, Asp, Asn, Pro, Phe в субъединице FXIII-A были идентифицированы на основе базы данных UNIMOD (http:// www.unimod.org) и ранее опубликованных работах по механизму окисления белков [17, 22, 23]. Для устранения возможных ошибок в расчетах при сравнении степени модификации образцов, связанных с недостаточным покрытием пептидов в образцах, аминокислотные остатки, которые не были обнаружены в одном из образцов, не учитывались.

Анализ субъединиц FXIII-A и FXIII-В неокисленного и окисленного гипохлоритом коагуляционного фактора XIII методом ВЭЖХ-МС/МС

Увеличение содержания окисленных пептидных форм и уменьшение содержания неокисленных пептидов наблюдалось в окисленном образце относительно незатронутого гипохлоритом pFXIII. Количество окисленных аминокислотных остатков в субъединицах FXIII-A и FXIII-B и степени окисления идентифицированных сайтов моди-

Модифицированный остаток	Номер остатка	Контрольный pFXIII	Окисленный pFXIII	Контрольный FXIIIa	Окисленный FXIIIa
W	57				<10%
Y	103				<10%
W	130				80-100%
С	152		80-100%		80-100%
Μ	159		50-80%		50-80%
Y	160				20-50%
W	164		10-20%		10-20%
Μ	247		10-20%		80-100%
Μ	265	<10%	80-100%		80-100%
Р	288				20-50%
Р	289				<10%
С	327				80-100%
Ν	344				<10%
Μ	350		50-80%		80-100%
Μ	406		80-100%		80-100%
С	409		80-100%		80-100%
Р	411				20-50%
Μ	475		50-80%	<10%	80-100%
Μ	499		80-100%		80-100%
Μ	512	<10%	80-100%		80-100%
Κ	513				<10%
Μ	520		50-80%		80-100%
Μ	595		10-20%		80-100%
Μ	646				80-100%
Р	655				80-100%
Р	675		<10%		20-50%
Μ	676	<10%	50-80%		50-80%
М	709		50-80%	<10%	80-100%

Таблица 2. Модифицированные аминокислотные остатки в субъединице FXIII-А

фикации различаются у образцов рFXIII и FXIIIa, обработанных гипохлоритом (табл. 2, 3). Для всей молекулы окисленного фактора XIII наблюдаемое отношение количество/степень окисленных аминокислотных остатков составляет 3.5%/1.7%, в то время как для субъединиц FXIII-A и FXIIII-В в окисленном FXIIIр это отношение равно 3.4%/2.1% и 3.5%/1.2% соответственно. В случае обработанного гипохлоритом FXIIIa суммарное отношение количество/степень окисленных аминокислотных остатков, приходящихся на гетеросубьединицы составляет 4.8%/2.5%. Для отдельных окисленных субъединиц FXIII-А2* и FXIII-В2 эта величина равна 5.4%/3.7% и 4.1%/1.2% соответственно. Из представленных данных видно, что молекула FXIIIа представляет собой более уязвимую мишень для окислителя по сравнению с молекулой pFXIII.

Как видно из рис. 1, за исключением активационного пептида, окисленные аминокислотные остатки были обнаружены во всех структурных элементах субъединицы FXIII-А в молекуле рFXIII. В домене β-сэндвич поврежденными оказались аминокислотные остатки Cys153, Met160 и Trp165; в каталитическом домене поврежденными были только остатки метионинов – Met248. Met266, Met407, Met475, Met500, Met513; в домене β-barrel 1 также в окислительную модификацию были вовлечены только остатки метионинов -Met521 и Met596; в домене β-barrel 2 были обнаружены модификации Pro656, Pro676 и Met710. При обработке FXIIIа гипохлоритом были выявлены дополнительные сайты модификаций в FXIII-A2*: Trp58, Tyr104, Trp121, Tyr161, Pro289, Pro290, Cys328, Asn345, Pro412, Lys614, Met647, Pro656.

Модифицированный остаток	Номер остатка	Контрольный pFXIII (alk)	Окисленный pFXIII (alk)	Контрольный FXIIIa (alk)	Окисленный FXIIIa (alk)
Y	18		<10%		20-50%
Y	19		10-20%		10-20%
Μ	29		80-100%		80-100%
Y	43		<10%		<10%
Y	80				<10%
D	118		<10%		<10%
W	120		<10%		20-50%
Y	164				<10-20%
Р	380				20-50%
Μ	383		20-50%		50-80%
D	389	<10%	20-50%		
Y	395				<10%
Y	408		<10%		<10%
М	441		80-100%		50-80%
Ν	442			<10%	<10%
Y	470		20-50%		<10%
М	503		80-100%	<10%	80-100%
W	578		20-50%		
D	579		20-50%		20-50%
Y	606		<20%		<20%

Таблица 3. Модифицированные аминокислотные остатки в субъединице FXIII-В

Как видно из рис. 2, при обработке pFXIII гипохлоритом в субъединице FXIII-В появляются модификации аминокислотных остатков Туг38, Tyr39, Met49, Tyr63 в первом домене, Asp138, Trp140 — во втором домене. Ни один из остатков. принадлежащих с третьего по шестой доменам, в покрытии не был поврежден гипохлоритом. В седьмом домене наблюдались модификации Met403, Asp408, Tyr428, в восьмом — Met461, Tyr490, в девятом и десятом — Met523 и Trp598, Asp599, Tyr626 соответственно. В FXIIIа образуются дополнительные модификации субъединицы FXIII-В: Туг80 — в первом домене, Tyr164 – в третьем домене, Phe380 – в шестом домене, Tyr415 и Asn442 в седьмом домене. Таким образом, так же как и в случае каталитической субъединицы, субъединицы FXIII-В₂ в окисленном образце FXIIIа являются более чувствительными к токсическому действию гипохлорита по сравнению с таковыми в pFXIII.

Результаты электрофореза по ковалентной стабилизации цепей фибрина демонстрируют, что в присутствии FXIIIa полипептидные цепи фибрина участвуют в ковалентной сшивке, что проявляется в образовании γ – γ -димеров и α -полимеров. Так как сшивание α -цепей вызывает формирование многомерных структур различной молекулярной массы, наблюдается набор полидисперсных продуктов (рис. 3). Как видно, обра-

зование γ — γ -димеров сопровождается снижением количества исходных γ -цепей. При сшивании α -и γ -цепей под действием FXIIIa, обработанного гипохлоритом, накопление γ — γ -димеров снижается по сравнению с контрольным образцом, что

есть следствие повреждения структуры FXIII- A_2^* при окислении. Так как цепи B β не участвуют в ковалентных сшивках, их содержание остается неизменным.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В данной работе впервые было исследовано индуцированное гипохлоритом повреждение плазменного коагуляционного фактора XIII. Белки плазмы крови постоянно атакуются различными по своей химической природе и реактивности АФК, в том числе гипохлоритом. Хорошо известно, что активированные нейтрофилы могут генерировать 100 мкМ/л HOCl/OCl⁻ *in vitro*, и было высказано предположение, что локальные концентрации HOCl/OCl⁻ вблизи активированных нейтрофилов *in vivo* могут быть значительно выше [24]. Таким образом, сильное окисление циркулирующих белков высокими концентрациями HO-Cl/OCl⁻, генерируемых активированными лейко-

30

MSETSRTAFG	10 GRRAVPPNNS	20 NAAEDDLPTV	30 ELQGVVPRGV	40 NLQEFLNVTS
	••••			
50 VHLFKERWDT	60 NKVDHHTDKY	70 ENNKLIVRRG	80 QSFYVQIDFS	90 RPYDPRRDLF
••••••				
100 RVEYVIGRYP	110 QENKGTYIPV	120 PIVSELQSGK	130 WGAKIVMRED	140 RSVRLSIQSS
••••••••			••••	
150 PKCIVGKFRM	160 YVAVWTPYGV	170 LRTSRNPETD	180 TYILFNPWCE	190 DDAVYLDNEK
···• · · · · •	• · · · • • · · · · ·			
200 EREEYVLNDI	210 GVIFYGEVND	220 IKTRSWSYGQ	230 FEDGILDTCL	240 YVMDRAQMDL
				· · • • · ·
250 SGRGNPIKVS	260 RVGSA M VNAK	270 DDEGVLVGSW	280 DNIYAYGVPP	290 SAWTGSVDIL
	· · · · · • • · · · · ·			
300 LEYRSSENPV	310 RYGQCWVFAG	320 VFNTFLRCLG	330 IPARIVTNYF	340 SAHDNDANLQ
<u> </u>	-	•••		••••
350 MDIFLEEDGN	360 VNSKLTKDSV	370 WNYHCWNEAW	380 MTRPDLPVGF	390 GGWQAVDSTP
••••••				
400 QENSDGMYRC	410 GPASVQAIKH	420 GHVCFQFDAP	430 FVFAEVNSDL	440 IYITAKKDGT
· · · · · · • • • •	•••••••			
450 HVVENVDATH	460 IGKLIVTKQI	470 GGDG M MDITD	480 TYKFQEGQEE	490 ERLALETALM
		· · · · • • · · · · ·		
⁵⁰⁰ YGAKKPLNTE	510 GV MK SRSNVD	520 MDFEVENAVL	530 GKDFKLSITF	540 RNNSHNRYTI
•••••	···•• ····	•••••••	••• ••••	•••••
550 TAYLSANITF	560 YTGVPKAEFK	570 KETFDVTLEP	580 LSFKKEAVLI	590 QAGEYMGQLL
600	610	620	630	640
EQASLHFFVT	ARINETRDVL	AKQKSTVLTI	PEIIIKVRGT	QVVGSDMTVT
•••••	•••••			
650 VQFTNPLKET	660 LRNVWVHLDG	670 PGVTR PM KKM	680 FREIRPNSTV	690 QWEEVCRPWV
••••		••••••		
700 SGHRKLIASM	710 SSDSLRHVYG	720 ELDVQIQRRP	730 SM	

Рис. 1. Первичная структура (последовательность аминокислотных остатков соответствует UniProt P00488 (F13A_HUMAN); http://www.uniprot.org) и экспериментально полученные методом ВЭЖХ-МС/МС последовательности пептидных фрагментов субъединицы FXIII-A для образцов окисленного pFXIII (сплошные линии) и окисленного FXIIIa (точечные линии). Остаток инициаторного Met изображен серым цветом. Сайты модификации в субъединице FXIII-A показаны черными кругами.

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 6 2020

ВАСИЛЬЕВА и др.

MRTKNITTELL	TITTSGELVA	10 FFKPCCFPHV	20 FNGRIAOVVY	30 TEKSEVEDMS
40	50	60	70	80
IDKKLSFFCL	AGYTTESGRQ	EEQTICITEG	WSPEPRCFKK	CTKPDLSNGY
90				130
ISDVKLLYKI	QENMRYGCAS	GYKTTGGKDE	EVVQCLSDGW	SSQPTCRKEH
	• • • • • •	•••••	•••••	•••••
ETCLAPELYN	150 GNYSTTQKTF	KVKDKVQYEC	ATGYYTAGGK	KTEEVECLTY
		• • • • • • •		• • • • • • • • • •
GWSLTPKCTK	200 LKCSSLRLIE	NGYFHPVKQT	220 YEEGDVVQFF	230 CHENYYLSGS
		•••••		
240 DLIQCYNFGW	250 YPESPVCEGR	260 RNRCPPPPLP	270 INSKIQTHST	280 TYRHGEIVHI
				•••••
290 ECELNFEIHG	300 SAEIRCEDGK	310 WTEPPKCIEG	320 QEKVACEEPP	330 FIENGAANLH
SKIYYNGDKV	TYACKSGYLL	HGSNEITCNR	GKWTLPPECV	ENNENCKHPP
		•••••	•••••	•••••
390 VVMNGAVADG	400 ILASYATGSS	410 VEYRCNEYYL	420 LRGSKISRCE	430 QGKWSSPPVC
	••••	•••••••	•••	
440 LEPCTVNVDY	450 MNRNNIEMKW	460 KYEGKVLHGD	470 LIDFVCKQGY	480 DLSPLTPLSE
•••••	• <u> </u>	•••••	•••••	•••••
490 LSVQCNRGEV	500 KYPLCTRKES	510 KGMCTSPPLI	520 KHGVIISSTV	530 DTYENGSSVE
•••••	••••	- •	- •	
540 YRCFDHHFLE	550 GSREAYCLDG	560 MWTTPPLCLE	570 PCTLSFTEME	580 KNNLLLKWDF
•••••				· • • •
590 DNRPHILHGE	600 YIEFICRGDT	610 YPAELYITGS	620 ILRMQCDRGQ	630 LKYPRCIPRQ
640	•••••	•••••	 	••••
STLSYQEPLR	Т			

Рис. 2. То же, что и на рис. 1, но для субъединицы FXIII-B; 20 аминокислотных остатков на NH₂-концевой части цепи, обозначенные серым цветом, являются сигнальным пептидом. Остальные обозначения те же, что и на рис. 1.

цитами, может потенциально способствовать повреждению белков плазмы, включая pFXIII.

Окисление белков, индуцированное HOCl, может обуславливать химическую модификацию аминокислотных остатков, не вызывая при этом фрагментации или агрегации самого белка [23]. Показано, что реакционная способность различных аминокислотных остатков в белках к действию HOCl располагается в ряду Met > Cys \gg Cystine \approx His \approx \approx протонированные аминогруппы (R–NH₃⁺) > Trp > Lys \gg Tyr \approx Arg > Gln \approx Asn [25, 26]. Данные масс-спектрометрии свидетельствуют о том, что в исследуемом нами белке серосодержащие и ароматические аминокислотные остатки наибо-

Рис. 3. Электрофорез восстановленных образцов ковалентно-сшитого фибрина под действием коагуляционного фактора XIII: *1* – маркер; *2* – FXIIIa, образованный из неокисленного pFXIII; *3* – FXIIIa, образованный из окисленного pFXIII; *4* – FXIIIa неокисленный; *5* – FXIIIa, окисленный гипохлоритом.

лее уязвимы к выбранному окислителю. В списке окислительных модификаций отсутствуют остатки гистидина, обладающего высокой реакционной способностью к гипохлориту. По всей видимости, те остатки гистидина, которые были детектированы в покрытии (His52, His65, His66, His343, His451, His460, His604, His667 и His717), "зарыты" в глубь белка и недоступны окислителю. В этой связи хотелось бы подчеркнуть, что реактивность каждого из аминокислотных остатков может сильно отличаться в разных белках, как это было продемонстрировано ранее [27] при воздействии озона на глютаминсинтетазу (GS) Escherichia coli и бычий сывороточный альбумин (BSA). Хотя BSA и GS имеют сопоставимый размер и содержат почти идентичные количества каждого вида ароматических аминокислотных остатков, окисление этих остатков в BSA происходило намного быстрее, чем в GS. Последнее обстоятельство указывает на то, что чувствительность к окислению зависит от первичной, вторичной, третичной и четвертичной структуры белка.

Совокупность результатов масс-спектрометрических и биохимических исследований показала, что фактор XIII характеризуется пониженной

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 6 2020

восприимчивостью к действию гипохлорита, в то время как его активация тромбином и ионами кальция снижает толерантность белка к действию окислителя. Это хорошо согласуется с полученными ранее данными, свидетельствующими о том, что превращение pFXIII в FXIIIa повышает чувствительность субъединиц FXIII-A^{*}₂ к индуцированному озоном окислению [16, 28].

Относительная устойчивость рFXIII к индуцированному гипохлоритом окислению имеет несколько возможных причин. Структура рFXIII обладает максимальной компактностью по сравнению с другими формами белка, образующимися в процессе ферментативной активации, что предотвращает доступ любых молекул к каталитическому центру [29], включая маленькие молекулы АФК. Активационный пептид и домен *β*-barrel 1 маскируют ключевые аминокислотные остатки Trp279, Cys314, His373 и Asp396, расположенные внутри ядра каталитического домена. Кроме того, AP-FXIII одной субъединицы FXIII-А предотвращает раскрытие активного центра, расположенного в другой субъединице FXIII-А. Структура каталитической субъединицы стабилизируется несколькими водородными связями и солевыми мостиками [30]. Кроме того, два NH₂-концевых sushi-домена субъединицы FXIII-В посредством их связывания с доменами β-barrel 1 и β-barrel 2 субъединицы FXIII-A участвуют в сборке гетеротетрамерной структуры pFXIII [10, 31, 32]. Также было предположено, что взаимодействие между субъединицами FXIII-А и FXIII-В осуществляется с помощью участка петли, локализованной в sushi домене 1 (остатки Туг18-Pro28), и NH₂-концевых остатков Thr6-Asp25 активационной петли [1]. Таким образом, совокупность гетеро- и гомосубъединичных взаимодействий обеспечивает поддержание компактной и плотной пространственной структуры pFXIII, необходимой для функционирования белка.

Превращение FXIII-A2 в FXIII-A2 способствует разрыхлению структуры каталитической субъединицы, делая ее более открытой и уязвимой для молекул окислителя. Предположительно активационный пептид играет исключительно важную роль в стабилизации димерной структуры FXIII-А₂. Его высвобождение из исходной молекулы приводит к ослаблению взаимодействия между мономерными субъединицами FXIII-А [33]. Как показано в самых последних работах [13, 34], FXIII- A_2^* , лишенный FXIII-AP, способен самопроизвольно диссоциировать на два мономера FXIII-А*, что, в свою очередь, может обнажать те аминокислотные остатки, которые располагаются в области соприкосновения мономеров в димере. Как следствие, данные масс-спектрометрии свидетельствуют о появлении новых сайтов модификации в FXIIIa.

Вторая возможная причина высокой резистентности pFXIII к индуцированному гипохлоритом окислению может быть обусловлена обильным содержанием высокоокисляемых серосодержащих остатков, распределенных строго определенным образом вдоль полипептидной цепи мономерной субъединицы FXIII-А. Данные ВЭЖХ-МС/МС показывают, что из 18 остатков метионина, которые содержатся в субъединице FXIII-А, 12 остатков, локализованных в β-сэндвич-домене, каталитическом домене, в доменах β -barrel 1 и β -barrel 2, оказались поврежденными, остаток Met351 оставался в нативной форме, остатки Met137, Met243, Met381, Met647 и Met732 не были идентифицированы в покрытии. Степени окисления окисленных метионинов, как видно из данных табл. 2, различаются, что указывает на их разную пространственную доступность к молекулам окислителя. Наиболее сильно окисленные метионины, максимально уязвимые для гипохлорита, являются, по всей видимости, поверхностно-экспонированными. Метионины, находящиеся на поверхности, окисляются с незначительным влиянием на биологическую активность белка и рассматриваются в качестве перехватчиков АФК, чтобы полностью защитить функционально важные остатки либо минимизировать последствия разрушительного воздействия АФК на белок [35, 36]. Как указывалось выше, при активации pFXIII тромбином и Ca²⁺ в покрытии обнаруживаются новые окислительные сайты, в том числе Met351, и растет степень окисления некоторых из выявленных остатков метионинов (табл. 2).

Защитная роль субъединиц FXIII-В, по-видимому, является еще одной причиной устойчивости pFXIII к окислению. Известно, что регуляторные субъединицы, представляющие собой тонкие гибкие нити, способны закручиваться вокруг глобулярных субъединиц FXIII-A [13, 37]. Это предполагает возможность пространственного экранирования субъединицами FXIII-В каждой субъединицы FXIII-A и ее каталитического домена от повреждающего действия молекул AФK.

ЗАКЛЮЧЕНИЕ

Ранее было показано, что клеточный коагуляционный фактор XIII (cFXIII), состоящий в отличие от pFXIII, только из каталитических субъединиц, при индуцированном окислении озоном в условиях, аналогичных таковым для pFXIII, демонстрировал кардинальные изменения как в химической, так и в пространственной структуре белка, что приводило к значительной потере ферментативной активности при превращении cFXIII в FXIIIa [38].

В настоящей работе показано, что при обработке рFXIII гипохлоритом наблюдается модификация

множественных аминокислотных остатков субъединицы FXIII-В, локализованных в различных sushi-доменах (табл. 3). Эти данные указывают на способность регуляторных субъединиц быть ловушками АФК, тем самым смягчая их действие на каталитические субъединицы. Диссоциация каталитических и регуляторных субъединиц в FXIIIа лишает FXIII-А* защиты FXIII-В. Антиоксидантная функция субъединицы В способна объяснить тот известный факт, почему субъединицы FXIII-А сами по себе проявляют нестабильность в плазме [12]. Таким образом, кажется разумным предположить, что из-за наличия субъединиц FXIII-В в структуре pFXIII и других вышеупомянутых причин pFXIII обладает высокой резистентностью к действию АФК, столь необходимой для сохранения функциональной активности при циркуляции в кровотоке.

В работе использовали оборудование ЦКП ИБХФ РАН.

Исследование выполнено в рамках бюджетного финансирования по госзаданию (тема 0084– 2014–0001). Масс-спектрометрические данные получены при поддержке грантом Российского научного фонда № 16-14-00181.

СПИСОК ЛИТЕРАТУРЫ

- Muszbek L., Bereczky Z., Bagoly Z., Komaromi I., Katona E. // Physiol. Rev. 2011. V. 91. № 3. P. 931.
- 2. *Komaromi I., Bagoly Z., Muszbek L.* // J. Thromb. Haemost. 2011. V. 9. №1. P. 9.
- 3. Lorand L. // Ann. N. Y. Acad. Sci. 2001. V. 936. P. 291.
- 4. Chen R., Doolittle R.F. // Biochemistry. 1971. V. 10. P. 4486.
- McKee A., Mattock P., Hill R.L. // Proc. Natl. Acad. Sci. U.S.A. 1970. V. 66. P. 738.
- 6. *Dickneite G., Herwald H., Korte W. et al.* // Thromb. Haemost. 2015. V. 113. P. 686.
- Shi D.-Y., Wang S.-J. // Chin. Med. J. 2017. V. 130. P. 219.
- Rodeghiero F., Tosetto A., Di Bona E., Castaman G. // Amer. J. Hematol. 1991. V. 36. P. 30.
- Gupta S., Biswas A., Akhter M.S. et al. // Sci. Rep. 2016. V. 6. 30105.
- Katona É., Pénzes K., Csapó A. et al. // Blood. 2014. V. 123. P. 1757.
- Souri M., Kaetsu H., Ichinose A. // Biochemistry. 2008. V. 47. P. 8656.
- 12. Schroeder V., Kohler H.P. // Semin. Thromb. Hemost. 2016. V. 42. P. 422.
- Protopopova A.D., Ramirez A., Klinov D.V., Litvinov R.I., Weisel J.W. // J. Thromb. Haemost. 2019. V. 175. № 5. P. 737.
- 14. Лущак В.И. // Биохимия. 2007. Т. 72. № 8. С. 995.
- 15. *Stadtman E.R., Levine R.L.* // Amino Acids. 2003. V. 25. P. 207.

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 6 2020

- Rosenfeld M.A., Bychkova A.V., Shchegolikhin A.N. et al. // Biochim. Biophys. Acta. Proteins. Proteom. 2013. V. 1834. P. 2470.
- Vasilyeva A., Yurina L., Indeykina M. et al. // Ibid. 2018.
 V. 1866. P. 875.
- Grune T., Catalgol B., Jung T. Prot. oxidation and aging. N.Y.: Wiley Online Library, 2013.
- Malle E., Furtmuller P.G., Sattler W., Obinger C. // Br. J. Pharmacol. 2007. V. 152. P. 838.
- Lorand L., Credo R.B., Janus T.J. // Methods Enzymol. 1981. V. 80. P. 333.
- Rosenfeld M.A., Vasileva V.V. // Biomed. Sci. 1991. V. 2. P. 155.
- Guedes S., Vitorino R., Domingues R., Amado F., Domingues P. // Rapid Commun. Mass Spectrom. 2009. V. 23. P. 230.
- 23. *Hawkins C.L., Pattison D.I, Davies M.J.* // 2003. Amino Acids. V. 25. P. 259.
- 24. Klebanoff, S.J. // J. Leukoc. Biol. 2005. V. 77. P. 598.
- Pattison, D., Davies M.J. // Chem. Res. Toxicol. 2001. V. 14. P. 1453.
- 26. Davies M.J. // Biochem. J. 2016. V. 473. P. 805.

- 27. Berlett B.S., Levine R.L., Stadtman E.R. // J. Biol. Chem. 1996. V. 271. P. 4177.
- 28. *Розенфельд М.А., Бычкова А.В., Щеголихин А.Н. и др. //* Хим. физика. 2014. Т. 33. № 1. Р. 47.
- Stieler M., Weber J., Hils M. et al. // Chem. Intern. Ed. Engl. 2013. V. 52. P. 11930.
- Ahvazi B., Kim H.C., Kee S.H., Nemes Z., Steinert P.M. // EMBO J. 2002. V. 21 P. 2055.
- 31. *Souri M., Kaetsu H., Ichinose A. //* Biochemistry. 2008. V. 47. P. 8656.
- 32. Souri M, Ichinose A. // Ibid. 2001. V. 40. P. 13413.
- 33. *Handrkova H., Schroeder V., Kohler H.P.* // J. Thromb. Haemost. 2015. V. 13. P. 1449.
- 34. Anokhin B.A., Stribinskis V., Dean W.L., Maurer M.C. // FEBS J. 2017. V. 284. V. 3849.
- Kim G., Weiss S.J., Levine R.L. // Biochim. Biophys. Acta. 2014. V. 1840. P. 901.
- Rosenfeld M.A., Vasilyeva A.D., Yurina L.V., Bychkova A.V. // Free Radic. Res. 2018. V. 52. P. 14.
- Carrell N.A., Erickson H.P., McDonagh J. // J. Biol. Chem. 1989. V. 264. P. 551.
- Розенфельд М.А., Щеголихин А.Н., Леонова В.Б. и др. // Докл. АН. 2016. Т. 467. № 4. С. 488.