ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 547.538.782:629.7.036.22.001

ЭТИНИЛЬНЫЕ ПРОИЗВОДНЫЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ КАК ВОЗМОЖНЫЕ ДИСПЕРГАТОРЫ ТВЕРДЫХ ТОПЛИВ

© 2020 г. Д. Б. Лемперт^{1*}, А. И. Казаков¹, Е. М. Дорофеенко¹, А. С. Смирнов², В. В. Разносчиков^{1, 3}, И. С. Аверьков^{1, 3}, Л. С. Яновский^{1, 3, 4}

¹Институт проблем химической физики Российской академии наук, Черноголовка, Россия ²Государственный научно-исследовательский институт машиностроения им. В.В. Бахирева, Москва, Россия ³Центральный институт авиационного моторостроения им. П.И. Баранова, Москва, Россия ⁴Московский государственный университет им. М.В. Ломоносова, Москва, Россия

**E-mail: lempert@icp.ac.ru* Поступила в редакцию 20.05.2019; после доработки 20.05.2019; принята в печать 20.06.2019

Рассмотрены несколько твердых этинильных производных (реально существующий диэтинилбензол и ряд на сегодня еще несинтезированных соединений) в качестве потенциальных диспергаторов топлив для ракетно-прямоточных двигателей. Проведена оценка плотности и энтальпии образования рассмотренных гипотетических этинильных производных. Изучен ряд важных параметров, характеризующих их эффективность в качестве диспергаторов. Проведены расчетно-теоретические исследования эффективности рассмотренных соединений как компонентов топлив для ракетно-прямоточных двигателей конкретных атмосферных летательных аппаратов типа "Метеор", результаты которых подтвердили их высокую эффективность.

Ключевые слова: ацетиленовые углеводороды, топливо, ракетно-прямоточный двигатель, энтальпия образования, адиабатическая температура, дальность полета.

DOI: 10.31857/S0207401X20070092

введение

Совсем недавно, в 2018 году, было предложено использовать высокоэнтальпийные азотсодержащие соединения в качестве диспергаторов топлив для ракетно-прямоточных двигателей (РПД) [1, 2]. В таких двигателях требуется диспергировать твердое топливо в газогенераторе с целью выноса в камеру дожигания твердых и газообразных продуктов первичного превращения топлива. Кроме того, если в топливе используются в качестве горючего металлы, требуется их разогреть для повышения полноты сгорания в потоке воздуха в камере дожигания. Для превращения топлива в газогенераторе в горячие продукты необходим источник химической энергии, для чего в топливо добавляют окислитель, например перхлорат аммония (ПХА), перхлорат калия и др. Следует добавлять окислитель в количестве, достаточном для нагрева за счет экзотермического окисления части горючего исходного топлива и продуктов его газификации до 1500-2000 К. То есть в такой системе окислитель служит диспергатором. Поскольку энергетические параметры таких топлив определяются в большой степени их теплотой сгорания в воздухе (эта величина есть сумма парциальных величин по всем компонентам), то из-за очень низкой теплоты сгорания ПХА (~2 МДж/кг против 44 МДж/кг для обычных углеводородов) введение последнего в состав топлива снижает его энергетические свойства. В работе [2] было показано, что применение высокоэнтальпийных азот- и кислородсодержащих соединений позволяет существенно повысить энергетику топлив, так как, с одной стороны, за счет высокой вели-

чины их энтальпий образования $\left(\Delta H_{f}^{\circ}\right)$ топлив-

ные составы, их содержащие, способны гореть и создавать достаточно высокие температуры, а с другой — теплоты их сгорания существенно выше (до 19 МДж/кг), чем у ПХА, хотя и ниже, чем у углеводородного связующего. Расчетные исследования авторов с использованием многодисциплинарной компьютерной программы [2] показали, что применение указанных диспергаторов вместо ПХА повышает дальность полета атмосферных летательных аппаратов (ЛА) на 16–18%.

Следующим шагом в решении задачи по повышению энергоемкости твердых топлив стало предложение авторов использовать в качестве диспергатора высокоэнтальпийные углеводороды, содержа-

щие ацетиленовые группы, так как их теплота сгорания находится на уровне теплот сгорания предельных углеводородов, а ΔH_f° достаточно велика, чтобы обеспечить самостоятельное экзотермическое превращение даже при отсутствии кислорода. Были проведены экспериментальные исследования по определению как теплоты сгорания, так и энтальпии образования ΔH_f° 1,4-диэти-нилбензола (ДЭБ) [3], которая равна 4010 кДж/кг (500.6 кДж/моль). Как показано ниже, использование ДЭБ в качестве диспергатора обеспечивает существенное повышение дальности полета ЛА с РПД по сравнению с топливами, в которых в качестве диспергатора используют ПХА или даже высокоэнтальпийные полиазотистые соединения, описанные в работе [2]. Этот результат стимулировал поиск других соединений, построенных по тому же принципу, что и ДЭБ, – наличие нескольких этинильных фрагментов в молекуле. Были рассмотрены (табл. 1) 1,4,5,8-тетраэтинилнафталин (I), 1,4,5,8,9,10-гексаэтинилантрацен (II), 1,4-диэтинилциклогексан (III), 1,4,5,8-тетраэтинилдекагидронафталин (IV), 1,4,5,8,9,10-гексаэтинилтетрадекагидроантрацен (V), 2,5,8-триэтинил-1H-фенален (VI), 1,3,5,7-тетраэтинилциклоокта-1,3,5,7-тетраен (VII). Среди указанных соединений в качестве каркаса, на котором присутствуют этинильные заместители, есть как ароматические, так и предельные циклические структуры.

Поскольку наряду с элементным составом основными параметрами, определяющими влияние диспергатора на величину дальности полета, являются его величины ΔH_f° и плотности ρ , то в настоящей работе приведены оценки этих параметров для соединений I–VII, и с использованием этих параметров выполнены расчетные исследования летно-технических характеристик ЛА с РПД типа "Метеор" на двухкомпонентных топливах: углеводородное связующее + один из рассматриваемых диспергаторов (ДЭБ, I–VII).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оценка величин ΔH_f° высокоэнтальпийных соединений I–VII

Стандартные энтальпии образования ΔH_f° соединений I–V и VII рассчитаны, исходя из литературных данных по ΔH_f° нафталина [4], антрацена [5], циклоокта-1,3,5,7-тетраена [4], циклогексана [4], декагидронафталина [5] и тетрадекагидроантрацена [6] при использовании энергетического инкремента замены атома водорода в твердом бензоле на этинильную группу. При аналогичном расчете ΔH_f° соединения VI предварительно была оценена методом групповых вкладов [7] энтальпия образования 1Н-феналена (C₁₃H₁₀) в твердом состоянии, равная 142 кДж/моль. При расчете вклад 1,3-взаимодействия этинильных групп в соединениях I, II, IV, V и VII в энтальпию образования не учитывали.

Оценка плотности и некоторых других характеристик исследуемых соединений

Плотность ДЭБ известна, она равна 1.16 [8]. Плотности соединений I–VII рассчитывали по методу, описанному в работе [9], основанному на аддитивных вкладах входящих атомов и групп с учетом свойств соответствующих атомов и групп. Полученные данные по ΔH_f° и плотности приведены в табл. 1. Там же представлены расчетные величины низшей теплоты сгорания H_u (получено просто из элементного состава и ΔH_f°), температуры адиабатического превращения T_{ad} при давлении 5 МПа, среднемолекулярной массы ММ_g и количества молей V_g газообразных продуктов превращения изучаемых продуктов и массовой доли Z конденсированных (при температуре T_{ad}) продуктов превращения. Величины

ратуре T_{ad}) продуктов превращения. Беличины T_{ad} , MM_g , V_g и Z определяли с помощью стандартной программы расчета термохимических равновесий ТЕРРА [10].

Оценка эффективности твердых топлив по критерию высокого уровня

Оценка эффективности топлив на основе исследуемых соединений выполнялась с использованием программного комплекса "Авиационный химмотологический анализ", в основу которого положена концепция анализа системы "Летательный аппарат-Двигатель-Топливо" [11]. Комплекс был усовершенствован авторами настоящей работы, как это описано в работах [2, 12], для возможности проведения расчетно-параметрических исследований по формированию оптимальных составов твердых топлив для различных атмосферных летательных аппаратов с РПД [13]. В комплексе реализованы методики термогазодинамического расчета воздушно-реактивных двигателей, высотноскоростных и дроссельных характеристик, динамики полета, а также объемно-массовой компоновки летательных аппаратов [12]. Интеграция в программный комплекс "Авиационный химмотологический анализ" расчетного модуля "Терра" [10] и его обширной базы данных по термодинамическим свойствам индивидуальных веществ позволила усовершенствовать алгоритм учета зависимости теплофизических свойств воздуха и продуктов сгорания от температуры [12] при термогазодинамическом расчете проточного тракта РПД в любом сечении двигателя.

N	0.945	0.960	0.964	0.950	
$V_g,$ mojib/kr	22.76	17.33	15.09	19.72	
MMg	2.338	2.2795	2.3264	2.459	
T_{ad} при 5 МПа, К	1994	2255	2383	1858	
<i>Н</i> ., МДж/л	48.79	48.48	49.45	49.19	
<i>Н</i> _и , МДж/кг	42.06*	41.19	40.9	40.92	
$\Delta H_f^\circ,$ кДж/кг	4010*	4467	4691	3505	
$\Delta H_f^\circ,$ KДж/моль	500.6*	1000.8	1510.9	834.4	
p, r/cm ³	1.16*	1.177	1.209	1.202	
Структурная формула	HU				
Соединение	ДЭБ (С ₁₀ Н ₆)	I (C ₁₈ H ₈)	II (C ₂₆ H ₁₀)	VI (C ₁₉ H ₁₀)	

Tabnuца 1. Расчетные значения характеристик исследуемых соединений

19

									Tabnuya 1	(Окончание)
VII (C ₁₆ H ₈)		1.111	1177.3	5885	43.08	47.86	2584	2.543	19.3	0.949
III (C ₁₀ H ₁₂)		1.033	305	2309	45.11	46.60	1358	4.61	38.29	0.823
IV (C ₁₈ H ₁₈)		1.095	703.4	3004	44.25	48.45	1535	3.297	35.18	0.884
V (C ₂₆ H ₂₄)		1.122	1090.8	3245	43.88	49.23	1617	2.96	33.4	0.901
*Эксперимента	льные величины.									

ЛЕМПЕРТ и др.

20

ХИМИЧЕСКАЯ ФИЗИКА том 39 <u>№</u> 7 2020

Программный комплекс дополнен возможностью оптимизационных исследований с распараллеливанием вычислений на многоядерных вычислительных системах. Это достигнуто за счет реорганизации структур данных в классы, описывающие объекты исследования и допускающие возможность масштабирования, а также использования технологии OpenMP в рамках языка программирования Fortran 2008. Оптимизация является однокритериальной с возможностью наложения ограничений по различным параметрам. Вектор варьируемых переменных может включать в себя любые параметры сложной системы "Летательный аппарат-Двигатель-Топливо". Оценка эффективности применения твердых топлив проводится по критерию максимальной дальности маршевого полета летательного аппарата с воздушно-реактивным двигателем.

При поиске оптимальных композиций топлив по критерию дальности полета ЛА были приняты следующие ограничения:

а) топливо состоит из двух компонентов: связующее – каучук (C_5H_8 ; $\Delta H_f^\circ = -922$ кДж/кг, плотность – 920 кг/м³) + один из компонентов: ДЭБ, I–VII;

б) в качестве ЛА рассматривалась ракета "воздух-воздух" с РПД типа "Метеор" [14].

Для каждого варианта топлива выполнялся расчет по формированию оптимального его состава и оптимальной геометрической конфигурации проточной части двигателя с учетом характеристик летательного аппарата, траектории полета, а также свойств топлива. Для всех вариантов топлив масса сухой конструкции ЛА, объем топлива, геометрические параметры газогенератора и камеры дожигания приняты постоянными. Таким образом, масса топлива на борту ЛА зависит только от его плотности. В качестве варьируемых переменных выбраны:

 площадь входа воздухозаборного устройства двигателя,

 площадь критического сечения сопла двигателя,

 массовые доли компонентов твердого топлива.

Расчет величины дальности полета ЛА выполняется посредством численного интегрирования уравнений динамики полета [15, 16]. Расход топлива в каждой точке траектории определяется из условия поддержания постоянной скорости полета.

В качестве ограничивающих параметров выбраны массовая доля связки и равновесная адиабатическая температура (T_{ad}) в газогенераторе: массовая доля связки — не менее 0.1 для обеспечения удовлетворительных физико-механических характеристик топлива, а T_{ad} — не менее 1300 К

Рис. 1. Зависимость энтальпии образования соединений ДЭБ, I–VII от массовой доли *n* этинильных групп в веществе.

для обеспечения надежного выноса продуктов газификации топлива из газогенератора.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Естественно, что ΔH_f° в большой мере зависит от массовой доли этинильных групп в соединении. Поэтому мы анализируем полученные данные по двум рядам: **A** (DEB, I и II) и **B** (III–V), которые являются своего рода гомологическими. В ряду **A** базовым каркасом являются ароматические циклы, в ряду **B** – насыщенные циклы. Из

рис. 1 видно, что в зависимости величины ΔH_f° от массовой доли *n* этинильных групп прослеживаются две линии: *A* (DEB, I и II) и B (III–V). В каждом ряду ΔH_f° растет по мере увеличения *n*, при этом линия *A* расположена выше линии *B*, так как ароматические циклические каркасы в соединениях DEB, I и II имеют существенно более высо-

кие ΔH_f° , чем предельные циклические каркасы в соединениях III–V.

В первом приближении оценку эффективности ДЭБ и соединений I–VII можно проводить, сравнивая величины достигаемой адиабатической температуры их сгорания, T_{ad} , при постоянном давлении (здесь принято считать это давление равным 5.0 МПа), удельную теплоту сгорания H_u и объем образующейся газовой фазы V_g при адиабатическом горении единицы массы диспергатора. Чем больше T_{ad} и V_g , тем более эффективно вещество как диспергатор, а чем выше H_u , тем более энергоемким становится топливо и, как правило, больше дальность полета ЛА. На данном этапе работ такие физико-химические и физико-

 T_{ad}, K

■ VI

2500

2000

1500

Рис. 2. Зависимость величины *H_u* соединений ДЭБ, I–VII от массовой доли *n* этинильных групп в веществе.

механические параметры, как термостойкость, чувствительность и другие, не рассматриваются, а оцениваются только энергетические параметры исследуемых соединений, выступающих в качестве диспергаторов. Несмотря на то, что ΔH_f° ряда

соединений на базе ароматических циклов (DEB, I и II) больше, чем у аналогичных соединений на базе предельных циклов (III–V), величины теплот сгорания (рис. 2) у последних выше за счет большего содержания в них водорода.

Температуру адиабатического превращения при 5 МПа (рис. 3) удобнее рассматривать как функцию величины H_u . Видно, что оба ряда, **A** и **B**, принадлежат одной прямой, и по этой прямой можно судить об эффективности того или иного диспергатора в зависимости от соотношения "цены" T_{ad} и H_u для конкретных типов двигателей. Например, переход от III к DEB ведет к повышению T_{ad} на 400 K, но с потерей 1 МДж/кг (~2%) в величине H_u , что может представлять практический интерес.

Величина V_g также важна для оценки диспергатора, поскольку функция последнего – не только разогреть систему, но и обеспечить вынос конденсированных продуктов термопревращения (с низкой степенью окисления) в камеру дожигания двигателя, где уже осуществляется основной процесс их сгорания до H₂O, N₂, CO₂. Поэтому объем выделяющихся газов (или количество молей газа V_g) в процессе термопревращения диспергатора в адиабатических условиях до температуры T_{ad} является тоже мерой эффективности диспергатора. На рис. 4 приведена зависимость величины V_g от H_u для исследованных соединений.

DEB

٧H

Рис. 3. Зависимость T_{ad} соединений ДЭБ, I–VII от величин H_{μ} .

Здесь так же, как и на рис. 3, оба ряда, **A** и **B**, принадлежат одной прямой, величина V_g существенно выше в ряду **B**, поскольку там больше водорода, и внутри каждого ряда V_g растет по мере повышения доли водорода в компоненте. Наиболее высокие значения V_g (35–45 моль · кг⁻¹) обеспечивают соденинения III–V, но вряд ли они могут быть использованы из-за весьма низких температур T_{ad} . Соединение ДЭБ обеспечивает значение $V_g = 22.5$ моль · кг⁻¹, что почти в два раза меньше, чем у октогена ($V_g = 41.3$). Надо отметить, что в отличие от высокоэнтальпийных компонен-

Рис. 4. Зависимость количества выделившихся газов при адиабатическом превращении соединений ДЭБ, I–VII от величин H_{μ} .

Исследуемый диспергатор	Характеристики оптимизированного топлива "диспергатор + связка"						
	<i>H</i> _u , МДж/кг	<i>H_v</i> , МДж/л	L_0	<i>ρ_f</i> , кг/м ³	массовая доля связки	<i>T_{ad}</i> , K	L_{rel}
ПХА	16.33	22.64	4.22	1387	0.3628	1300	1.000
Октоген	24.23	31.00	7.05	1279	0.4606	1301	1.279
L-44	30.18	35.46	9.24	1175	0.5911	1300	1.433
L-40	29.02	35.59	8.91	1226	0.5292	1301	1.433
III	42.99	43.87	13.66	1020	0.1000	1301	1.756
VII	42.19	45.92	12.61	1088	0.1002	2385	1.812
IV	42.52	45.68	13.37	1074	0.1007	1437	1.822
ДЭБ	41.11	46.12	12.77	1122	0.1002	1781	1.832
Ι	40.57	46.46	12.52	1145	0.1000	1992	1.842
V	42.30	46.44	13.26	1098	0.1002	1499	1.850
VI	40.21	46.89	12.65	1166	0.1005	1663	1.865
II	40.41	47.36	12.42	1172	0.1007	2096	1.875

Таблица 2. Результаты расчетных оценок эффективности топлив (диспергатор + связка) по дальности полета ЛА типа "Метеор"

Примечания: ρ_f – плотность топлива; H_u , H_v – массовая и объемная низшие теплоты сгорания топлива; T_{ad} – адиабатическая температура в ГГ; L_{rel} – относительная дальность полета по отношению к ПХА; L_0 – коэффициент стехиометрического соотношения диспергатора с воздухом.

тов, содержащих и азот, и кислород, где в продуктах адиабатического превращения не должно быть конденсированной фазы, исследуемые в настоящей статье компоненты оставляют при термическом превращении от 83 до 96% сажи, которая должна быть вынесена в камеру дожигания.

Что касается термических превращений соединений VI и VII, то эти данные приведены в табл. 1 и на рис. 1–4. Компонент VII имеет максимальные величины ΔH_f° (5885 кДж/кг) и T_{ad} (2584 K), но значение V_g у него несколько ниже, чем у ДЭБ (19.3 против 22.75 моль · кг⁻¹). Значения H_u , T_{ad} и *n* у соединения VI ниже, чем у ДЭБ, но поскольку в нем этинильные группы более далеко располагаются друг от друга, он может дать повышенную термостабильность, тогда как у соединения VII этинильные группы расположены ближе, чем у ДЭБ, что может стать причиной снижения термостабильности.

Эти результаты только качественно описывают относительную эффективность исследуемых соединений, количественные же результаты должны дать расчеты дальности полета конкретного ЛА с РПД, снабженного топливом на основе изучаемых соединений. В табл. 2 представлены результаты расчетов по оценке эффективности ТТ на основе рассмотренных веществ в постановке, описанной выше.

Результаты расчетов показали (табл. 2, рис. 5), что рассмотренные этинилсодержащие диспергаторы между собой весьма близки по критерию дальности полета ЛА (величины L_{rel} для таких компонентов, как ДЭБ, I, II, IV–VII, отличаются от среднего значения (1.84) не более чем на 2% и существенно превосходят таковые для традиционных диспергаторов-окислителей (ПХА, октоген), а также лучших диспергаторов, рассмотренных в работе [2]). Видно, что для составов со всеми ацетиленовыми соединениями оптимальная доля связующего оказывается равной 10%, так как такое количество связующего было граничным условием оптимизации. Без этого условия оптимальными были бы составы, содержащие 100% ацетиленового соединения, так как величина объемной теплоты сгорания H_v у любого из изучаемых ацетиленов выше, чем у связующего.

По совокупности свойств (L_{rel} и T_{ad}) можно считать, что наиболее удачным из рассмотренных диспергаторов являются следующие: VII (наиболее высокая массовая доля этинильных групп), II (наиболее высокая плотность) и ДЭБ. Соединения III–V, построенные на основе предельных циклов, имеют существенно более низкие величины T_{ad} , что объясняется не только пониженной величиной H_u , но и повышенным содержанием водорода. Известно, что увеличение водорода в композиции существенно снижает температуру продуктов сгорания [17].

Подчеркнем, что соединения I–VII пока не получены, однако, без сомнений, они могут быть синтезированы, так как нет каких-либо запретов к их существованию. Ответить на вопрос, какими будут их эксплуатационные свойства, особенно

Рис. 5. Величины относительной дальности полета (левые столбики) и величины $T_{ad}/1300$ (правые столбики) оптимизированного топлива "диспергатор + связка СКИ (синтетический каучук изопропеновый)" применительно к ЛА типа "Метеор".

стабильность и фазовое состояние, пока не представляется возможным. Таким образом, важным критерием по выбору диспергатора из числа рассмотренных станут их эксплуатационные свойства, а именно: термостабильность, фазовое состояние, химическая инертность, наличие компонентной базы для производства и др.

ЗАКЛЮЧЕНИЕ

Оценены величины энтальпии образования и плотности ряда потенциальных этинильных производных: 1,4,5,8-тетраэтинилнафталина, 1,4,5,8,9,10гексаэтинилантрацена, 1,4-диэтинилциклогексана, 1,4,5,8-тетраэтинилдекагидронафталина, 1,4,5,8,9,10гексаэтинилтетрадекагидроантрацена, 2,5,8-триэтинил-1Н-феналена, 1,3,5,7-тетраэтинилциклоокта-1,3,5,7-тетраена.

Расчетно-теоретические исследования эффективности изученных соединений в качестве компонентов топлив для ракетно-прямоточных двигателей атмосферных летательных аппаратов типа "Метеор" показали, что диэтинилбензол и другие этинильные производные по эффективности в качестве диспергатора топлив существенно (на 28–29%) превосходят ряд полиазотистых высокоэнтальпийных соединений и тем более перхлорат аммония (в 1.8–1.85 раз).

Работа выполнена на средства ИПХФ РАН по темам 008920140019 "Создание высокоэнергетических материалов и технологий для разрабатываемых и перспективных систем" (№ госрегистрации АААА-А19-119101690058-9) и 008920150221 "Исследования рабочих процессов при горении твердых топлив в камере сгорания высокоскоростного прямоточного воздушно-реактивного двигателя" (№ госрегистрации АААА-А19-119100800130-0) при финансовой поддержке программой Президиума РАН "Фундаментальные основы прорывных технологий в интересах национальной безопасности" (тема: "Разработка твердых топлив и горючих для газогенераторов прямоточных воздушно-реактивных двигателей гиперзвуковых летательных аппаратов и исследование процессов тепломассообмена и горения в газогенераторах").

СПИСОК ЛИТЕРАТУРЫ

- Яновский Л.С., Лемперт Д.Б., Разносчиков В.В., Аверьков И.С., Алексеева М.М. // Тез. докл. VI Всерос. науч.-технич. конф. "Фундаментальные основы баллистического проектирования". СПб.: Издво БГТУ, 2018. С. 203.
- 2. Яновский Л.С., Лемперт Д.Б., Разносчиков В.В., Аверьков И.С. // ЖПХ. 2019. Т. 92. № 3. С. 322.
- 3. Лемперт Д.Б., Зюзин И.Н., Набатова А.В., Казаков А.И., Яновский Л.С. // Физика горения и взрыва. 2019. Т. 55. № 6. С. 14.
- 4. *Cox J.D., Pilcher G.* Thermochemistry of Organic and Organometallic Compounds. L., N.Y.: Acad. Press, 1970.
- 5. *Stull D.R., Westrum E.F., Sinke G.C.* The Chemical Thermodynamics of Organic Compounds. N.Y.: John Wiley and Sons. Inc., 1969.
- Margrave J.L., Frisch M.A., Bantista R.G., Clarke R.L., Johnson W.S. // J. Amer. Chem. Soc. 1963. V. 85. P. 546.
- Salmon A., Dalmazzone D. // J. Phys. Chem. Ref. Data. 2007. V. 36. P. 19.
- Ahmed N.A., Kitaigorodsky A.I., Sirota M.I. // Acta Crystallogr., Sect. B: Struct. Sci. 1972. V. 28. № 9. P. 2875.
- 9. Смирнов А.С., Смирнов С.П., Пивина Т.С., Лемперт Д.Б., Маслова Л.К. // Изв. АН. Сер. хим. 2016. № 10. С. 2315.

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 7 2020

- Трусов Б.Г. Тез. докл. III Междунар. симпоз. "Горение и плазмохимия". Алматы: Изд-во Казак университеті, 2005. С. 52.
- 11. *Разносчиков В.В.* // Полет. Общерос. науч.-технич. журн. 2008. № 4. С. 28.
- Яновский Л.С., Лемперт Д.Б., Разносчиков В.В., Аверьков И.С., Шаров М.С. // Физика горения и взрыва. 2020. Т. 56. № 1. С. 81.
- Сорокин В.А., Яновский Л.С., Козлов В.А. и др. Ракетно-прямоточные двигатели на твердых и пастообразных топливах. Основы проектирования и экспериментальной отработки. Изд-во М.: Физматлит, 2010.
- 14. Сорокин В.А., Яновский Л.С., Разносчиков В.В., Ягодников Д.А. и др. Проектирование и отработка ракетно-прямоточных двигателей на твердом топливе: уч. пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2016.
- Лебедев А.А., Чернобровкин Л.С. Динамика полета беспилотных летательных аппаратов. Уч. пособие для вузов. Изд. 2-е, переработанное и доп. М.: Машиностроение, 1973.
- 16. Левицкий С.В., Свиридов Н.А. Динамика полета. М.: Изд-во ВВИА им. Н.Е. Жуковского, 2008.
- 17. Лемперт Д.Б., Дорофеенко Е.М., Согласнова С.И., Матвеев А.А. // Хим. физика. 2016. Т. 35. № 7. С. 44.