ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 662.613.114; 662.765.2

ВЛИЯНИЕ ОКСИДА НАТРИЯ НА ПЛАВКОСТЬ ЗОЛЫ ТВЕРДЫХ КОММУНАЛЬНЫХ ОТХОДОВ

© 2020 г. М. В. Цветков^{1*}, Д. Н. Подлесный¹, В. М. Фрейман^{1, 2}, Е. А. Салганский¹, Ю. Ю. Цветкова¹, И. В. Зюкин^{1, 2}, А. Ю. Зайченко¹, М. В. Салганская^{1, 2}

¹Институт проблем химической физики Российской академии наук, Черноголовка, Россия ²Московский государственный университет им. М.В. Ломоносова, Москва, Россия

**E-mail: tsvetkov@icp.ac.ru* Поступила в редакцию 09.01.2020; после доработки 09.01.2020; принята в печать 20.02.2020

Охарактеризован модельный состав твердых коммунальных отходов и химический состав его золы. Минеральные соединения и температуры плавления исследованы с использованием различных аналитических методов, включая методы XRD, FTIR и AFT. Рассчитаны основные показатели шлакообразования: основно-кислотное соотношение, индекс вязкости шлака, коэффициент обрастания. Зола твердых коммунальных отходов содержит значительные количества CaO, SiO₂ и Al₂O₃. С использованием программы Terra проведены термодинамические расчеты химических равновесий систем CaO–SiO₂–Al₂O₃–Na₂O, содержащих от 5 до 25% оксида натрия. Экспериментально показано, что увеличение содержания Na₂O на каждые 5% снижает характерные температуры плавления, золы твердых коммунальных отходов на 30–50 °C.

Ключевые слова: твердые коммунальные отходы, температуры плавления, зола, шлакуемость, минеральные соединения, термодинамические расчеты.

DOI: 10.31857/S0207401X20080142

введение

В России ежегодно образуется более 60 млн т твердых коммунальных отходов (ТКО), из которых только 7–8% поступает на переработку [1]. Большая часть отходов отправляется на свалки, которые занимают огромные территории земли, и при самовоспламенении ТКО окружающая среда загрязняется отходящими газами. Кроме того, мусорные свалки являются источником загрязнения как поверхностных, так и подземных вод вследствие дренажа свалок атмосферными осадками.

В настоящее время одним из перспективных методов термической переработки ТКО является газификация в режиме фильтрационного горения [2–6]. Такая технология в противоточных системах имеет ряд преимуществ: высокая чистота отходящих газов, высокая эффективность процесса, возможность использования низкокалорийных и мелкодисперсных отходов [7–10]. При газификации ТКО образуется продукт-газ (смесь СО, H₂, СО₂ и др.), который после очистки можно использовать для получения тепловой или электрической энергии [11–15].

Технология газификации в режиме фильтрационного горения предполагает твердое золоудаление, поэтому плавление золы налагает ограничения на максимальную рабочую температуру. Этапы плавления золы ТКО, согласно ГОСТу 54238, можно описать с помощью четырех характерных температур — метод AFT (рис. 1).

При росте температуры в реакторе выше температуры деформации (DT) золы наблюдается спекание шихты, что препятствует разгрузке зольного остатка. Для предотвращения шлакования золы важно до начала сжигания ТКО знать химический состав и характерные температуры плавления золы, чтобы не превышать DT, и/или применять другие методы предотвращения шлакования золы [16].

Рис. 1. Этапы плавления золы: *1* – исходный образец; *2*–*5* – вид образца при температуре деформации (*2*), температуре сферы (*3*), температуре полусферы (*4*) и температуре растекания (*5*).

Характеристики плавления золы тесно связаны с ее составом, который в основном состоит из восьми оксидов: SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O и TiO₂. Как правило, эти оксиды разделены на две группы: кислотные оксиды, которые повышают температуру плавления, и щелочные оксиды, которые ее понижают. Влияние оксидов SiO₂, Al₂O₃, Fe₂O₃, CaO на температуру плавления и минеральный состав золы угля уже достаточно хорошо изучено [17–20]. Однако влияние щелочных оксидов, особенно оксида натрия, изучено меньше, хотя изменение их концентраций оказывают значительное влияние на плавкость золы [21–23].

Изучая поведение натриевых полевых шпатов при их нагревании до 1600°C, австралийские ученые обнаружили, что выше 1050°С начинается плавление зольного остатка [24]. Это хорошо согласуется с бинарной фазовой диаграммой системы альбит-кремнезем, которая указывает на температуру эвтектики, равную 1062°С. В работе [25] исследовали температуры плавления золы различных бытовых отходов (шин, древесины, смеси полимеров с бумагой и др.), однако практически не рассматривали влияние оксида натрия на плавкость золы. Температуру плавления золы можно изменять путем смешивания различных топлив, например угля с илом сточных вод [26]. В обзоре [27] рассматриваются проблемы шлакуемости золы при сжигании биомассы и некоторые способы ее предотвращения. Обсуждены мультикомпонентные фазовые диаграммы систем K₂O(+Na₂O)-CaO(+MgO)-SiO₂ для предсказания характеристик плавления золы биомассы [28].

Приведенные выше исследования проводились в основном для углей и биомассы и были направлены на изучение роли добавок различных оксидов. В зависимости от морфологического состава твердых коммунальных отходов содержание соединений натрия в них может быть различным.

Цель настоящей работы — изучение влияния оксида натрия на температуры плавления золы ТКО и преобразование минеральных соединений в условиях термической переработки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характеристика используемого ТКО. Модельный состав ТКО: бумага и картон – 40 мас.%, пищевые отходы – 22 мас.%, пластмасса – 10 мас.%, стекло – 7 мас.%, алюминиевые банки – 5 мас.%, железная проволока – 3 мас.%, древесина – 7 мас.%, текстиль – 3 мас.%, кожа и резина – 3 мас.%. Для повышения доли натрия в исследуемой золе к модельному составу золы ТКО добавляли карбонат натрия. Выбор Na_2CO_3 в качестве добавки обусловлен его инертностью при комнатной темпе-

ратуре (температура плавления карбоната натрия равна 852°С).

Приготовление и анализ золы

Образцы золы ТКО готовили в соответствии с ГОСТом Р 55661-2013. Образцы помещали в муфельную печь, нагревали их до 500°С в течение 30 мин, выдерживали 30 мин, затем поднимали температуру до 815°С в течение 30 мин и выдерживали еще 2 ч. Далее золу охлаждали до комнатной температуры и хранили в герметичной таре для последующего анализа. Полученную золу анализировали на сканирующем автоэмиссионном электронном микроскопе Zeiss LEO SUPRA 25, а также на атомно-абсорбционном спектрофотометре AAS-3 (на натрий и калий) с целью определения ее химического состава.

Химический состав золы ТКО в пересчете на оксиды следующий: SiO₂ - 24.21 мас.%, Al₂O₃ -12.09 мас.%, Fe₂O₃ – 3.01 мас.%, CaO – 42.41 мас.%, MgO – 2.32 мас.%, Na₂O – 3.25 мас.%, K₂O – $1.5 \text{ mac.\%}, P_2O_5 - 2.53 \text{ mac.\%}, CO_2 - 4.59 \text{ mac.\%},$ остальное (TiO₂, SO₃, Cl⁻ и др.) – 4.09 мас.%. Золу ТКО и ее смеси с 15% и 25% карбоната натрия (в пересчете на Na₂O) нагревали до заданных температур (1000°С, 1100°С, 1200°С) и охлаждали до комнатной температуры. После измельчения золы до фракции с размером частиц 60-100 мкм определяли кристаллические фазы на рентгеновском порошковом дифрактометре ДРОН-УМ2, укомплектованном рентгеновской трубкой с $Cu(K_{\alpha})$ -излучением с размером шага 0.05° в диапазоне $2\theta = 10 - 80^{\circ}$. Для идентификации фаз использовали электронную базу данных PDF-4 + ICDD.

Для определения пространственных групп атомов золу анализировали на ИК-фурье-спектрометре Bruker VERTEX 70. Исследовали спектральную область от 50 до 2000 см⁻¹. В спектрах представлены пики поглощения, которые соответствуют частотам колебаний связей.

Методика определения температур плавления золы ТКО

Определение температур плавления золы ТКО и ее смеси с карбонатом натрия в количестве 10%, 15%, 20% и 25% (в пересчете на Na₂O) проводили по ГОСТу Р 54238-2010. Использовали высокотемпературную муфельную печь SNOL с возможностью нагрева до 1650°С, в которую помещали цилиндрические образцы золы ТКО высотой 10 мм и диаметром 6 мм. Скорость нагрева образцов до температуры 900°С составляла 20°С/мин. Затем скорость нагрева уменьшали до 5°С/мин, поднимая температуру до заданного значения. Время выдержки образцов при заданной температуре в окислительной атмосфере составляло 30 мин. После их охлаждения до комнатной температуры проводили визуальный осмотр на предмет изменения формы образцов.

Термодинамические расчеты

Термодинамический пакет программы Terra основан на минимизации общей энергии Гиббса исследуемой системы. Он может использоваться для прогнозирования многофазных равновесий, соотношений жидкой и твердой фаз, а также фазовых переходов при различных температурах для гетерогенных систем [29].

Рассчитывали систему, состоящую из оксидов, входящих в состав зольного остатка модельного ТКО (см. выше). Дополнительно рассчитаны системы с содержанием оксида натрия в смеси 15 и 25 мас.%. Концентрации остальных оксидов уменьшали пропорционально их содержанию в золе ТКО. Расчеты проводили в диапазоне температур 600–1500°С с интервалом 20°С в окислительной атмосфере при давлении 0.1 МПа.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование температур плавления, фактора шлакования, индекса вязкости золы и коэффициента обрастания золы ТКО

Экспериментально измеренное значение DT золы составило 1170°C, значение температуры образования сферы – 1220°C, значение температуры образования полусферы (HT) – 1250°C. При

температуре 1280°С наблюдали полное плавление образца и растекание его на фарфоровой подложке.

Температуру образования полусферы для исследуемого образца золы ТКО можно рассчитать по эмпирической формуле [30], в которую подставляются содержания оксидов (мас.%): НТ = $= 426.77 P^2 - 736.76P + 1592.3$, где P = ([CaO] + 1592.3) $+ [MgO] + [Na_2O] + [K_2O])/([SiO_2] + [Al_2O_3] +$ + [Fe₂O₃]), с коэффициентом корреляции, равным 0.91. Для рассматриваемого модельного состава ТКО рассчитанное значение температуры полусферы равно 1341°C, что выше полученных нашими экспериментальных данных. Рассчитана температура деформации по эмпирической формуле [31]: $DT = 92.55[SiO_2] + 97.83[Al_2O_3] + 84.52[Fe_2O_3] +$ + 83.67[CaO] + 81.04[MgO] + 91.92*a* - 7891, где *a* = $= 100 - ([SiO_2] + [Al_2O_3] + [Fe_2O_3] + [CaO] + [MgO]).$ Для рассматриваемого модельного состава ТКО $DT = 990^{\circ}C$, что ниже экспериментальных данных. Такое расхождение показывает, что приведенные формулы не подходят для определения температуры плавления золы ТКО и говорит о сложности правильного предсказания значений температур плавления золы.

Отношение суммарного содержания основных компонентов (CaO, MgO, Na₂O, K₂O, Fe₂O₃) к сумме содержаний кислотных компонентов (SiO₂, Al₂O₃) золы определяет величину основно-кислотного соотношения (R_s) [32]. Это соотношение широко применяется при моделировании шлакования золы и рассчитывается по эмпирической формуле, в которую подставляются значения мас.% содержаний оксидов (в мас.%):

$$R_{S} = \left([Fe_{2}O_{3}]^{1.5} + [CaO] + [MgO] + [Na_{2}O] + [K_{2}O] \right) / ([SiO_{2}] + [Al_{2}O_{3}]).$$

Основно-кислотное соотношение оксидов для золы ТКО, рассчитанное по вышеприведенной формуле, равно 1.32, что позволяет отнести золу ТКО к материалам со средней степенью шлакуемости ($R_s = 0.6-2.0$).

Другой важной характеристикой золы является индекс вязкости шлака, S_R , который зависит от содержания SiO₂ и Fe₂O₃ и рассчитывается по следующей формуле [32]: $S_R = 100[SiO_2]/([SiO_2] + [Fe_2O_3] +$ + [CaO] + [MgO]). Для золы TKO $S_R = 33.65$, что соответствует высокому уровню шлакования ($S_R <$ < 65). Эвтектика с низкой температурой плавления (SiO₂ + Fe₂O₃) может оказывать сильное влияние на агломерацию частиц золы. В процессе спекания железо реагирует с кварцем и алюмосиликатами с образованием силикатов железа и сили-

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 8 2020

катов железа и алюминия, которые могут плавиться при более низких температурах.

Коэффициент обрастания определяется по формуле $F_u = R_s(Na_2O + K_2O)$ [32]. Для золы ТКО это значение равно 6.27, что позволяет отнести ее к материалам с высокой степенью обрастания ($F_u = 0.6-40$).

Влияние оксида натрия на температуры плавления золы

На рис. 2 показаны зависимости температуры плавления золы модельного состава ТКО от содержания оксида натрия. Характерные температуры плавления золы ТКО снижаются в среднем на 40° С при увеличении содержания Na₂O на каждые 5 мас.%.

Рис. 2. Зависимости основных температур плавления золы ТКО от количества оксида натрия: *1* – температура деформации, *2* – температура сферы, *3* – температура полусферы, *4* – температура растекания.

Термодинамические расчеты с использованием программы TERRA

Согласно расчетам, для модельной золы ТКО основным соединением, образующимся во всем рассматриваемом температурном диапазоне является пиросиликат кальция (Ca₃Si₂O₇), содержание которого составляет ~59%. Остальных соединений в золе образуется значительно меньше: содержание каждого из них составляет <11%. При увеличении температуры выше 640°С снижается количество Na₂CO₃ и Al₂O₃, а алюминат натрия (NaAlO₂) становится более устойчивым. При температуре ~850°С происходит сплавление оставшегося карбоната натрия с оксидом железа с образованием феррита натрия. При температуре выше 900°С карбонат кальция разлагается до оксида кальция и углекислого газа. Выше ~1250°С часть натрия из алюмината натрия постепенно переходит в феррит натрия.

При повышении концентрации оксида натрия в системе до 15% основным соединением, образующимся во всем рассматриваемом температурном интервале, остается $Ca_3Si_2O_7$. При температуре от 600 до 1300°С никаких изменений (химических реакций) не происходит, концентрации всех соединений остаются постоянными и составляют: $Ca_3Si_2O_7 - ~45\%$, $NaAlO_2 - ~17\%$, $Na_2CO_3 - ~8\%$, а остальных (Na_2SiO_3 , CaO, $Ca_3(PO_4)_2$, $NaFeO_2$, MgO) – менее 7%.

При температурах выше 1300 °C карбонат натрия сплавляется с пиросиликатом кальция с образованием силиката натрия и оксида кальция, выделяя CO₂. В результате концентрации Na₂SiO₃ и CaO возрастают до ~16% и ~14%, соответствен-

Рис. 3. Расчетные зависимости массовой доли ω основных стабильных конденсированных фаз от температуры в золе ТКО: $1 - \text{Ca}_3\text{Si}_2\text{O}_7$, $2 - \text{MgAl}_2\text{O}_4$, $3 - \text{Ca}_2\text{CO}_3$, $4 - \text{Ca}_3(\text{PO}_4)_2$, $5 - \text{NaAlO}_2$, $6 - \text{Fe}_2\text{O}_3$, 7 - CaO, $8 - \text{NaFeO}_2$, $9 - \text{Na}_2\text{CO}_3$, $10 - \text{Al}_2\text{O}_3$.

но, концентрация $Ca_3Si_2O_7$ падает до ~32%, а карбонат натрия исчезает полностью.

Когда содержание оксида натрия достигает 25%, основным соединением в системе становится Na_2SiO_3 . Происходит дальнейшее вытеснение оксидом натрия оксида кальция из силиката кальция. В целом, тенденции аналогичны случаю с 15%-ным содержанием Na_2O , только с различием в концентрациях участвующих веществ. В реальных системах концентрации образующихся веществ могут отличаться от концентраций, рассчитанных в условиях термодинамического равновесия, из-за неоднородности состава отдельных частиц золы и относительно медленно протекающих химических реакций.

Результаты термодинамических расчетов с помощью программы Тегга могут быть использованы для моделирования минеральных превращений золы ТКО при высоких температурах.

Рентгенофазовый анализ золы ТКО с различным содержанием оксида натрия

На рис. 4—6 представлены рентгенограммы золы ТКО с различным содержанием оксида натрия при различных температурах. Основными кристаллическими фазами в модельном составе золы ТКО при 1000 °С и 1100 °С являются алюмосиликат кальция состава $Ca_2Al_2SiO_7$ (геленит), кварц, оксиды железа и алюминия. Ниже приведена реакция образования геленита при высоких температурах:

$$2\text{CaO} + \text{SiO}_2 + \text{Al}_2\text{O}_3 \rightarrow \text{Ca}_2\text{Al}_2\text{SiO}_7.$$

Рис. 4. Рентгенограмма модельной золы ТКО при температурах 1000, 1100 и 1200 °С: $I - Ca_2Al_2SiO_7$ (геленит), $2 - Fe_3O_4$, $3 - Fe_2O_3$ (гематит), $4 - Al_2O_3$ (корунд), $5 - SiO_2$ (кварц).

При 1200 °C в золе ТКО оксиды железа не обнаружены, вероятно, из-за реакций с оксидом фосфора и перехода полученных соединений (например, фосфата железа) в аморфную фазу. Отсутствие кристаллических фаз щелочных металлов на рентгенограмме (после нагрева золы до 1000 °C) косвенно свидетельствует об их переходе в аморфную фазу при более низких температурах.

С добавлением карбоната натрия (15% Na₂O в золе) на рентгенограмме во всем исследуемом температурном диапазоне обнаруживаются пики,

Рис. 5. Рентгенограмма золы ТКО с Na_2CO_3 (15% Na_2O) при температурах 1000, 1100 и 1200°С: *1* – NaAlSi₂O₆ (жадеит), *2* – Ca₂Al₂SiO₇ (геленит).

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 8 2020

принадлежащие кристаллической фазе алюмосиликата натрия состава NaAlSi₂O₆ (жадеит). Приведем реакцию образования жадеита при высоких температурах:

$$Na_2CO_3 + 4SiO_2 + Al_2O_3 \rightarrow 2NaAlSi_2O_6 + CO_2.$$

Присутствие NaAlSi₂O₆ говорит о взаимодействии кварца с оксидами алюминия и карбонатом натрия. Геленит также присутствует в исследуемой смеси в интервале температур 1000-1200 °C, как и в модельном составе золы. Других соединений в кристаллической форме найдено не было.

При содержании оксида натрия в смеси, равном 25%, на рентгенограммах обнаруживается только пик, принадлежащий твердому раствору состава (NaFeO₂)_{1-x}(SiO₂)_x, где $0 < x \le 0.327$ [33], реакция образования которого приведена ниже:

$$(1-x)\operatorname{Na}_{2}O + (1-x)\operatorname{Fe}_{2}O_{3} + 2x\operatorname{Si}O_{2} \rightarrow 2(\operatorname{Na}\operatorname{Fe}O_{2})_{1-x}(\operatorname{Si}O_{2})_{x}.$$

Образование натрийсодержащих соединений снижает температуры плавления золы. Рентгенофазовый анализ подтверждает существование кристаллических фаз оксидов железа и алюминия, феррита натрия (с оксидом кремния), что было предсказано с помощью термодинамических расчетов.

ИК-фурье-спектроскопия золы ТКО

На рис. 7 представлены ИК-спектры золы ТКО с различным содержанием оксида натрия после прокаливания до 1100°С. Наиболее интенсивные изменения полос поглощения наблюдаются в диапазоне волновых чисел 400–1200 см⁻¹.

Рис. 6. Рентгенограмма золы ТКО с Na_2CO_3 (25% Na_2O) при температурах 1000, 1100 и 1200°С: $1 - (NaFeO_2)_{1-x} \cdot (SiO_2)_x$.

Рис. 7. ИК-спектры Фурье золы ТКО с различным содержанием оксида натрия при 1100°С: 1 – зола ТКО, 2 – зола ТКО с Na₂CO₃ (15% Na₂O), 3 – зола ТКО с Na₂CO₃ (25% Na₂O).

На ИК-спектрах образцов золы прослеживаются полосы поглощения с максимумами при 470, 640, 860, 1014 см⁻¹. Пики при 470 и 640 см⁻¹ обусловлены деформационными колебаниями связей Si–O–Si(Al), а полоса поглощения при 860 см⁻¹ появляется из-за валентных колебаний Si–O–Si или Si–O–Al, что свидетельствует о присутствии алюмосиликатов натрия или кальция (Ca₂Al₂. SiO₇ и NaAlSi₂O₆) в золе. Полоса поглощения при 1014 см⁻¹ относится к валентных анионах [34]. С повышением содержания Na₂O полоса поглощения при 1014 см⁻¹ пропадает, а интенсивность полосы около 860 см⁻¹ растет, что говорит о снижении доли силикатов в золе.

выводы

Содержание оксида натрия оказывает значительное влияние на шлакуемость золы ТКО. Характерные температуры плавления золы ТКО снижаются на 30—50°С при увеличении содержания Na₂O на каждые 5%.

Основные критерии шлакуемости золы ТКО (фактор шлакования $R_S = 1.32$, индекс вязкости шлака $S_R = 33.65$, коэффициент обрастания $F_u = 6.27$) показывают, что она склонна к шлакообразованию, а при добавлении оксида натрия количество шлака будет возрастать.

Согласно термодинамическим расчетам основным соединением золы ТКО является пиросиликат кальция, доля которого составляет ~59%. При температурах выше 640°С образуется алюминат натрия (NaAlO₂), затем при 850°С — феррит натрия (NaFeO₂). Выше 1250°С часть натрия из алюмината натрия постепенно переходит в феррит натрия. Добавление карбоната натрия к золе ТКО приводит к увеличению концентраций силиката, алюмината и феррита натрия в системе, а при температуре выше 1300 °C – к сплавлению Na₂CO₃ с Ca₃Si₂O₇, что ведет к дальнейшему росту концентрации силиката натрия.

Рентгенофазовый анализ показал, что в золе ТКО основными кристаллическими фазами являются $Ca_2Al_2SiO_7$ (геленит), оксиды железа и алюминия (корунд). При повышении концентрации оксида натрия до 15% появляется фаза NaAlSi₂O₆ (жадеит). При 25%-ном содержании Na₂O образуется в основном твердый раствор состава (NaFeO₂)_{1 – x}(SiO₂)_x. ИК-спектроскопия Фурье свидетельствует об образовании силикатов и алюмосиликатов натрия или кальция (Ca₂Al₂SiO₇ и NaAlSi₂O₆) в золе.

Определение элементного состава, рентгенофазовый анализ, ИК-спектроскопия Фурье золы ТКО и ее смесей с Na₂CO₃ выполнены сотр. АЦКП ИПХФ РАН Н.Н. Дрёмовой, Р.Ю. Рубцовым, П.С. Барбашовой. Расшифровка рентгенограмм выполнена в лаборатории структурной химии Д.В. Корчагиным.

Исследование выполнено при финансовой поддержке Российским фондом фундаментальных исследований в рамках научного проекта № 19-08-00244, программы фундаментальных исследований Президиума РАН № 15 и госзадания № АААА-А19-119022690098-3.

СПИСОК ЛИТЕРАТУРЫ

 Namsaraev Z.B., Gotovtsev P.M., Komova A.V., Vasilov R.G. // Renew. Sust. Energy Rev. 2018. V. 81. P. 625; https://doi.org/10.1016/j.reor.2017.08.045

https://doi.org/10.1016/j.rser.2017.08.045

- 2. Манелис Г.Б., Глазов С.В., Салганский Е.А., Лемперт Д.Б. // Успехи химии. 2012. Т. 81. № 9. С. 855.
- Toledo M., Ripoll N., Céspedes J. et al. // Energy Convers. Manag. 2018. V. 172. P. 381; https://doi.org/10.1016/j.enconman.2018.07.046
- Зайченко А.Ю., Жирнов А.А., Манелис Г.Б., Полианчик Е.В., Жолудев А.Ф. // Докл. АН. 2008. Т. 418. № 5. С. 635.
- 5. Глазов С.В., Кислов В.М., Салганский Е.А. // Журн. прикл. химии. 2018. Т. 91. № 10. С. 1396; https://doi.org/10.1134/S0044461818100031
- Кислов В.М., Салганский Е.А., Цветков М.В., Цветкова Ю.Ю. // Журн. прикл. химии. 2017. Т. 90. № 5. С. 579.
- Dmitrienko M.A., Nyashina G.S., Strizhak P.A. // J. Clean. Prod. 2018. V. 177. P. 284; https://doi.org/10.1016/j.jclepro.2017.12.254
- Кислов В.М., Глазов С.В., Салганский Е.А., Колесникова Ю.Ю., Салганская М.В. // Физика горения и взрыва. 2016. Т. 52. № 3. С. 72; https://doi.org/10.15372/FGV20160310

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 8 2020

- 9. Колесникова Ю.Ю., Кислов В.М., Салганский Е.А. // Хим. физика. 2016. Т. 35. № 9. С. 53; https://doi.org/10.7868/S0207401X16090041
- 10. Салганский Е.А., Кислов В.М., Глазов С.В., Колесникова Ю.Ю., Жолудев А.Ф. // Химия в интересах устойчивого развития. 2016. Т. 24. № 3. С. 303; https://doi.org/10.15372/KhUR20160304
- 11. Салганская М.В., Глазов С.В., Салганский Е.А. и др. // Хим. физика. 2008. Т. 27. № 1. С. 20.
- 12. *Toledo M., Rosales C., Silvestre C., Caro S. //* Intern. J. Hydrog. Energy. 2016. V. 41. № 46. P. 21131; https://doi.org/10.1016/j.ijhydene.2016.09.120
- Salgansky E.A., Kislov V.M., Glazov S.V., Salganskaya M.V. // J. Combust. 2016. Article ID 9637082; https://doi.org/10.1155/2016/9637082
- Кислов В.М., Жолудев А.Ф., Кислов М.Б., Салганский Е.А. // Журн. прикл. химии. 2019. Т. 92. № 1. С. 61; https://doi.org/10.1134/S0044461819010080
- 15. Зайченко А.Ю., Подлесный Д.Н., Цветков М.В., Салганская М.В., Чуб А.В. // Журн. прикл. химии. Т. 92. № 2. С. 245; https://doi.org/10.1134/S0044461819020166
- Цветков М.В., Зюкин И.В., Фрейман В.М., Салганская М.В., Цветкова Ю.Ю. // Журн. прикл. химии. 2017. Т. 90. № 10. С. 1392.
- Song W.J., Tang L.H., Zhu X.D. et al. // Energy Fuels. 2009. V. 24. № 1. P. 182; https://doi.org/10.1021/ef900537m
- Liu B., He Q., Jiang Z., Xu R., Hu B. // Fuel. 2013. V. 105. P. 293;
- https://doi.org/10.1016/j.fuel.2012.06.046
 19. Van Dyk J.C., Waanders F.B. // Ibid. 2007. V. 86. N
 ^Q 17–18. P. 2728;
- https://doi.org/10.1016/j.fuel.2007.03.022
- Lv Y., Niu Y., Kan H., Wang D., Li P. // Ibid. 2019.
 V. 258. Article 116137; https://doi.org/10.1016/j.fuel.2019.116137
- Melissari B. // Memoria Investigaciones en Ingeniería. 2014. V. 12. P. 31.

- 22. Wang Y., Xiang Y., Wang D. et al. // Energy Fuels. 2016. V. 30. № 2. P. 1437; https://doi.org/10.1021/acs.energyfuels.5b02722
- Li G., Wang C.A., Yan Y. et al. // J. Energy Inst. 2016.
 V. 89. № 1. P. 48; https://doi.org/10.1016/j.joei.2015.01.011
- 24. *Reifenstein A.P., Kahraman H., Coin C.D.A. et al.* // Fuel. 1999. V. 78. № 12. P. 1449; https://doi.org/10.1016/S0016-2361(99)00065-4
- Dunnu G., Maier J., Scheffknecht G. // Ibid. 2010. V. 89.
 № 7. P. 1534; https://doi.org/10.1016/j.fuel.2009.09.008
- 26. Li M., Li F., Liu Q., Fang Y., Xiao H. // Ibid. 2019. V. 244. P. 91; https://doi.org/10.1016/j.fuel.2019.01.161
- Niu Y., Tan H., Hui S. // Prog. Energy Combust. Sci. 2016. V. 52. P. 1; https://doi.org/10.1016/j.pecs.2015.09.003
- Bostrom D., Skoglund N., Grimm A. et al. // Energy Fuels. 2011. V. 26. № 1. P. 85; https://doi.org/10.1021/ef201205b
- Трусов Б.Г. // Матер. XIV Междунар. конф. по химической термодинамике. Спб.: НИИХ СПбГУ, 2002. С. 483.
- 30. *Kim M.R., Jang J.G., Lee S.K., Hwang B.Y., Lee J.K.* // Korean J. Chem. Eng. 2010. V. 27. № 3. P. 1028; https://doi.org/10.1007/s11814-010-0156-0
- Yin C., Luo Z., Ni M., Cen K. // Fuel. 1998. V. 77. № 15. P. 1777; https://doi.org/10.1016/S0016-2361(98)00077-5
- Magdziarz A., Wilk M., Gajek M. et al. // Energy. 2016. V. 113. P. 85; https://doi.org/10.1016/j.energy.2016.07.029
- 33. *Rulmont A., Tarte P., Winand J. M., Almou M.* // J. Solid State Chem. 1992. V. 97. № 1. P. 156; https://doi.org/10.1016/0022-4596(92)90020-V
- 34. Saikia B.J., Parthasarathy G. // J. Modern Phys. 2010. V. 1. № 4. P. 206; https://doi.org/10.4236/jmp.2010.14031