ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 541.11:547.235.5

ЗАВИСИМОСТЬ ОПТИМАЛЬНОГО СОСТАВА РАКЕТНОГО ТОПЛИВА БЕЗ МЕТАЛЛА С МАКСИМАЛЬНО ДОСТИЖИМОЙ ВЕЛИЧИНОЙ УДЕЛЬНОГО ИМПУЛЬСА ОТ ЭЛЕМЕНТНОГО СОСТАВА И ЭНТАЛЬПИИ ОБРАЗОВАНИЯ ОКИСЛИТЕЛЯ

© 2021 г. Е. М. Дорофеенко¹, Д. Б. Лемперт^{1*}

¹Институт проблем химической физики Российской академии наук, Черноголовка, Россия

**E-mail: lempert@icp.ac.ru* Поступила в редакцию 09.10.2019; после доработки 02.11.2019; принята в печать 20.11.2019

Изучено влияние величины энтальпии образования, содержания водорода и коэффициента насыщенности кислородом (α) органического окислителя твердых ракетных топлив на оптимальную величину α связующего, обеспечивающую максимальные величины удельного импульса в композициях без металла на базе конкретного окислителя. Найдена количественная зависимость максимально достижимого удельного импульса бинарных составов топлив, содержащих высокоэнтальпийный органический окислитель и связующее, от энтальпии образования окислителя, содержания в нем водорода и величины α.

Ключевые слова: смесевое твердое ракетное топливо (СТРТ), окислитель, связующее, удельный импульс. **DOI:** 10.31857/S0207401X21030043

введение

Первые несколько десятков лет развитие химии твердых ракетных топлив было направлено на создание окислителей с высоким содержанием кислорода, чтобы за счет последнего обеспечить тепловыделение при окислении углеводородного связующего до CO_2 и воды и металла до оксида. Такими окислителями были нитрат аммония (HA), перхлорат аммония (ПХА) и аммониевая соль динитрамина (АДНА) [1]. Поскольку все они имели невысокие величины энтальпии образова-

ния $\left(\Delta H_{f}^{\circ}\right)$ (в ряду НА – ПХА – АДНА ΔH_{f}° растет от –1080 до –270 ккал/кг), резкое увеличение удельного импульса (I_{sp}) достигали введением в состав топлива металлов (особенно Ве, Al, B) [2].

Уже к концу XX столетия стало понятно, что энергетический потенциал таких окислителей ограничен и следует развивать иной принцип создания топлив – переход к высокоэнтальпийным окислителям (с ΔH_f° вплоть до 4000 кДж/кг) [3]. Эти окислители практически не нуждаются в металле, так как много тепловой энергии выделяется при горении индивидуального соединения именно за счет высокого значения ΔH_f° . Кроме того, отсутствие конденсированной фазы в про-

дуктах сгорания топлив на таких окислителях исключает потери удельного импульса (I_{sp}) за счет двухфазности продуктов сгорания, тем более что в продуктах сгорания металлизированных топлив существенно ниже количество рабочего тела, т.е. газов, расширение которых по мере прохождения из камеры сгорания к срезу сопла и обеспечивает ракетную тягу. Например, составы с 20% алюминия дают ~37% конденсированного оксида алюминия в продуктах сгорания и только 63% газов.

В течение последних 30 лет заметно увеличилось число работ по созданию и изучению свойств высокоэнтальпийных соединений. Большим успехом стало получение гексанитрогексаазаизовюрцитана ($C_6H_6N_{12}O_{12}$; CL-20; $\Delta H_f^\circ = 861.3 \text{ кДж} \cdot \text{кr}^{-1}$; $\rho = 2.04 \text{ r} \cdot \text{см}^{-3}$; $\alpha = 0.8$) [4], множества производных азотсодержащих гетероциклов – фуразанов и фуроксанов [5–13], триазинов, тетразолов [14], пиразолов [15–17] и других подобных структур с замещением всех или некоторой части атомов водорода на фрагменты-окислители (например, группы –NO₂, >NNO₂ и др.). Окислители этого типа отличаются от традиционных (НА, ПХА, даже

АДНА) тем, что: их величины ΔH_f° весьма высоки (вплоть до 4000 кДж/кг), в них существенно ниже содержание водорода (нередко его вообще нет), намного ниже коэффициент насыщенности окислителем α (α = (2O + Hal)/(4C + H)) и высока массовая доля азота. Поэтому оптимальная компоновка рецептуры ракетного топлива на основе таких окислителей значительно отличается от той, что применяли при разработке топлив на базе HA, ПХА, АДНА. В работе [18] описана зависимость удельного импульса не содержащих металлов энергетических композиций на основе высокоэнтальпийных органических окислителей от эле-

ментного состава и величины ΔH_f° окислителя, от природы и объемного содержания смесевого связующего. Было показано, что при заданном значении объемного содержания связующего можно увеличить удельный импульс композиций, содержащих окислители с коэффициентом насыщенности кислородом ($\alpha = O/(2C + 0.5H)$) от 0.6 до 1.3 путем нахождения оптимального массового соотношения углеводородной и активной составляющих в связующем. При росте величины α окислителя требуется все в большей степени обогащать связующее углеводородной составляющей. Основное внимание уделялось зависимости оптимального содержания связующего при использовании окислителей с небольшим разбросом в величине ΔH_f° (от 2300 до 2700 кДж/кг), не содержащих в своем составе водорода.

В настоящей работе изучены зависимости оптимального содержания связующего от величины ΔH_f° основного компонента и параметров, характеризующих его элементный состав, т.е. не только от величины α , но и от массового содержания в нем водорода.

МЕТОДЫ ИССЛЕДОВАНИЯ

Рассмотрены в качестве окислителей СТРТ 12 модельных структур:

а) $C_2N_8O_{3,2}$; $C_2HN_8O_{3,6}$; $C_2H_2N_8O_4$; $C_2H_{2.5}N_8O_{4,2}$ (с величинами α равными 0.8);

б) $C_2N_8O_4$; $C_2HN_8O_{4.5}$; $C_2H_2N_8O_5$; $C_2H_{2.5}N_8O_{5.25}$ (с величинами α равными 1.0);

в) $C_2N_8O_{4.8}$; $C_2HN_8O_{5.4}$; $C_2H_2N_8O_6$; $C_2H_{2.5}N_8O_{6.3}$ (с величинами α равными 1.2).

В каждом из перечисленных рядов увеличивается массовая доля водорода, но величина α фиксирована. Каждой из 12 модельных структур задавали по пять величин ΔH_f° (0; 1; 2; 3 и 4 МДж/кг), т.е. всего рассматривали 60 модельных соединений в качестве основного наполнителя СТРТ. Таким образом, исследовали наполнители с величиной ΔH_{\circ}° от 0 до 4 МДж/кг, атомным соотноше-

ной ΔH_f° от 0 до 4 МДж/кг, атомным соотношением H/C от 0 до 1.25 и величиной α от 0.8 до 1.2. Как и в работе [18], в качестве компонентов связующего принимали смесь углеводородного (УС) и активного (AC) связующих (УС имеет условную

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 3 2021

формулу на 1 кг С_{72.15} H_{119.21}O_{0.68} ($\Delta H_f^{\circ} = -393$ кДж/кг; $\rho = 0.92$ г/см³); АС – С_{18.96} H_{34.64}N_{19.16}O_{29.32} [19] ($\Delta H_f^{\circ} = -757$ кДж/кг; $\rho = 1.49$ г/см³).

Варьировали соотношение УС/АС в составе связующего при общем содержании последнего в композиции 19 об.%, принимая плотность наполнителя 1.85 г/см³. С помощью стандартной программы расчета термохимических равновесий ТЕРРА [20] рассчитывали величины удельного импульса I_{sp} и температуры горения T_c композиций, задавая давления в камере сгорания и на срезе сопла 4.0 и 0.1 МПа соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 и 2 представлены расчетные величины *I*_{sn} в зависимости от характеристик основного наполнителя (его можно называть и окислителем даже в том случае, когда его величина $\alpha < 1$) и доли УС в смесевом связующем. Очевидно, что с ростом $\Delta H_f^{\circ} I_{sp}$ любой композиции растет, но обращает на себя внимание тот факт, что с ростом ΔH_{f}° максимально достижимая величина I_{sp} для состава с окислителем заданного элементного состава обеспечивается при все более высоком содержании УС в смесевом связующем. С другой стороны, из рис. 1 и 2 видно, что при постоянных значениях ΔH_f° оптимальное содержание УС в смесевом связующем смещается в сторону роста и при повышении коэффициента α окислителя, что было отмечено и в работе [1]. В настоящей работе изучено влияние количества водорода в окислителе при постоянных значениях ΔH_f° и α (каждый из рис. 1.1–1.12 отдельно), и зависимость оптимального содержания УС в смесевом связующем от величины ΔH_f° окислителя при одина-ковом элементном составе последнего.

Очевидно, что рост доли водорода от 0 до 2.5% при этих условиях существенно повышает величину удельного импульса I_{sp} (примерно на 15–23 с), поскольку водород гораздо более энергоемкий материал, чем углерод. Из рисунков видно, что с ростом доли водорода в окислителе оптимальное содержание УС в смесевом связующем смещается в сторону роста. Это говорит о том, что при росте доли водорода в окислителе при сохранении величины α окислителя, т.е. за счет определенного увеличения соотношения H/C, максимально достижимая величина I_{sp} наблюдается при большем значении α всей композиции, хотя это увеличение

небольшое, например, при $\Delta H_f^{\circ} = 3000 \text{ кДж/кг оп$ тимальная композиция C₂N₈O₄ соответствует ве $личине <math>\alpha = 0.913$, тогда как для композиции C₂H₂N₈O₅ – $\alpha = 0.920$.

Рис. 1. Изменение удельного импульса I_{sp} состава связующее (смесь УС с АС) при его объемном содержании 19%, а остальное – органический окислитель с величиной энтальпии ΔH_{f}° , равной 0 (верхний ряд) и 1 МДж/кг (нижний ряд) в зависимости от величины $\alpha = 0.8$ (*a*), 1.0 (*b*) и 1.2 (*b*) при разном содержании водорода в окислителе.

Большой набор расчетных данных по величинам I_{sp} позволяет связать оптимальное содержание УС в составе связующего для обеспечения максимально достижимого I_{sp} при использовании окислителя с заданными величинами ΔH_f° , α и содержания водорода.

В первом приближении была рассмотрена линейная зависимость $[YC_{ont}] = k_1 + k_2 \Delta H_f^{\circ} + k_3 \alpha + k_4 [H]$, где $[YC_{ont}]$ – оптимальное содержание УС в связующем, при котором обеспечивается максимальная величина I_{sp} ,%; $\Delta H_f^{\circ} - M \Im k/\kappa r$; [H] — содержание водорода в окислителе — в мас.%. Однако среди всех 60 "оптимальных" рецептур, представленных на рис. 1, есть большое количество таких, где оптимум по величине I_{sp} достигается при нулевом содержании одного из компонентов связующего и увеличение какойнибудь из характеристик, например, ΔH_f° основного компонента, не меняет ситуацию с оптимальным составом связующего. Для таких систем априори нельзя применять линейную зависимость, поэтому указанной процедуре подвергали только те данные, для которых оптимальное содержание каждого из компонентов ненулевое: их почти половина (27 из 60). В результате получена эмпирическая формула:

$$[YC_{onr}] = -191.6 +$$

$$+ 21.2\Delta H_{f}^{\circ} + 151.1\alpha + 13.5[H].$$
(I)

Средняя величина отклонений по величине УС, найденных по результатам анализа данных из рис. 1 и вычисленных по уравнению (I), достаточно мала и составляет 3 абс.вес.%. Каждые 0.5 МДж/кг в величине энтальпии ΔH_f° повышают оптимальное содержание УС в сумме (УС + АС) на 10.6 абс.вес.%, каждые 0.1 в величине α увеличивают УС_{опт} на 15.1 абс.вес.%, каждый 1% содержания водорода в окислителе – на 13.5 абс.вес.%.

Интересно отметить, что величина максимально достигаемого удельного импульса $I_{sp(max)}$ хорошо описывается формулой, несколько похожей на формулу (I), но, в отличие от нее – с дополнительным квадратичным членом по ΔH_f° . Для максимального значения удельного импульса I_{sp} состава AC + УC + CHNO-окислитель:

$$I_{sp(max)} = 198.3 + 13.42\Delta H_f^{\circ} - 0.101\Delta H_f^{\circ 2} + + 24.54\alpha + 11.76[H].$$
(II)

где $I_{sp(max)}$ есть величина удельного импульса состава без металла при оптимальном содержании УС в связующем.

Рис. 2. Изменение удельного импульса I_{sp} состава связующее (смесь УС с АС) при его объемном содержании 19%, а остальное – органический окислитель с величиной энтальпии ΔH_{f}° , равной 2.0 (верхний ряд), 3.0 (средний ряд) и 4.0 МДж/кг (нижний ряд) в зависимости от величины $\alpha = 0.8$ (*a*), 1.0 (*б*) и 1.2 (*в*) при разном содержании водорода в окислителе.

Средняя величина отклонений по величине $I_{sp(max)}$, найденных по результатам анализа данных из рис. 1 и вычисленных по уравнению (II), весьма мала и составляет 0.21 с. Надо отметить, что и более простая формула:

$$I_{sp(max)} = 198.7 + 12.9\Delta H_f^{\circ} + 24.7\alpha + 11.7[\text{H}]$$
 (III)

тоже дает неплохой результат (для рассматриваемых окислителей средняя величина отклонений по величинам $I_{sp(max)}$ равна 0.25 с). Величина удельного импульса любой композиции с заданным элементным составом и высокой положительной энтальпией ΔH_f° пропорциональна не ΔH_f° , а разности $k_1 \Delta H_f^{\circ} - k_2 \Delta H_f^{\circ 2}$ (это специально проверено нами), поскольку повышение энтальпий ΔH_f° также непропорционально повышает

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 3 2021

температуру горения T_c , и чем выше начальная величина ΔH_f° , тем ее прирост на фиксированную величину $d\Delta H_f^\circ$ ведет к меньшему приросту величин T_c и удельного импульса. Каждые 0.5 МДж/кг в ΔH_f° (при ΔH_f° от 2 до 3 МДж/кг) повышают максимум I_{sp} на ~6.5 с, каждые 0.1 в величине α увеличивают максимум I_{sp} на ~2.45 с; каждый 1 абс.вес.% содержания водорода в окислителе — на ~1.2 с.

Следует иметь в виду, что эмпирические формулы (I) и (II) получены по результатам анализа расчетных данных систем на основе соединений с ΔH_f° от 1 до 4 МДж/кг, с величинами α от 0.8 до 1.2 и содержанием водорода не выше 1.12 мас.%. Следовательно, их нельзя применять к объектам, соответствующие параметры которых выходят за указанные пределы. Например, для АДНА ($\Delta H_f^{\circ} = -1.13 \text{ MДж/кг}$; $\alpha = 2.0$; H = 3.25 мас.%) применение формулы (I) дает результат 130% УС (при реальных 64%), а формулы (III) дает значение I_{sp} в 271 с (при реальных 251 с). Заметим, что формулу (II), где есть слагаемое с квадратом величины ΔH_f° , принципиально нельзя использовать при приближении ΔH_f° от высоких положительных величин до нуля и тем более при отрицательных значениях ΔH_f° (меняется физический смысл функции $F = a\Delta H_f^{\circ} - b\Delta H_f^{\circ 2}$ при b > 0 и $\Delta H_f^{\circ} < 0$), которая во всем диапазоне величин ΔH_f° должна иметь $\delta I_{sp}/d\Delta H_f^{\circ}$ положительные, а $\delta^2 I_{sp}/(d\Delta H_f^{\circ})^2$ – отрицательные значения.

Следует специально отметить, что в настоящей работе проводилась оптимизация состава смесевого связующего путем создания смесей на базе связующего из конкретных углеводородного и активного компонентов. Очевидно, что если исходить из других базовых компонентов связующего, то коэффициенты в формулах (I) и (II) изменятся (их несложно найти для любой заранее заданной пары компонентов связующего, существенно отличающихся друг от друга величиной α), но принципиальная суть останется той же.

выводы

1. Показано, что при повышении энтальпии образования ΔH_f° окислителя, содержания в нем водорода и величины α более оптимальны связующие с меньшим содержанием кислорода.

2. Найдены количественные зависимости оптимального состава связующего в СТРТ без металла, содержащего органические высокоэнтальпийные окислители.

3. Найдена количественная зависимость максимально достижимого удельного импульса составов, содержащих органические высокоэнтальпийные окислители, от величины ΔH_f° окислителя, содержания в нем водорода и величины α .

Работа выполнена на средства ИПХФ РАН по теме 0089-2019-0005 "Фундаментальные и проблемно-ориентированные исследования в области создания энергетических конденсированных систем (ЭКС) различного назначения" при финансовой поддержке программой Президиума РАН "Перспективные физико-химические технологии специального назначения".

СПИСОК ЛИТЕРАТУРЫ

- 1. Лукьянов О.А., Тартаковский В.А. // Рос. хим. журн. 1997. Т. 41. № 2. С. 5.
- 2. Сарнер С. Химия ракетных топлив. 1969. М.: Мир.
- 3. *Комаров В.Ф., Шандаков В.А.* // Физика горения и взрыва. 1999. Т. 35. № 2. С 30.
- Simpson R.L. // Propellants Explos. Pyrotech. 1997. V. 22. P. 249.
- An L., Yu Q., Sun C. // Asian J. Chem. 2013. V. 25. P. 8991.
- Wei H., Zhang J., He C., Shreeve J.M. // Chem. Eur. J. 2015. V. 21. P. 8607.
- Yu Q., Wang Z., Wu B., Yang H. et al. // J. Mater. Chem. A. 2015. V. 3. P. 8156.
- Zhang J., Shreeve J.M. // J. Phys. Chem. C. 2015. V. 119. P. 12887.
- 9. Степанов А.И., Санников В.С., Дашко Д.В., Росляков А.Г., Астратьев А.А., Степанова Е.В. // Химия гетероцикл. соединений. 2015. Т. 4. № 51. С. 350.
- 10. *Wu X., Chu Y., Zheng C., Wang T., Lei W. et al.* // Chem. Heterocycl. Compd. 2015. V. 51. № 8. P. 760.
- Sheremetev A.B., Korolev V.L., Potemkin A.A., Aleksandrova N.S., Palysaeva N.V. et al. // Asian J. Org. Chem. 2016. V. 5. P. 1388.
- 12. Синдицкий В.П., Хоанг Ч.Х., Шереметев А.Б. // Горение и взрыв. 2017. Т. 10. № 4. Р. 71.
- 13. *Stepanov A.I., Dashko D.V., Astrat'ev A.A.* // Cent. Eur. J. Energ. Mater. 2012. V. 9. № 4. P. 329.
- Гудкова И.Ю., Косилко В.П., Лемперт Д.Б. // Физика горения и взрыва. 2019. № 1. С. 37.
- Ostrovskii V.A., Pevzner M.S., Kofman T.P., Shcherbinin M.B., Zelinskii I.V. // Targets in Heterocyclic Systems. Chemistry and Properties / Eds. Attanasi O.A., Spinelli D. Rome: Ital. Soc. Chem., 1999. V. 3. P. 467.
- Ostrovskii V.A., Koldobskii G.I., Trifonov R.E. Comprehensive Heterocyclic Chemistry III. Oxford: Elsevier, 2008. V. 6. P. 257.
- 17. Далингер И.Л., Корманов А.В., Вацадзе И.А., Серушкина О.В., Шкинева Т.К., Супоницкий К.Ю., Пивкина А.Н., Шереметев А.Б. // Химия гетероцикл. соединений. 2016. Т. 52. № 12. С. 1025.
- Дорофеенко Е.М., Согласнова С.И., Нечипоренко Г.Н., Лемперт Д.Б. // Физика горения и взрыва. 2018. Т. 54. № 6. С. 78.
- 19. Lempert D.B., Nechiporenko G.N., Manelis G.B. // Cent. Eur. J. Energ. Mater. 2006. V. 3. № 4. P. 73.
- 20. *Trusov B.G.* // Proc. XIV Intern. Symp. on Chemical Thermodynamics. St.-Petersburg, 2002. P. 483.