_____ XXXI СИМПОЗИУМ "СОВРЕМЕННАЯ ХИМИЧЕСКАЯ ФИЗИКА" _____ (ТУАПСЕ, СЕНТЯБРЬ, 2019)

УДК 544.478.1

СЕЛЕКТИВНОЕ ГИДРИРОВАНИЕ ФУРФУРОЛА В ПРИСУТСТВИИ ПЛАТИНОСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ

© 2021 г. К. Р. Кутлугильдина¹, П. А. Чистякова¹, С. А. Николаев^{1, 2}, И. Н. Кротова², Д. И. Эзжеленко^{1, 2}, А. В. Чистяков^{1*}

¹Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук, Москва, Россия ²Московский государственный университет им. М.В. Ломоносова, Москва, Россия

**E-mail: chistyakov@ips.ac.ru* Поступила в редакцию 24.07.2020; после доработки 10.08.2020; принята в печать 20.08.2020

В настоящей работе установлено, что фурфурол в присутствии Pt—M/Al₂O₃-катализаторов (где M — Cu, Ni) при температуре 90°С превращается в фурфуриловый спирт с селективностью, достигающей 90%, а при 150°С — в α-метилфуран с селективностью, составляющей 92%. Особо следует отметить, что выход продуктов осмоления фурфурола в проведенных экспериментах не превышает 5%. Показано, что наиболее эффективным растворителем, препятствующим осмолению фурфурола, является тетралин, а использование оксида алюминия в качестве носителя позволяет при равных температурах увеличить степень конверсии фурфурола по сравнению с оксидом кремния и сибунитом. Полученные результаты позволяют предложить эффективный способ производства ценных продуктов нефтехимии из возобновляемого сырья.

Ключевые слова: фурфурол, гетерогенный катализ, гидрирование, платина. **DOI:** 10.31857/S0207401X21060108

ВВЕДЕНИЕ

В связи с ограниченным количеством и неравномерной локализацией ископаемых ресурсов и растущими экологическими проблемами, связанными с их добычей, внимание мирового сообщества привлекает каталитическое преобразование устойчивых ресурсов биомассы в топливо и химикаты с высокой добавленной стоимостью [1, 2]. Решение проблем эффективной конверсии производных биомассы чрезвычайно важно для повышения экологической приемлемости процессов получения ее производных с высокой добавленной стоимостью и позволит предложить новые подходы к получению энергоносителей на основе возобновляемого сырья. Несомненными преимуществами использования возобновляемого сырья являются: сокращение выбросов СО₂, оксидов серы и азота, потребление диоксида углерода на стадии роста, а также диверсификация источников энергии, повышение энергетической безопасности в районах, лишенных источников ископаемых, источников энергии или отдаленных от их инфраструктуры и стимулирования развития аграрной экономики [3, 4].

В связи со сложным составом биосырья и трудностью его прямой переработки исследуют превращения так называемых молекул-платформ, которые впоследствии конвертируют в продукты с высокой добавленной стоимостью. Одной из важнейших таких молекул-платформ является фурфурол, который может быть получен дегидратацией пентоз, ключевых соединений гемицеллюлозной фракции лигноцеллюлозы [2]. Около 60-70% произведенного в мире фурфурола идет на получение фурфурилового спирта [2, 5]. Фурфуриловый спирт находит широкое применение для получения смол [6] по реакциям самоконденсации и конденсации с фенолом и ацетоном или с мочевиной и другими вешествами. Такие смолы обладают повышенной химической, термической и механической стойкостью, а также устойчивы к коррозии [7], поэтому используются в производстве стекловолокна, некоторых деталей самолетов и автомобильных тормозов [8].

В течение последних десятилетий для получения фурфурилового спирта путем гидрирования фурфурола были изучены и использовались различные методы и типы катализаторов. Одними из наиболее распространенных в производстве были медно-хромовые катализаторы [9–12]. Ранее промышленное производство фурфурилового спирта проводилось в присутствии катализаторов на основе 1–2% хромита меди в диапазоне давлений 69–103 бар в стационарном режиме при 175°C [13]. Войцик и соавт. [14] обнаружили, что при гидрировании соединений фурана в присутствии никелевых катализаторов Ренея и медно-хромовых (Cu-CrO) возникает большое количество побочных реакций. В присутствии катализатора на основе меди и оксида хрома выход фурфурилового спирта составлял 96-99% от теоретического при 175°С, при этом фурановое кольцо оставалось практически не затронутым. Повышение температуры до 250°C и увеличение давления приводило к образованию 2-метилфурана (36%), пентанола (36%), 1,5-пентандиола (15%) и 1,2-пентандиола (14%). Процесс гидрирования фурфурола в настоящее время активно изучается, внимание исследователей направлено на изучение механизма реакции и разработки новых каталических процессов, которые могли бы быть внедрены в промышленность.

В литературе довольно широко представлены подходы к переработке фурфурола в фурфуриловый спирт, тетрагидрофурфуриловый спирт, 2-метилфуран и 2-метилтетрагидрофуран. В основном реакции проводят в периодических условиях [15–19], реже в проточном режиме [20, 21], в присутствии катализаторов на основе благородных или переходных металлов. Тетрагидрофурфуриловый спирт считается "зеленым" растворителем, используется в сельскохозяйственных целях, в печатных красках, как промышленное чистящее средство. Традиционный тетрагидрофурфуриловый спирт получают путем двухстадийного каталитического гидрирования фурфурола через промежуточное соединение фурфурилового спирта в присутствии CuCr и катализаторов на основе благородных металлов [17-21], однако ввиду токсичности хрома поиски новых катализаторов гидрирования фурфурола продолжают быть весьма актуальными.

В настоящей работе изучены закономерности каталитического действия моно- и биметаллических катализаторов для гидрирования фурфурола ($\Phi\Phi$) в фурфуриловый спирт (Φ C) и α -метилфуран. Продемонстрирована высокая важность выбора носителя для синтеза нанесенных систем, изучены закономерности протекания реакции в присутствии различных алифатических спиртов и сделан вывод о перспективах дальнейших исследований.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1. Синтез катализаторов

Методом пропитки по влагоемкости из солей соответствующих металлов были синтезированы следующие катализаторы, содержащие 1 мас.% активного компонента: Fe/Al₂O₃, Co/Al₂O₃, Ni/Al₂O₃, Cu/Al₂O₃, и катализаторы, содержащие 0.5-1 мас.%: Au/Al₂O₃, Pt/Al₂O₃, Pt/SiO₂, Pt/C.

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 6 2021

В синтезах образцов использовали: стандартный раствор (I) HAuCl₄ · $3H_2O$ (Sigma-Aldrich, 98%) с концентрацией золота 2.4 · 10⁻² г/мл; $Fe(NO_3)_3 \cdot 6H_2O$ (Sigma-Aldrich, 98%); $Co(NO_3)_2 \cdot 6H_2O$ \cdot 6H₂O (Sigma-Aldrich, 98%); Ni(NO₃)₂ \cdot 6H₂O (Sigma-Aldrich, 98%); PtCl₄ (Sigma-Aldrich, 98%), NaOH – гидроксид натрия (Реахим, 0.1 М); H₂O – дистиллят. В качестве носителей использовали: гранулы ү-Аl₂O₃ (АОК-63-11(В), Ангарский завод катализаторов и адсорбентов, удельная поверхность $S = 160 \text{ м}^2/\text{г}$, средний размер пор $d_{\text{пор}} = 3-15 \text{ нм}$); гранулы SiO₂ (марка КСКГ, Салаватский катализаторный завод, $S = 450 \text{ м}^2/\text{г}, d_{\text{пор}} = 20-40 \text{ нм});$ гранулы углеродного материала (сибунит, Институт проблем переработки углеводородов СО РАН, $S = 260 \text{ м}^2/\text{г}, d_{\text{пор}} = 20-50 \text{ нм}).$ Перед нанесением металлов гранулы прокаливали при 350°С в течение 3 ч для очистки пор от адсорбированных из воздуха молекул.

2. Методика проведения каталитических испытаний

Каталитические испытания проводили на мультиреакторной установке автоклавного типа Parr 5000 Series (Parr Instruments, США), объем реактора – 45 мл. Перед началом экспериментов реактор с загруженными в него растворителем, реагентом и катализатором продувался водородом. Начальное давление водорода в реакторе составляло 50 атм. Температура процесса варьировалась в интервале 70-150°С. Перемешивание реакционной массы обеспечивалось магнитной мешалкой (частота вращения – 750 об/мин). По завершении времени эксперимента реактор быстро охлаждали водой до комнатной температуры. после чего отбирали весь реакционный газ в газгольдер, затем раскручивали реактор и отбирали для анализа жидкие продукты.

Газообразные продукты реакции анализировали методом газовой хроматографии: газообразные углеводороды C₁-C₅ – на хроматографе "Кристаллюкс-4000М", Мета-Хром, Россия (пламенно-ионизационный детектор, хроматографическая колонка HP-PLOT); CO, CO₂ и H₂ – на хроматографе "Кристаллюкс-4000М" (детектор по теплопроводности, колонка СКТ). Качественный состав жидких органических продуктов определяли методом хромато-масс-спектрометрии на приборах фирмы Agilent (США) "MSD 6973" (колонка HP-5MS) и фирмы Delsi Nermag (Франция) "Automass-150" (колонка CPSil-5) с энергией ионизации, равной 70 эВ. Количественное содержание жидких органических веществ определяли методом газо-жидкостной хроматографии на приборе "Varian 3600" (колонка Хроматэк SE-30, 0.25 мм × 25 м, толщина неподвижной фазы $D_f = 0.3$ мкм, 50°С (5 мин), 10°/мин, 280°С, $T_{\text{инж}} = 250$ °С, $P_{\text{инж}} = 1$ бар, деление потока – 1/200, ПИД, внутренний стандарт – н-октан).

3. Методы исследования катализаторов

Микрофотографии катализаторов получали с помошью просвечивающей электронной микроскопии (ПЭМ) на приборе фирмы JEOL (Япония) JEM 2100F с разрешающей способностью 0.2 нм. Перед исследованием 0.1 г образца помещали в 30 мл C₂H₅OH и обрабатывали ультразвуком в течение 300 с. Каплю полученной смеси помешали на сетку ПЭМ, покрытую аморфным углеродом, сушили 1 ч, помещали в микроскоп и проводили исследования. Для исследования Pt-Ni/Al₂O₃-катализатора использовали медную сетку для ПЭМ, а для исследования Pt-Cu/Al₂O₃-катализатора никелевую сетку. Размер частицы определяли как максимальный линейный размер. Для построения распределения частиц по размерам обрабатывали данные по 300 частицам [22, 23]. Элементный анализ состава частиц проводили с помощью энергодисперсионного анализа (ЭДА) на приборе JED-2300, входящего в комплектацию JEM 2100F.

Рентгеновские фотоэлектронные спектры Pt(4f), Cu(2p) и Ni(2p) уровней в нанесенных металлах получены на приборе Axis Ultra DLD (Kratos, Великобритания) с использованием $Al(K_{\alpha})$ -излучения (1486.6 эВ). Спектры регистрировали с энергией пропускания анализатора 10–40 эВ и шагом 0.02–0.05 эВ. Разложение спектров на ряд линий, соответствующих различным химическим состояниям металлов, проводили после вычитания фоновой составляющей по методу Ширли. Аппроксимацию формы пиков проводили с использованием функций Гаусса и Лоренца GL(30) и значений энергий связи электронов для наноразмерных соединений золота и палладия.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Каталитические испытания

В табл. 1 представлены значения селективности образования основных продуктов превращения фурфурола ($\Phi\Phi$) и его конверсии при температуре 90°С в присутствии синтезированных монометаллических катализаторов (время контакта – 2 ч, растворитель – этанол (объемный избыток к реагенту – 10), 50 атм H₂, скорость перемешивания – 750 об/мин). Основным продуктом гидрирования фурфурола при данных условиях является фурфуриловый спирт (*Схема I*). Максимальная селективность образования фурфурилового спирта, равная 43.2%, достигается в присутствии Pt/Al₂O₃-катализатора. Образцы с нанесенными металлами триады железа и медью показали близкие значения по

селективности образования фурфурилового спирта (Φ C), равные 19.3–22.5%. Наименьшую селективность образования фурфурилового спирта, равную 10.5%, продемонстрировал золотосодержащий катализатор. Ацеталь фурфурола является основным продуктом реакции на всех исследованных образцах монометаллических катализаторов (*Схема 1*), селективность образования которого достигает 74.6%; также присутствуют продукты самоконденсации и осмоления фурфурола – до 14.9%.

Полученные данные показывают, что платиносодержащий катализатор является наиболее перспективным для дальнейшего исследования, так как обладает наибольшими значениями активности и селективности среди рассмотренных систем. Однако следует отметить, что в присутствии всех изученных катализаторов наблюдается доминирование ацеталя фурфурола в продуктах реакции, что свидетельствует об интенсивном алкилировании фурфурола и значительно более медленном его гидрировании. Возможно, высокая интенсивность алкилирования связана с высокой реакционной способностью этанола в присутствии оксида алюминия, поэтому следующим этапом работы стало выявление влияния природы носителя и типа растворителя на параметры процесса гидрирования фурфурола.

В табл. 2 представлены значения селективности образования основных продуктов превращения фурфурола при температуре 90°С в присутствии Pt/Al₂O₃-катализатора с различными растворителями. Из данных табл. 2 следует, что максимальная селективность образования фурфурилового спирта достигается при использовании этанола в качестве растворителя. При использовании пропанола-1, пропанола-2 или бутанола-1 селективность образования фурфурилового спирта снижается, а увеличивается выход сопутствующих продуктов – соответствующих ацеталей фурфурола и продуктов его осмоления. Вероятно, все использованные в данной работе спирты одинаково легко хемосорбируются поверхностью катализатора и затем алкилируют фурфурол. Косвенно данное предположение подтверждает снижение конверсии фурфурола с ростом углеводородной

Катализатор	Конверсия фурфурола, <i>х</i> (ФФ), %		Селективность образования ацеталя фурфурилового спирта, <i>S</i> (АЦФ), %	Селективность образования сопутствующих продуктов, <i>S</i> (СП), %	
Fe/Al ₂ O ₃	21.2	21.8	74.1	4.1	
Co/Al ₂ O ₃	19.6	19.3	74.2	6.5	
Ni/Al ₂ O ₃	21.8	22.6	71.6	5.8	
Au/Al ₂ O ₃	28.4	10.5	74.6	14.9	
Cu/Al ₂ O ₃	20.6	22.5	73.0	4.5	
Pt/Al ₂ O ₃	34.1	43.2	52.6	4.2	

Таблица 1.	Влияние состава катализатора на конверсию фурфурола
и селект	ивность образования продуктов при температуре 90°С

Примечание. Время контакта – 2 ч, растворитель – этанол (объемный избыток к реагенту – 10), 50 атм H₂, скорость перемешивания – 750 об/мин.

Таблица 2.	2. Влияние природы растворителя на конверсию фурфурола и селективность образования г	родуктов
	при температуре 90°С в присутствии Pt/Al ₂ O ₃ катализатора	

Растворитель	Конверсия фурфурола, <i>х</i> (ФФ), %	Селективность образования фурфурилового спирта, <i>S</i> (ФС), %	Селективность образования ацеталя фурфурилового спирта, <i>S</i> (АЦФ), %	Селективность образования сопутствующих продуктов, <i>S</i> (СП), %	
Этанол	34.1	43.2	52.6	4.2	
Пропанол-2	28.9	32.8	55.8	11.4	
Пропанол-1	32.4	26.9	63.8	9.3	
н-бутанол	28.3	27.8	61.3	10.9	

Примечание. Время контакта – 2 ч, 50 атм H₂, скорость перемешивания – 750 об/мин.

цепи спирта, т.е., вероятно, хемосорбированные спирты закрывают металлические центры от фурфурола, тем самым препятствуя протеканию реакции гидрирования. В литературе встречаются примеры использования алифатических спиртов в качестве растворителей для гидрирования фурфурола в присутствии гетерогенных катализаторов, обладающих различными кислотными центрами, в том числе и оксида алюминия [24]. Однако используемый нами оксид алюминия оказался непригоден для гидрирования фурфурола в среде спиртов. Разница в свойствах оксида алюминия обусловлена тем, что в настоящее время в России "гостированы" только примесные количества железа и натрия в оксиде алюминия и производители никак не контролируют наличие других элементов, что довольно часто приводит к технологическим сложностям на предприятиях нефтехимического комплекса при замене катализаторов [24].

Учитывая, что для протекания реакции алкилирования спиртом альдегида (фурфурола) необходима стадия протонирования кислорода карбонильной группы, существует высокая вероятность того, что природа кислотно-основных свойств носителя окажет заметное влияние на селективность процесса. С этой целью были изучены закономерности протекания реакции гидрирования фурфурола в присутствии платиносодержащих катализаторов на основе оксида кремния и сибунита. В табл. 3 представлены значения селективности образования основных продуктов гидрирования фурфурола при температуре 90°С в присутствии платиносодержащих катализаторов на основе различных носителей и с различным содержанием активного компонента

Из данных табл. 3 видно, что максимальная селективность достигается при использовании в качестве носителя сибунита. Аналогичный результат был достигнут авторами работы [25] при использовании палладия в качестве активного компонента. При использовании оксида кремния в качестве носителя наблюдается резкое снижение селективности образования фурфурилового спирта и увеличение выхода продуктов осмоления фурфурола. Таким образом, можно заключить, что оксид кремния не подходит в качестве носителя катализаторов гидрирования фурфурола в предложенных условиях. Следует обратить внимание на то, что производительности по фурфуриловому спирту, достигаемые в присутствии катализаторов на основе

Носитель	Конверсия фурфурола, <i>х</i> (ФФ), %		Селективность образования ацеталя фурфурилового спирта, <i>S</i> (АЦФ), %	Селективность образования сопутствующих продуктов, <i>S</i> (СП), %	
$0.5 \text{ Pt/Al}_2\text{O}_3$	19.5	31.2	63.7	5.1	
0.5 Pt/SiO ₂	44.2	12.4	55.7	31.9	
0.5 Pt/C	17.5	94.8	2.1	3.1	
1.0 Pt/Al ₂ O	34.1	43.2	52.6	4.2	
1.0 Pt/C	21.6	95.6	1.6	2.8	

Таблица 3. Влияние природы носителя и количества активного металла на конверсию фурфурола и селективность образования продуктов при температуре 90 °C

Примечание. Время контакта – 2 ч, растворитель – этанол (объемный избыток к реагенту – 10), 50 атм H₂, скорость перемешивания – 750 об/мин.

Катализатор	Конверсия фурфурола, <i>х</i> (ФФ), %	Селективность образования <i>S</i> (фуран), %	Селективность образования S(α-метилфуран), %	Селективность образования ацеталя фурфурилового спирта, <i>S</i> (АЦФ), %	Селективность образования сопутствующих продуктов, <i>S</i> (СП), %		
Температура 90°С							
Pt–Cu	69.6	_	11.8	86.6	1.5		
Pt–Ni	66.3	—	7.9	90.0	2.1		
Температура 150°С							
Pt-Cu	73.1	3.5	92.1	1.4	3.1		
Pt-Ni	99.7	4.7	92.1	0.7	0.8		

Таблица 4. Влияние температуры на конверсию фурфурола и селективность образования продуктов в присутствии биметаллических катализаторов

Примечание. Время контакта – 2 ч, растворитель – тетралин (объемный избыток к реагенту – 10), 50 атм H₂, скорость перемешивания – 750 об/мин.

оксида алюминия и сибунита, идентичны. С целью повышения производительности системы Pt/C были проведены исследования с увеличенной концентрацией активного компонента (табл. 3). Оказалось, что повышение концентрации нанесенной на сибунит платины с 0.5 до 1 мас.% увеличивает конверсию фурфурола с 17.5 до 21.6% и увеличивает селективность образования фурфурилового спирта с 94.8 до 95.6%. Высокая селективность действия катализатора на основе сибунита связана с подавлением реакции алкилирования фурфурола спиртом-растворителем. Эффект увеличения концентрации активного компонента на оксиде алюминия значительно более заметен: так, конверсия фурфурола увеличивается в 1.5 раза, а селективность образования фурфурилового спирта – на 12%.

Следующим этапом работы стало изучение свойств биметаллических систем Pt-Ni/Al₂O₃ и

 $Pt-Cu/Al_2O_3$, полученных нанесением смеси монометаллических солей соответствующих металлов на γ -оксид алюминия. В качестве растворителя использовали тетралин, поскольку он не алкилирует фурфурол в присутствии кислотных катализаторов, а также может являться эффективным жидкофазным донором водорода для процесса гидрирования.

В табл. 4 представлены значения селективности образования основных продуктов гидрирования фурфурола в среде тетралина при различных температурах в присутствии биметаллических катализаторов. Установлено, что использование биметаллических катализаторов и тетралина в качестве растворителя позволяет значительно увеличить активность и селективность процесса гидрирования уже при 90°С. Основным продуктом является фурфуриловый спирт, селективность образования которого достигает 90%. При температуре 150°С в присутствии биметаллических катализаторов основным

42

Рис. 1. Микрофотография нанесенной частицы катализатора $Pt-Ni/Al_2O_3$, полученная с помощью ПЭМ в режиме темного поля.

продуктом гидрирования фурфурола является α-метилфуран, селективность образования которого составила 92.1% в присутствии изучаемых катализаторов. Кроме α-метилфурана, также еще образуется небольшое количество фурфурилового спирта, продукта крекинга α-метилфурана – фурана и

Рис. 2. Гистограммы распределения частиц по размерам в образцах катализаторов: темные столбцы – Pt-Ni/Al₂O₃, светлые – Pt-Cu/Al₂O₃.

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 6 2021

продуктов осмоления фурфурола. Следует отметить, что при достигаемых высоких степенях конверсии 66–99% продуктов осмоления фурфурола образуется не более 5%.

Структурные исследования биметаллических катализаторов

Типичная микрофотография Pt-Ni/Al₂O₃-катализатора приведена на рис. 1. На фотографии видна частица округлой формы, контрастируюшая с поверхностью носителя. В спектре локального ЭДА отмеченной частицы присутствуют линии Cu, C, Al, O, а также линии Pt и Ni. Наличие в спектре линий меди и углерода обусловлено присутствием этих элементов в используемой для анализа сетке ПЭМ [26, 27]. Наличие линий алюминия и кислорода обусловлено присутствием в катализаторе носителя – Al₂O₃. Оставшаяся комбинация элементов (Pt и Ni) относится к частице и позволяет сделать вывод о том, что она является биметаллической. Гистограмма распределения частиц образца Pt-Ni/Al₂O₃ по размерам приведена на рис. 2. Видно, что гистограмма узкая, мономодальная. Из гистограммы видно, что размер летектируемых частии лежит в интервале от 1 до 10 нм. Средний размер частиц равен (3 ± 1) нм.

Типичная микрофотография образца Pt–Cu/Al₂O₃ приведена на рис. 3. На фотографии видна частица округлой формы, контрастирующая с поверхностью носителя. В спектре локального ЭДА от-

Рис. 3. Микрофотография нанесенной частицы катализатора Pt–Cu/Al₂O₃, полученная с помощью ПЭМ в режиме темного поля.

Рис. 4. Спектры РФЭ Al(2*p*) и Pt(4*f*) образцов Pt-Ni/Al₂O₃ (*a*) и Pt-Cu/Al₂O₃ (*b*).

Рис. 5. Спектр РФЭС Ni(2p) образца Pt-Ni/Al₂O₃.

меченной частицы присутствуют интенсивные линии Ni, C, Al, O и слабые линии Pt и Cu. Наличие в спектре линий никеля и углерода обусловлено присутствием этих элементов в используемой для анализа сетке ПЭМ. Наличие линий алюминия и кислорода обусловлено присутствием в катализаторе носителя – Al_2O_3 . Оставшаяся комбинация элементов (Pt и Cu) относится к частице и позволяет сделать вывод о том, что она является биметаллической. Гистограмма распределения частиц образца Pt—Cu/Al_2O₃ по размерам приведена на рис. 2. Видно, что гистограмма узкая, мо-

номодальная. Из гистограммы видно, что размер детектируемых частиц лежит в интервале от 1 до 10 нм. Средний размер частиц равен (3 ± 1) нм.

Рассчитанные из спектров РФЭС концентрации элементов на поверхности образцов приведены в табл. 5. Спектры РФЭС высокого разрешения в области 68—80 эВ приведены на рис. 4. В спектрах наблюдается интенсивная линия Al(2p), которая накладывается на низкоинтенсивный спектр Pt(4f)-электронов. Тем не менее со стороны меньших энергий связи в спектрах на рис. 4 можно заметить слабое плечо в области 71.1 эВ, которое

Таблица 5. Концентрации элементов на поверхности образцов (ат.%)

Образец	0	С	Al	Pt	Ni	Cu
Pt-Ni/Al ₂ O ₃	57.8	15.6	26.4	0.1	0.07	0
Pt-Cu/Al ₂ O ₃	57.2	14.8	27.9	0.1	0	*

* Ввиду малого количества металла зарегистрировать спектр Cu(2*p*) образца Pt–Cu/Al₂O₃ не представляется возможным.

можно отнести к линии $Pt(4f_{7/2})$ металлической платины: (71.0 ± 0.1) эВ. Таким образом, есть основания полагать, что платина в образцах Pt-Ni/Al₂O₃ и Pt-Cu/Al₂O₃ находится в состоянии Pt⁰. Спектр Ni(2p) образца Pt-Ni/Al₂O₃ приведен на рис. 5. Спектр представляет собой низкоинтенсивный дублет линий Ni(2p_{3/2}) и Ni(2p_{1/2}) с энергиями связи, которые характерны для окисленных форм никеля. Ввиду малого количества металла зарегистрировать спектр Cu(2p) образца $Pt-Cu/Al_2O_3$ не представляется возможным. Тем не менее, исходя из структурных данных по высокопроцентным Pd-Cu/Al₂O₃-катализаторам, полученных тем же способом, что и Pt-Cu/Al₂O₃, наиболее вероятными формами содержания меди в Pt-Cu/Al₂O₃ являются ее оксиды [28, 29].

ЗАКЛЮЧЕНИЕ

Проведен скрининг активности монометаллических катализаторов на основе γ-оксида алюминия, модифицированного металлами триады железа, медью, золотом и платиной. Установлено, что при пониженной температуре 90°С наибольшую активность и селективность в гидрировании фурфурола в фурфуриловый спирт проявляет Pt/Al₂O₃-катализатор.

Изучение влияния природы носителя на параметры реакции гидрирования фурфурола показало высокую чувствительность процесса к кислотно-основным свойствам поверхности носителя. При использовании в качестве разбавителя фурфурола алифатических спиртов наибольшую селективность в образовании фурфурилового спирта, достигающую 96%, проявляют катализаторы на основе сибунита. Катализаторы на основе ү-оксида алюминия наиболее активны в превращении фурфурола, однако при использовании в качестве разбавителя алифатических спиртов С2-С4 основными продуктами преврашения являются соответствующие ацетали фурфурола. Изучение влияния природы спирта-разбавителя фурфурола на параметры процесса гидрирования показали, что в ряду этанол-пропанол-бутанол варьирование растворителя мало влияет на селективность реакции, а основными продуктами превращения фурфурола являются ацетали фурфурола.

Варьирование количества нанесенного компонента показало, что наиболее заметный эффект достигается в катализаторах на основе у-оксида алюминия. При увеличении доли нанесенной платины с 0.5 до 1 мас.% увеличивается конверсия фурфурола в 1.5 раза и селективность образования фурфурилового спирта увеличивается на 20%.

Синтезированы биметаллические катализаторы на основе у-оксида алюминия с нанесенными парами активных компонентов: Pt-Ni, Pt-Cu. Изучение каталитической активности разработанных катализаторов показало их большой потенциал. Установлено, что при температуре 90°С основным продуктом гидрирования фурфурола является фурфуриловый спирт, селективность образования которого достигает 90% при конверсии фурфурола 67-74%. При температуре 150°С кардинально меняется селективность процесса - основным продуктом является α-метилфуран, селективность образования которого достигает 92% при степени конверсии фурфурола 73-99%. Особо следует отметить, что выход продуктов осмоления фурфурола в проведенных экспериментах не превышает 5%.

Работа выполнена при финансовой поддержке Российским научным фондом (грант № 18-73-10216).

СПИСОК ЛИТЕРАТУРЫ

- Жарова П.А., Чистяков А.В., Лесин С.В., Константинов Г.И., Арапова О.В., Цодиков М.В. // Хим. физика. 2019. Т. 38. № 6. С. 35.
- Chatterjee C., Pong F., Sen A. // Green Chem. 2015.
 V. 17. № 1. P. 40.
- 3. *Serrano-Ruiz J.C., Luque R., Sepulveda-Escribano A.* // Chem. Soc. Rev. 2011. V. 40. № 11. P. 5266.
- Alonso D.M., Wettstein S.G., Dumesic J.A. // Ibid. 2012.
 V. 41. № 24. P. 8075.
- Luo Y., Li Z., Li X. et al. // Catal. Today. 2019. V. 319. P. 14.
- Alipour S., Omidvarborna H., Kim D.S. // Renew. Sustain. Energy. Rev. 2017. V. 71. P. 908.
- 7. Agirrezabal-Telleria I., Gandarias I., Arias P.L. // Catal. Today. 2014. V. 234. P. 42.
- 8. *Клещевников Л.И., Логинова И.В., Харина М.В. и др. //* Вестн. технол. ун-та. 2015. Т. 18. № 19. С. 95.
- 9. Ullmann's Encyclopedia of Industrial Chemistry. The Sixth edition. Weinheim: Wiley-VCH, 2007. P. 313.
- Barr J.B., Wallon S.B. // J. Appl. Polym. Sci. 1971. V. 15. № 5. P. 1079.
- 11. *Schneider M.H., Phillips J.G.* Furfuryl alcohol and lignin adhesive composition. Патент US 6747076 B2, 2004.
- Adkins H., Connor R. // J. Amer. Chem. Soc. 1931.
 V. 53. P. 1091.
- Connor R., Folkers K., Adkins H. // J. Amer. Chem. Soc. 1932. V. 54. №. 3. P. 1138.
- 14. Wojcik B.H. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 210.

- 15. *Panagiotopoulou P., Vlachos D.G.* // Appl. Catal. A–Gen. 2014. V. 480 P. 17.
- Sharma R.V., Das U., Sammynaiken R. et al. // Ibid. 2013. V. 454. P. 127.
- 17. Villaverde M.M., Bertero N.M., Garetto T.F. et al. // Catal. Today. 2013. V. 213. P. 87.
- Biradar N.S., Hengne A.A., Birajdar S.N. et al. // Org. Process Res. Dev. 2014. V. 18. P. 1434.
- Fulajtárova K., Soták T., Hronec M. et al. // Appl. Catal. A–Gen. 2015. V. 502. P. 78.
- 20. Selishcheva S.A., Smirnov A.A., Fedorov A.V. et al. // Catalysts. 2019. V. 9. № 10. P. 816.
- 21. Селищева С.А., Смирнов А.А., Федоров А.В. и др. // Катализ в промышленности. 2019. Т. 19. № 2. С. 95.
- 22. Гришин М.В., Гатин А.К., Дохликова Н.В. и др. // Хим. физика. 2019. Т. 38. № 1. С. 3.

- 23. Badalyan S.M., Rumyantseva M.N., Nikolaev S.A. et al. // Inorg. Mater. 2010. V. 46. № 3. P. 232.
- 24. Смирнов А.А., Шилов И.Н., Алексеева М.В. и др. // Катализ в промышленности. 2017. Т. 17. № 6. С. 517.
- 25. *Li H., Luo H., Zhuang L. et al.* // J. Mol. Catal. A-Chem. 2003. V. 203. № 1–2. P. 267.
- 26. Zanaveskin K.L., Lukashev R.V., Makhin M.N. et al. // Ceram. Intern. 2014. V. 40. № 10. P. 16577.
- 27. Гришин М.В., Гатин А.К., Слуцкий В.Г. и др. // Хим. физика. 2018. Т. 37. № 9. С. 74.
- 28. Гришин М.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2020. Т. 39. С. 1.
- 29. Nikolaev S.A., Golubina E.V., Shilina M.I. // Appl. Catal. B-Environ. 2017. V. 208. P. 116.