ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 547.414.1 : 547.414.2 : 547.781.1 : 547.796.1

ЭНЕРГЕТИЧЕСКИЕ ВОЗМОЖНОСТИ НЕКОТОРЫХ ПРОИЗВОДНЫХ 1,2,4,5-ТЕТРАЗИН *N*-ОКСИДОВ КАК КОМПОНЕНТОВ СМЕСЕВЫХ ТВЕРДЫХ РАКЕТНЫХ ТОПЛИВ

© 2021 г. И. Н. Зюзин¹, И. Ю. Гудкова¹, Д. Б. Лемперт^{1*}

¹Институт проблем химической физики Российской академии наук, Черноголовка, Россия

**E-mail: lempert@icp.ac.ru* Поступила в редакцию 13.04.2020; после доработки 12.05.2020; принята в печать 20.05.2020

Рассмотрены энергетические возможности пяти реально существующих высокоэнтальпийных производных 1,2,4,5-тетразин *N*-оксидов в качестве компонентов смесевых твердых ракетных топлив (СТРТ), не содержащих металлического горючего. Изучены различные пути снижения температуры горения СТРТ до допустимой величины, если это необходимо.

Ключевые слова: 1,2,4,5-тетразин *N*-оксиды, *s*-тетразин *N*-оксиды, 6-аминотетразоло[1,5-*b*][1,2,4,5]тетразин 2,5-диоксид, 3,6-диазидо-1,2,4,5-тетразин 1,4-диоксид, 6-амино-3-нитро[1,2,4]триазоло[4,3-*b*][1,2,4,5]тетразин 7-оксид, смесевое твердое ракетное топливо, СТРТ, окислитель, удельный импульс, эффективный импульс.

DOI: 10.31857/S0207401X2107013X

ВВЕДЕНИЕ

Цель настоящей работы — изучение возможности применения некоторых производных 1,2,4,5тетразин *N*-оксидов (I-V [1-6], рис. 1) в качестве компонентов смесевых твердых ракетных топлив (СТРТ). Все пять соединений реально синтезированы, их строение доказано разными методами, в том числе рентгеноструктурным анализом.

1,2,4,5-Тетразин *N*-оксиды (*s*-тетразин *N*-оксиды) — относительно малоизученный подкласс энергоемких гетероциклов [1–13], первые представители которого описаны в 1993 году [3]. За последние 5–6 лет интенсивность работ в этом направле-

Рис. 1. Структурные формулы соединений I–V: I – 6-аминотетразоло[1,5-*b*][1,2,4,5]тетразин 2,5-диоксид ([1]); II – 3,6-диазидо-1,2,4,5-тетразин 1,4-диоксид ([1]); III – 6-аминотетразоло[1,5-*b*][1,2,4,5]тетразин 5-оксид ([2]); IV – 3-амино-6-нитро-1,2,4,5-тетразин 1,5-диоксид ([3–5]); V – 6-амино-3-нитро[1,2,4]триазоло[4,3-*b*][1,2,4,5]тетразин 7-оксид ([6]).

нии резко возросла: за этот период вышло восемь статей, в том числе четыре — в 2019 г.

Главный интерес к *s*-тетразин *N*-оксидам связан с перспективой их использования в качестве взрывчатых веществ (**BB**). Этому способствует пониженная доля углерода и водорода за счет высокой доли азота и кислорода, высокие энтальпии образования и более высокие по сравнению с *s*-тетразинами показатели α (коэффициента обеспечения молекулы кислородом). Как потенциальные компоненты СТРТ *s*-тетразин *N*-оксиди ранее не рассматривались.

Очевидный выигрыш в элементном составе при окислении *s*-тетразинов до моно- и ди-*N*-оксидов сопровождается дополнительным и совершенно неожиданным бонусом – снижением чувствительности их азидных производных (или таутомерных им бициклических тетразоло[1,5-*b*] [1,2,4,5]тетразинов) к механическим воздействиям. Так, окисление 3-амино-6-азидо-1,2,4,5-тетразина (**VI-a**), который в кристалле существует в бициклической форме **VI-b**, до соединения **III** (реакция 1) приводит к резкому снижению чувствительности к удару (IS) с 1.5 до 10 Дж [2].

Более глубокое окисление соединения III мощным окислителем HOF идет уже по тетразольному циклу с образованием соединения I (последняя стадия реакции 1), чувствительность к удару которого (IS = $6 \ Дж$ [1]) хотя и возросла по сравнению с соединением III (IS = $10 \ Дж$ [1]), но по сравнению с соединением VI снизилась в четыре раза. Любопытно, что окисление по тетразольному циклу "закрывает" для соединения I возможность обратной азидо-тетразольной таутомерии, примером которой могут служить взаимопревращения таутомеров VI-а и VI-b (реакция 1).

Аналогичное снижение чувствительности к удару наблюдалось при окислении экстремально чувствительного к удару, трению и электростатической искре [14] 3,6-диазидо-1,2,4,5-тетразина (VII) (IS < 1 Дж [1]) до соединения II (IS = 1.5 Дж [1]) (реакция 2). Молекулы II и VII в кристаллах имеют азидную форму [1, 13].

Для полноты картины к соединениям **I**–III добавили соединения **IV** [3–5] и **V** [6]. Соединение **IV** отличается повышенным значением α (0.8), поскольку в его молекуле есть нитрогруппа и окислены не один, а два атома азота в цикле. Впервые соединение **IV** синтезировали с выходом 7% в 1993 году окислением 3,6-диамино-1,2,4,5-тетразина (**VIII**) трифторнадуксусной кислотой [3]. Позднее выход удалось повысить до 50%, взяв в качестве исходного соединения 3-амино-6-нитро-1,2,4,5-тетразин (**IX**) (реакция 3) [5].

При использовании более сильного реагента (HOF) для окисления соединения VIII была получена смесь соединения IV с его структурным изомером — 3-амино-6-нитро-1,2,4,5-тетразин 1,4-диок-

сидом (**X**) (70 : 30), а окисление другого исходного соединения - 3,6-диамино-1,2,4,5-тетразин 1-оксида (**XI**) дало равное соотношение изомеров **IV** и **X** [4] (реакция 4).

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 7 2021

ЗЮЗИН и др.

Соединение	Брутто- формула	$\Delta H_f^{\circ \mathrm{a}}$		ρ ⁶ ,	N ^B %	α^{r}	Р ^д ,	<i>D</i> ^е , м/с	IS ^ж , Дж	FS ³ , H	т ^и °С
		кДж/моль	кДж/кг	г/см ³	5	ГПа	I _{dec} , C				
Ι	$C_2H_2N_8O_2$	576.0	3388.2	1.93	65.88	0.40	41.3	9.60	6	109	150 175 ^к (213) ^к
II	C ₂ N ₁₀ O ₂	967.3	4935.2	1.90	71.43	0.50	45.78	10.03	1.5	10	140 (167) ^к
III	$C_2H_2N_8O$	631.4	4100.0	1.87	72.73	0.20	36.4	9.33	10	60	185
IV	$C_2H_2N_6O_4$	225.7	1297.1	1.92	48.28	0.80	39.4	9.32	3	10	110
V	$C_3H_2N_8O_3$	744	3757.6	1.86	56.6	0.43	39.1	9.38	25	240	220
Х	$C_2H_2N_6O_4$	225.7 ^л	1297.1 ^л	1.972	48.28	0.80	—	_	—	—	168 [™]

Таблица 1. Свойства соединений І-V и Х

^а Стандартная энтальпия образования (расчетная);

⁶ плотность (экспериментальная);

^в процентное содержание азота в соединении;

^г коэффициент обеспечения молекулы кислородом (для соединения $C_x H_y N_z O_w \alpha = 2w/(4x + y));$

^д давление детонации (расчетное);

^е скорость детонации (расчетная);

^ж чувствительность к удару (экспериментальная);

³ чувствительность к трению (экспериментальная);

^и температура разложения;

^к температура начала интенсвного разложения оценена нами из кривых ДСК, в скобках температура в максимуме тепловыделения [1, Sup. Inf.];

^л ΔH_f° соединения **X** приняли равной ΔH_f° соединения **IV** [5];

^м температура плавления с разложением (°С/мин).

Авторам работы [4] удалось выделить минорный изомер Х с помощью колоночной хроматографии (выходы не приведены) и даже определить его структуру. Плотность соединения Х оказалась более высокой по сравнению с соединением IV (1.972 и 1.919 г/см³ соответственно). Судя по довольно высокой температуре плавления с разложением (168° С при скорости нагрева 2° С/мин [4]), соединение Х и по термической стойкости превосходит соединение IV (температура разложения составила 110°С по данным ДСК [3, 5]). Вероятно, из-за низкого выхода и малого количества выделенного соединения Х не удалось определить его чувствительность к механическим воздействиям. В литературе нет даже расчетной энтальпии ΔH_f° соединения Х, нет и расчетных параметров детонации. В настоящей работе для расчетов энергетики составов СТРТ с соединением **X** его ΔH_f° была принята нами равной ΔH_f° соединения **IV** [5]. В наших ближайших планах стоит задача рассчитать ΔH_f° этого ис-

ключительно интересного соединения современными квантовохимическими методами в одинаковом базисе с изомером **IV** и некоторыми другими сходными структурами для корректного сравнения эффективности *s*-тетразин *N*-оксидов как потенциальных компонентов CTPT.

Соединение V похоже на соединение I, формально молекула V получается при замене группировки N \rightarrow O в азольном цикле молекулы I на C–NO₂. Расчетная энтальпия ΔH_f° соединений V (744 кДж/моль [6]) вызывает у нас некоторые сомнения (кажется завышенной), поскольку она существенно более высокая, чем у соединения I (576 кДж/моль [1]), а тетразолы — более высокоэнтальпийные гетероциклы, чем триазолы. Возможно, это связано с разными методами расчета в работах [1] и [6]. Тем не менее для термодинамических расчетов мы использовали эти литературные данные по ΔH_f° [1, 6] (табл. 1), но в дальнейшем мы планируем заново вычислить ΔH_f° соединений I и

V вместе с соединениями IV и X в одинаковом базисе и более корректно сравнить эти четыре потенциальных компонента СТРТ.

Свойства соединений I–V и X представлены в табл. 1.

ПОСТАНОВКА ЗАДАЧИ И МЕТОДИКА РАСЧЕТНЫХ ИССЛЕДОВАНИЙ

Для компоновки составов СТРТ брали одно из двух типовых связующих: углеводородное связующее (УС, $C_{72.15}H_{119.21}O_{0.68}$; стандартная энтальпия образования $\Delta H_f^{\circ} = -393$ кДж/кг; плотность $\rho = 0.92$ г/см³ [15]) и активное связующее (АС, $C_{18.96}H_{34.64}N_{19.16}O_{29.32}$; $\Delta H_f^{\circ} = -757$ кДж/кг; $\rho = 1.49$ г/см³ [15]).

Изучали энергетические характеристики не только бинарных композиций СТРТ (связующее и одно из исследуемых соединений I–V), но и более сложные составы, содержащие дополнительно окислитель – перхлорат аммония (ПХА, NH₄ClO₄; $\Delta H_f^{\circ} = -2495 \text{ кДж/кг}; \rho = 1.95 \text{ г/см}^3; \alpha = 2.25)$ или октоген (HMX, $\Delta H_f^{\circ} = 295 \text{ кДж/кг}; \rho = 1.9 \text{ г/см}^3; \alpha = 0.67$). Рассматривали и возможность повышения энергетики композиции за счет применения смесевого связующего "AC + УC" при различных соотношениях AC : УС.

В качестве эталонных составов сравнения были выбраны бинарные СТРТ на основе окислителей ПХА и АДНА (аммониевая соль динитразовой кислоты (NH₄N₃O₄ АДНА, $\Delta H_f^\circ = -1129$ кДж/кг; $\rho = 1.82$ г/см³; $\alpha = 2.0$ [16]). Следует отметить, что из-за качественной разницы в значениях α (2.00 против 0.667) в случае АДНА наиболее энергоемкие рецептуры обеспечиваются с УС, тогда как в случае октогена – с АС [17].

Расчеты величин удельного импульса I_{sp} и температуры в камере сгорания T_c (при давлении в камере и на срезе сопла 4.0 и 0.1 МПа соответственно) проводили с помощью программы расчета высокотемпературных химических равновесий ТЕРРА [18]. Анализ эффективности исследуемых компонентов проводили по алгоритму, описанному в работах [19–22]. Для сравнения баллистической эффективности композиций, имеющих разные плотности, при их использовании в двигателях с различными объемно-массовыми характеристиками использовали так называемые величины эффективных импульсов $I_{ef}(n)$ на разных ступенях ракетных систем (n – номер ступени) [23].

$$I_{ef}(1) = I_{sp} + 100(\rho - 1.9),$$

$$I_{ef}(2) = I_{sp} + 50(\rho - 1.8),$$

$$I_{ef}(3) = I_{sp} + 25(\rho - 1.7).$$

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 7 2021

Эти величины характеризуют баллистическую эффективность топлива на соответствующих ступенях трехступенчатых ракетных систем.

Для обеспечения удовлетворительных физико-механических характеристик СТРТ и реологических свойств неотвержденной топливной массы составы должны содержать достаточное количество полимерного связующего, обычно это достигается при объемном содержании связующего не ниже 18-19 об.%. Для корректного сравнения все рассматриваемые в настоящей работе составы СТРТ имеют примерно одинаковую объемную долю связующего 18.0 ± 0.1 об.%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Бинарные рецептуры: "исследуемое соединение + связующее (АС или УС)"

Соединения I-III и V имеют невысокие значения коэффициентов обеспечения молекулы кислородом (α от 0.2 до 0.5), поэтому лучше компонуются с АС. Соединение IV и его изомер Х $(\alpha = 0.8)$ можно компоновать как с AC, так и с УС [24]. Поскольку в работе [17] было показано, что при росте ΔH_f° окислителя преимущество УС над АС проявляется все в большей степени, соединение II с очень высокой энтальпией образования (ΔH_f° = = 4935 кДж/кг) также можно попробовать в композиции и с УС. Не исключено, что возможен и некоторый оптимум в композициях со связующим, представляющим смесь АС с УС за счет большего содержания водорода в УС, чем в АС [24]. Расчетные характеристики бинарных композиций представлены в табл. 2. Там же для сравнения приведены параметры бинарных составов -"октоген (HMX) + AC" и "АДНА + УС".

В табл. 2 можно видеть, что в бинарных составах с АС соединения II и V по величинам удельных импульсов I_{sp} весьма существенно превосходят октоген (на 19.1 и 10.9 с соответственно), по величине эффективного импульса I_{ef} (3) превосходство примерно такое же: на 19.5 и 10.4 с соответственно. Соединения IV и X с АС немного лучше октогена: по I_{sp} – оба на 0.8 с, а по I_{ef} (3) – на 1.5 и 2.6 с соответственно. У соединений IV и Xодинаковые элементные составы (структурные изомеры) и ΔH_f° (по нашему допущению), но соединение Х имеет более высокую плотность (1.972 г/см³) по сравнению с соединением IV (1.919 г/см³). Превосходство соединения **X** по I_{ef} (3) над соединением IV (1.1 с) демонстрирует влияние плотности основного компонента на баллистическую эффективность составов СТРТ, даже для третьей ступени ракеты. На первой и второй ступенях это преимущество было бы еще выше. Соединения I и III с AC (не говоря уже о VC) не показали хорошего результата, что объясняется

Окисл	итель	C	Связующее		$a \pi/ax^3$	ТК	Lс	$L_{2}(3)$ c		
N⁰	%	тип	мас.%	об.%	р, г/см	T_c , K	I_{sp}, C	<i>iej</i> (<i>i</i>), <i>i</i>		
Ι	85.5	AC	14.5	18.0	1.851	3271	248.7	252.6		
II	85.3	AC	14.7	18.0	1.826	4047	270.2	273.4		
II	74.75	AC	25.25	30.1	1.777	3800	265.6	267.5		
II	70.9	AC	29.1	34.4	1.759	3729	264.0	265.5		
II	69.3	AC	30.7	36.1	1.752	3700	263.4	264.7		
III	85.1	AC	14.9	18.0	1.802	2958	240.8	243.3		
IV	85.45	AC	14.55	18.0	1.843	3413	251.9	255.4		
V	85.05	AC	14.95	18.0	1.793	3570	262.0	264.3		
X	85.75	AC	14.25	18.0	1.885	3413	251.9	256.5		
HMX	85.2	AC	14.8	18.0	1.811	3177	251.1	253.9		
II	90.4	УС	9.6	18.0	1.724	3398	252.4	253.0		
IV	90.5	УС	9.5	18.0	1.740	2821	233.8	234.8		
II	87.28	AC + YC 2.42 : 1	12.72	18.0	1.785	3800	263.1	265.2		
II	87.95	AC + YC 1.39 : 1	12.05	18.0	1.771	3700	260.4	262.2		
АДНА	90.0	УС	10	18.0	1.658	3119	250.9	249.8		

Таблица 2. Энергетические характеристики бинарных композиций СТРТ на основе соединений I–V, X с активным связующим (AC), на основе соединений II и IV с углеводородным связующим (УС) и композиций на основе соединения II с AC + УС при объемном содержании связующего около 18 об.% (и более 18 об.% для соединения II)

более низкими значениями коэффициента α (0.4 и 0.2 соответственно). Стоит отметить, что соединения с низким коэффициентом α (ниже 0.5) применять как самостоятельные окислители нецелесообразно, и даже в бинарных составах с AC они требуют введения дополнительного окислителя, например, ПХА [25].

Соединение II в композиции с УС превосходит состав "АДНА + УС" по величинам I_{sp} и $I_{ef}(3)$ на 1.5 и 0.5 с соответственно, хотя величина α у соединения II существенно ниже, чем у АДНА (0.5 против 2). Это результат чрезвычайно высокой разницы между энтальпиями образования соединений II и АДНА. Но бинарный состав "II + УС" все же существенно (на ~20 с) проигрывает составу "II + АС", т.е. даже настолько высокая ΔH_f° (4935 кДж/кг) не позволяет компоненту с $\alpha = 0.5$ стать более эффективным с УС, чем с АС. Составы "II + АС" с максимальными величинами I_{sp} и $I_{ef}(3)$ при содержании АС примерно 18 об.% имеют недопустимо высокую T_c (~4050 K).

Компоновка соединения **IV** с УС хороших результатов не дала, чего и следовало ожидать от компонента с $\alpha = 0.8$ и величиной ΔH_f° на уровне 1300 кДж/кг. Таким образом, в бинарных составах лучший результат демонстрирует соединение **II** в паре с AC, что неудивительно для соединения с величиной ΔH_f° около 5000 кДж/кг.

2. Композиции СТРТ на основе соединения II и возможные пути снижения температуры в камере сгорания (T_c) до технологически допустимых значений (3700–3800 K)

Отдельно следует остановиться на соединении II и композициях на его основе. Как уже отмечалось выше, бинарный состав "II + AC" при 18 об.% связующего показал очень высокие энергетические показатели, однако, температура в камере сгорания при этом достигла недопустимо высокого значения (4047 К, табл. 2). Следовательно, необходимо снизить T_c , доведя ее до технологически допустимых значений (3700–3800 К), поскольку практически невозможно найти конструкционные материалы для изготовления камеры сгорания и реактивного сопла при $T_c > 3800$ К. Снизить T_c можно разными способами.

Во-первых, в бинарной композиции "II + AC" можно повысить содержание AC сверх необходимых 18% по объему за счет снижения доли соединения II (способ A), но при этом со снижением T_c (табл. 3) до приемлемых величин (3700–3800 K)

II, %	AC		$2 \pi/2r^3$	ТК	Lc	L (3) c	
	мас.%	об.%	ρ , r/cm ²	<i>I_c</i> , K	I_{sp}, C	$I_{ef}(S), C$	
85.3	14.7	18.0	1.826	4047	270.2	273.4	
84	16	19.5	1.820	4010	269.6	272.6	
83	17	20.7	1.815	3983	269.2	272.0	
82	18	21.9	1.810	3958	268.7	271.5	
80	20	24.2	1.803	3910	267.9	270.4	
75	25	29.8	1.778	3805	265.7	267.7	
74.8	25.2	30.1	1.777	3801	265.7	267.6	
74.75	25.25	30.1	1.777	3800	265.6	267.5	
74.5	25.5	30.4	1.775	3780	265.5	267.4	
70.9	29.1	34.4	1.759	3729	264.0	265.5	
70	30	35.3	1.755	3713	263.6	265.0	
69.3	30.7	36.1	1.752	3700	263.4	264.7	

Таблица 3. Энергетические характеристики бинарных композиций СТРТ на основе соединения II с активным связующим (АС) при снижении *T_c* путем увеличения доли АС

Примечание: жирным шрифтом выделены составы с максимальными значениями целевых параметров I_{sp} и $I_{ef}(3)$ при ограничении T_c не выше 3700 или 3800 К.

снижаются и значения целевых параметров I_{sp} и I_{ef} (3). И все же при этом значения импульсов I_{sp} и *I*_{ef}(3) остаются очень высокими (263.4–265.6 с для I_{sp} и 264.7—267.5 с для $I_{ef}(3)$). Чтобы снизить T_c до предельно допустимой величины 3800 К, следует повысить массовую долю АС до 25.25% ("74.75% II + 25.25% AC"), что соответствует объемной доле связующего в 30.1 об.%, а значения I_{sp} и I_{ef} (3) снизятся до 265.6 и 267.5 с соответственно. Чтобы еще сильнее снизить T_c и довести ее до 3700 K, массовую долю АС нужно повысить до 30.7%. У композиции "69.3% II + 30.7% AC" значения импульсов *I*_{sp} и *I*_{ef} (3) составят уже 263.4 и 264.7 с, а объемная доля связующего еще сильнее превысит минимально допустимую величину 18% и достигнет 36.1 об.% (табл. 3), что положительно должно сказаться на улучшении реологических параметров неотвержденной топливной массы.

Во-вторых, в паре с соединением II можно применить смешанное связующее "AC + VC" при постоянном объемном содержании (18 об.%) (способ Б). Частичная замена AC на VC позволяет снизить T_c до 3800 К при соотношении AC : VC = = 2.4 : 1 ценой снижения значений I_{sp} и I_{ef} (3) до 263.1 и 265.2 с соответственно. Снижение же T_c до 3700 К достигается при еще меньшей массовой доле AC (AC : VC = 1.4 : 1), а значения I_{sp} и I_{ef} (3) снижаются до 260.4 и 262.2 с соответственно. Тем не менее, даже эти величины являются довольно высокими для композиций СТРТ без металла (табл. 4).

В-третьих, можно вводить в композицию дополнительно низкоэнтальпийный окислитель – перхлорат аммония (ПХА) – за счет соединения II, удерживая объемное содержание AC на уровне 18 об.% (способ В). В принципе, можно использовать и добавку окислителя АДНА для снижения T_c , но в работе [26] показано, что добавка ПХА снижает T_c наиболее эффективно. Так, у состава "74.75% II + 14.65% AC + 10.6% ПХА" $T_c = 3800$ K, а это – уже допустимое значение. При этом $I_{sp} = 266.4$ с, а I_{ef} (3) = 269.7 с. Введение же 16.9% ПХА при сохранении 18.0 об.% связующего понижает температуру до 3700 K, еще сильнее снижая значения импульсов I_{sp} и I_{ef} (3) – до 264.0 и 267.3 с соответственно (табл. 5).

Таким образом, сравнивая составы на основе соединения II, приведенные к одинаковым допустимым температурам в камере сгорания тремя вышеописанными способами (А-В), например при $T_c = 3800$ и 3700 К (табл. 6), можно утверждать, что третий способ (разбавление перхлоратом аммония) приводит к наименьшей потере в величинах I_{sp} и $I_{ef}(3)$. Это означает, понизить температуру в камере сгорания до допустимых значений с меньшими энергетическими потерями лучше всего путем разбавления соединения II перхлоратом аммония. Два других способа снижения T_c (увеличение массовой доли АС в бинарной композиции "II + АС" и разбавление АС углеводородным связующим) гораздо менее эффективны. Однако каждый из описанных способов понижения температуры в камере сгорания имеет свои достоинства и недостатки. Способ Б (табл. 6) (разбавление АС углеводородным связующим) проигрывает в энергетике способу В (4.5 с в $I_{ef}(3)$) при снижении T_c до 3800 К), но облегчает работу

II, %	AC, %	УС, %	АС + УС, об.%	ρ, г/см ³	<i>T_c</i> , K	<i>I_{sp}</i> , c	$I_{ef}(3), c$
85.3	14.8	0	18.0	1.826	4047	270.2	273.4
85.55	14.05	0.5	18.0	1.820	4035	269.7	272.7
85.85	13.3	1	18.0	1.815	4021	269.1	272.0
86.1	12.5	1.5	18.0	1.809	4000	268.4	271.2
86.9	10.1	3	18.0	1.793	3861	264.7	267.0
87.28	9.0	3.72	18.0	1.785	3800	263.1	265.2
87.3	8.95	3.75	18.0	1.785	3798	263.0	265.2
87.4	8.6	4	18.0	1.782	3777	262.5	264.6
87.7	7.8	4.5	18.0	1.777	3740	261.7	263.6
87.75	7.65	4.6	18.0	1.771	3733	261.3	263.2
87.75	7.6	4.65	18.0	1.775	3729	261.2	263.1
87.95	7.05	5	18.0	1.771	3704	260.5	262.3
87.95	7	5.05	18.0	1.771	3700	260.4	262.2
89	4	7	18.0	1.750	3566	256.8	258.1

Таблица 4. Энергетические характеристики композиций СТРТ на основе соединения II со смешанным связующим "AC + УС" при объемном его содержании 18 об.%

Примечание: жирным шрифтом выделены составы с максимальными значениями целевых параметров I_{sp} и $I_{ef}(3)$ при ограничении T_c не выше 3700 или 3800 К.

Таблица 5. Энергетические характеристики композиций СТРТ на основе соединения II с активным связующим (АС) и ПХА при объемном содержании связующего около 18 об.%

		•	-	-	•		
II, %	ПХА, %	АС, мас.%	АС, об.%	ρ, г/см ³	<i>T_c</i> , K	<i>I_{sp}</i> , c	$I_{ef}(3), c$
85.3	0	14.7	18.0	1.826	4047	270.2	273.4
84.3	1	14.7	18.0	1.827	4015	269.9	273.0
80.3	5	14.7	18.0	1.828	3909	268.4	271.6
76.35	9	14.65	18.0	1.830	3829	267.0	270.2
75.35	10	14.65	18.0	1.831	3811	266.6	269.9
74.85	10.5	14.65	18.0	1.831	3802	266.4	269.6
74.75	10.6	14.65	18.0	1.831	3800	266.4	269.7
74.35	11	14.65	18.0	1.831	3793	266.2	269.5
73.35	12	14.65	18.0	1.832	3776	265.9	269.2
70.35	15	14.65	18.0	1.833	3729	264.7	268.1
68.45	16.9	14.65	18.0	1.834	3700	264.0	267.3
68.35	17	14.65	18.0	1.834	3699	263.9	267.3
65.35	20	14.65	18.0	1.835	3656	262.7	266.1
60.4	25	14.6	18.0	1.838	3589	260.5	264.0
55.4	30	14.6	18.0	1.840	3524	258.1	261.6

Примечание: жирным шрифтом выделены составы с максимальными значениями целевых параметров I_{sp} и $I_{ef}(3)$ при ограничении T_c не выше 3700 или 3800 К.

с неотвержденным составом и улучшает физикомеханические свойства отвержденного изделия, а в продуктах сгорания нет HCl. То же следует сказать и о способе A (повышение массовой доли AC до 30.1 об.%), но тут проигрыш способу В несколько ниже (около 1 с). Очевидно, с точки зрения энергетики лучшим способом снижения величины T_c является способ B; ему уступает способ A, а способ Б наименее эффективен. Если дело дойдет до реальной разработки таких составов, то выбор нужно будет делать между способами A и B в зависимости от предполагаемого назначения такого топлива.

	111/0110	· 0010/0 II	
Способ	<i>T_c</i> , K	<i>I_{sp}</i> , c	$I_{e\!f}(3), c$
Исходная композиция	4047	270.2	273.4
Α	3800	265.6	267.5
	3700	263.4	264.7
Б	3800	263.1	265.2
	3700	260.4	262.2
В	3800	266.4	269.7
	3700	264.0	267.3

Таблица 6. Изменения в величинах *I_{sp}* и *I_{ef}* (3) при снижении *T_c* исходной композиции "14.7% AC + 85.3% II"

3. Композиции СТРТ: "исследуемое соединение + AC + ПХА"

Поскольку большинство изучаемых компонентов (I–III, V) имеют низкие величины α , были изучены энергетические характеристики рецептур, содержащих, помимо компонентов I–V и связующего, дополнительно окислитель – перхлорат аммония (ПХА). Ранее было показано, что такой прием может дать положительный результат при достаточно высоких (примерно 700–1400 кДж/кг) величинах ΔH_f° основного компонента (но не столь высоких, как у компонентов I–III, V) и с низкими величинами α (0.2–0.54) [27]. Рецептуры на основе октогена "HMX + ПХА + АС" [27] взяты для сравнения. На рис. 2 и 3 приведены зависимости величин $I_{ef}(3)$ и T_c от содержания соединений I–V или ок-

тогена в составах СТРТ с активным связующим (18 об.%) и перхлоратом аммония (остальное).

Другими словами, рис. 2 и 3 демонстрируют, как влияет на параметры I_{ef} (3) и T_c замена части соединений І-V или октогена на ПХА в составах с АС. Из рис. 2 видно, что для соединений II, IV, V и X введение ПХА неэффективно с точки зрения энергетики. Этому есть объяснение – соединения II и V имеют столь высокие ΔH_f° , что даже при небольших величинах α этих компонентов (0.50 и 0.43) введение низкоэнтальпийного ПХА настолько снижает ΔH_f° всей композиции, что это падение не восполняется экзотермической реакцией окисления компонентов II или V (и AC) перхлоратом аммония. Для соединений II введение ПХА оказалось наиболее эффективным способом снижения недопустимо высокой Т_с (метод В, раздел 2). Состав же "V + АС" охлаждать таким способом (способ В, раздел 2) нет нужды, поскольку его $T_c = 3570$ К и так лежит в разрешен-ном диапазоне, несмотря на высокую величину $I_{sp} = 262$ с. То же самое можно сказать и про бинарные системы "**IV** или **X** + 15 вес.% АС". С учетом достаточно высокой величины α соединений **IV** и **X** (0.8) они почти оптимальны по содержанию кислорода. Кривые для соединения Х на рис. 2 и 3 не приведены, они практически повторяют ход кривых для соединения **IV**, но расположены чуть выше.

У компонента I величины α и ΔH_f° существенно ниже, чем у компонентов II и V, поэтому введение дополнительного окислителя (например,

Рис. 2. Зависимость величины $I_{ef}(3)$ от содержания соединений **I**–**V** или октогена (HMX) в составах СТРТ с активным связующим (18 об.%) и перхлоратом аммония (остальное).

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 7 2021

Рис. 3. Зависимость температуры в камере сгорания T_c от содержания соединений **I**–**V** или октогена (HMX) в составах СТРТ с активным связующим (18 об.%) и перхлоратом аммония (остальное).

ПХА) в составы с соединением I вполне уместно. Оптимизированный состав "60.55% І + 14.45% АС + 25% ПХА" выигрывает у бинарной композиции "I + AC" 3.3 с по показателю I_{sp} и 3.2 с – по I_{ef} (3). Температура в камере сгорания такой композиции составляет 3355 К. Этот состав по $I_{ef}(3)$ выигрывает у оптимизированного состава "НМХ + + ПХА + АС" совсем немного (255.8 и 255.5 c). У кривой для компонента I на рис. 2 есть особенность — слабая зависимость $I_{ef}(3)$ от содержания компонента I в довольно широком диапазоне 45-65%, (отмечен на рис. 2 вертикальными штриховыми линиями А и В). Эта же особенность есть у октогена (НМХ) (рис. 2), но диапазон слабой зависимости $I_{ef}(3)$ смещен на ~5% в сторону большего содержания компонента. Поэтому ограничение содержания органического высокоэнтальпийного компонента из-за его высокой чувствительности к механическим воздействиям может сделать преимущество компонента I по сравнению с октогеном более существенным. Соединение I и октоген сопоставимы по чувствительности к механическим воздействиям [1]. В частности, при 40%-ном содержании органического компонента состав на основе соединения І превосходит состав с НМХ по $I_{ef}(3)$ на 3 с.

Добавление 41% ПХА в композицию на основе соединения III с AC повышает значения I_{sp} и I_{ef} (3) весьма существенно — на 8.6 и 9.4 с соответственно, что вполне ожидаемо для соединения с $\alpha = 0.2$. Максимальное значение I_{ef} (3) = 252.7 с достигается при содержании компонента III в композиции в количестве 44%, причем около этого оптимума в интервале 40–50% $I_{ef}(3)$ почти не меняется. Как следствие, при 40%-ном ограничении доли органического высокоэнтальпийного компонента соединение III превосходит HMX в составе СТРТ с АС и ПХА по $I_{ef}(3)$ на 3 с, а при 35%-ном ограничении — на 6 с. Соединение III менее чувствительно к механическим воздействиям по сравнению с октогеном [1, 2]. Поэтому его содержание в композиции СТРТ, возможно, и не потребуется ограничивать.

В композициях со всеми изучаемыми компонентами, кроме II, величина T_c не превышает допустимый уровень (3700–3800 K) (рис. 3).

4. Сравнение оптимизированных композиций СТРТ на основе соединений I—V, X между собой и с некоторыми известными составами

Данные оптимизированных составов на основе соединений **I–V**, **X** с добавкой ПХА (или без нее) при объемном содержании АС около 18% и при условии $T_c < 3800$ К представлены в табл. 7. В качестве референтных составов приведены оптимизированные составы "АДНА + УС" и "НМХ + ПХА + + АС", а также составы на базе двух перспективных компонентов – 4,4',5,5'-тетранитро-2,2'-бис(тринитрометил)-2*H*,2'*H*-3,3'-бипиразола (**XII**) [28, 29] и [1,2,5]оксадиазоло[3,4-е][1,2,3,4]тетразин-4,6диоксида (ФТДО) [30, 31] с УС (для АДНА, ФТДО и окислителя **XII** углеводородное связующее по сравнению с активным более выгодно).

32

Окислитель		Связующее			ΠΥΛ %	$2 \pi/m^3$	тк	I c	$L_{2}(3)$ c
N⁰	%	Тип	мас.%	об.%	11/21, 70	p, 1/CM	1 _c , 11	r _{sp} , c	1 _{ef} (3), 0
Ι	60.55	AC	14.45	18.0	25	1.856	3355	252.0	255.8
II	74.75	AC	14.65	18.0	10.6	1.831	3800	266.4	269.7
III	44.35	AC	14.65	18.0	41	1.832	3279	249.4	252.7
IV	85.45	AC	14.55	18.0	0	1.843	3413	251.9	255.4
V	85.05	AC	14.95	18.0	0	1.793	3570	262.0	264.3
Х	85.75	AC	14.25	18.0	0	1.885	3413	251.9	256.5
HMX	65.4	AC	14.6	18.0	20	1.826	3242	252.1	255.5
АДНА	90	УС	10	18.0	0	1.658	3119	250.9	249.8
XII	91	УС	9	18.0	0	1.820	3600	256.6	259.6
ФТДО	90	УС	10	18.3	0	1.669	3770	270.4	269.6

Таблица 7. Энергетические характеристики композиций СТРТ "исследуемое соединение + AC + ПХА" на основе соединений I–V, Х при объемном содержании AC около 18% и содержании ПХА, обеспечивающем максимальные величины I_{cm}, I_{ac}(3) при условии T_c < 3800 К в сравнении с составами на базе октогена (НМХ), АДНА, ФТДО и окислителя XII

Для наглядности данные по величинам I_{ef} (3) из табл. 7 представлены на гистограмме (рис. 4).

Из табл. 7 и рис. 4 видно, что в своих оптимизированных составах компонент II находится на уровне Φ TДО и вместе с компонентом V существенно опережают не только октоген и АДНА, но и окислитель XII, а компонент V существенно уступает Φ ТДО. Компоненты I, IV и X находятся на уровне октогена и опережают АДНА, но уступают окислителю XII. Наконец, компонент III

Рис. 4. Максимально достигаемые величины I_{ef} (3) оптимизированных составов "I, II, III или октоген + + связующее (18 об.%) + ПХА" и "IV, V, X, XII, ФТДО или АДНА + связующее (не менее 18 об.%)" при ограничении $T_c < 3800$ К. Связующее для всех наполнителей, кроме АДНА, ФТДО и XII – активное, для АДНА, ФТДО и XII – углеводородное.

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 7 2021

существенно уступает по баллистической эффективности октогену и окислителю **XII**, но несколько опережает АДНА.

До недавнего времени энергетические характеристики составов СТРТ на основе ФТДО оставались рекордными с серьезным отрывом от других, реально синтезированных соединений. Появление соединения II и [1,2,3,4]тетразино[5,6-*e*][1,2,3,4]тетразин 1,3,6,8-тетраоксида (ТТТО) [31, 32] разрушило эту монополию. Следует отметить, что и соединение II, и ФТДО по чувствительности к механическим воздействиям относятся к инициирующим BB и их использование в качестве компонентов СТРТ весьма проблематично.

Преимущество компонентов I, IV и X над октогеном невелико или его вообще нет. Поэтому с учетом сложного синтеза этих соединений перспективы их практического использования тоже вызывают сомнения.

Из всех рассмотренных соединений в качестве компонента СТРТ наиболее перспективным выглядит соединение V, обладающее высокой термической стабильностью и низкой чувствительностью к механическим воздействиям. Однако, как отмечалось во введении, требуется более тщательный расчет величины ΔH_f° этого соединения, а в идеале — экспериментальное измерение этого параметра.

ЗАКЛЮЧЕНИЕ

В настоящей работе показано, что некоторые производные 1,2,4,5-тетразин *N*-оксидов могут рассматриваться как перспективные компоненты смесевых тверлых ракетных топлив. Соединение II. благодаря высокому содержанию азота (две азидные группы у s-тетразин ди-N-оксидного цикла в молекуле), высоким значениям стандартной энтальпии образования и плотности при содержании полимерного связующего в составе рецептуры не ниже 18 об.%, может обеспечить довольно высокие величины импульса. Так, даже при ограничении $T_c < 3800$ К для композиций с АС и ПХА могут быть получены величины I_{sp} и $I_{ef}(3)$ 266.4 и 269.7 с соответственно. Способ снижения Т_с до 3800 К композиций с соединением II путем использования смешанного связующего "АС + УС" оказался несколько менее эффективным. Тем не менее, достигнутые величины $I_{sp} = 263.1$ с и $I_{ef}(3) = 265.2$ с существенно опережают по энергетическим характеристикам эталонные составы на основе АДНА и октогена (НМХ).

Работа выполнена на средства ИПХФ РАН в рамках госзадания (№ госрегистрации АААА-А19-119101690058-9).

СПИСОК ЛИТЕРАТУРЫ

- 1. Chavez D.E., Parrish D.A., Mitchell L., Imler G.H. // Angew. Chem. Intern. Ed. 2017. V. 56. № 12. P. 3575; https://doi.org/10.1002/anie.201612496
- Wei H., Zhang J., Shreeve J.M. // Chem. Asian J. 2015. V. 10. № 5. P. 1130; https://doi.org/10.1002/asia.201500086
- Coburn M.D., Hiskey M.A., Lee K.-Y., Ott D.G., Stinecipher M.M. // J. Heterocycl. Chem. 1993. V. 30. № 6. P. 1593; https://doi.org/10.1002/jhet.557030062.3
- 4. Chavez D.E., Hiskey M.A. // J. Energ. Mater. 1999. V. 17. № 4. P. 357;
 - https://doi.org/10.1080/07370659908201796
- Wei H., Gao H., Shreeve J.M. // Chem. Eur. J. 2014. V. 20. № 51. P. 16943; https://doi.org/10.1002/chem.201405122
- 6. *Hu L., Yin P., Imler G.H, Parrish D.A. et al.* // Chem. Commun. 2019. V. 55. № 61. P. 8979; https://doi.org/10.1039/C9CC04496E
- Snyder C.J., Wells L.A., Chavez D.E., Imler G.H., Parrish D.A. // Ibid. 2019. V. 55. № 17. P. 2461; https://doi.org/10.1039/C8CC09653H
- Liu Y, Zhao G., Yu Q. et al. // J. Org. Chem. 2019. V. 84. № 24. P. 16019; https://doi.org/10.1021/acs.joc.9b02484
- Wang G., Fu Z., Yin H., Chen F.-X. // Propellants Explos. Pyrotech. 2019. V. 44. № 8. P. 1010; https://doi.org/10.1002/prep.201900014
- 10. Chavez D.E., Parrish D.A., Mitchell L. // Angew. Chem. Intern. Ed. 2016. V. 55. № 30. P. 8666; https://doi.org/10.1002/anie.201604115

- 11. Sheremetev A.B., Palysaeva N.V., Struchkova M.I. // Mendeleev Commun. 2010. V. 20. № 6. P. 350; https://doi.org/10.1016/j.mencom.2010.11.017
- 12. *Chavez D.E., Hiskey M.A., Naud D.L.* // Propellants Explos. Pyrotech. 2004. V. 29. № 4. P. 209; https://doi.org/10.1002/prep.200400050
- Licht H.-H., Ritter H. // J. Energ. Mater. 1994. V. 12. № 4. P. 223; https://doi.org/10.1080/07370659408018652
- Huynh M.H.V., Hiskey M.A., Archuleta J.G., Roemer E.L., Gilardi R. // Angew. Chem. Intern. Ed. 2004. V. 43. № 42. P. 5658; https://doi.org/10.1002/anie.200460708
- 15. *Нечипоренко Г.Н., Лемперт Д.Б.* // Хим. физика. 1998. Т. 17. № 10. С. 93.
- 16. Лемперт Д.Б., Долганова Г.П., Нечипоренко Г.Н., Стесик Л.Н. // Хим. физика. 1997. Т. 16. № 9. С. 91.
- 17. Шастин А.В., Лемперт Д.Б. // Хим. физика. 2016. Т. 35. № 8. С. 44; https://doi.org/10.7868/S0207401X16080100
- Трусов Б.Г. // Тез. докл. XIV Междунар. конф. по химической термодинамике. СПб: НИИ химии СПбГУ, 2002. С. 483.
- 19. Лемперт Д.Б., Шереметев А.Б. // Химия гетероцикл. соединений. 2016. Т. 52. № 12. С. 1070.
- 20. Алдошин С.М., Лемперт Д.Б., Гончаров Т.К. и др. // Изв. РАН. Сер. хим. 2016. № 8. С. 2018.
- Шастин А.В., Лемперт Д.Б. // Хим. физика. 2014. Т. 33. № 10. С. 62.
- Лемперт Д.Б., Дорофеенко Е.М., Шу Ю. // Хим. физика. 2016. Т. 35. № 6. С. 64.
- Павловец Г.Я., Цуцуран В.И. Физико-химические свойства порохов и ракетных топлив. Учебное пособие. М.: Изд-во МО, 2009.
- 24. Дорофеенко Е.М., Согласнова С.И., Нечипоренко Г.Н., Лемперт Д.Б. // Физика горения и взрыва. 2018. Т. 54. № 6. С. 78; https://doi.org/10.15372/FGV20180609
- Лемперт Д.Б., Казаков А.И., Санников В.С. и др. // Физика горения и взрыва. 2019. Т. 55. № 2. С. 29; https://doi.org/10.15372/FGV20190203
- 26. Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б. // Хим. физика. 2020. Т. 39. № 3. С. 53; https://doi.org/10.31857/S0207401X20030061
- 27. Зюзин И.Н., Казаков А.И., Лемперт Д.Б и др. // Физика горения и взрыва. 2019. Т. 55. № 3. С. 92; https://doi.org/10.15372/FGV20190310
- Dalinger I.L., Suponitsky K.Yu., Shkineva T.K., Lempert D.B., Sheremetev A.B. // J. Mater. Chem. A. 2018. V. 6. № 30. P. 14780; https://doi.org/10.1039/C8TA05179H
- 29. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2020. Т. 39. № 9. С. 52; https://doi.org/10.31857/S0207401X20090149
- Churakov A.M., Ioffe S.L., Tartakovsky V.A. // Mendeleev Commun. 1995. V. 5. № 6. P. 227; https://doi.org/10.1070/MC1995v005n06ABEH000539
- 31. Лемперт Д.Б., Дорофеенко Е.М., Согласнова С.И. // Омский науч. вестн. Сер. Авиационно-ракетное и энерг. машиностроение. 2018. Т. 2. № 3. С. 58; https://doi.org/10.25206/2588-0373-2018-2-3-58-62
- 32. *Klenov M.S., Guskov A.A., Anikin O.V. et al.* // Angew. Chem. Intern. Ed. 2016. V. 55. № 38. P. 11472; https://doi.org/10.1002/anie.201605611

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 7 2021