ХИМИЧЕСКАЯ ФИЗИКА, 2022, том 41, № 1, с. 3–8

КИНЕТИКА И МЕХАНИЗМ ХИМИЧЕСКИХ РЕАКЦИЙ, КАТАЛИЗ

УДК 541.124/128

ЗАКОНЫ СОХРАНЕНИЯ ДЛЯ ХИМИЧЕСКИХ РЕАКЦИЙ С НЕИДЕАЛЬНОЙ КИНЕТИКОЙ В НЕИЗОТЕРМИЧЕСКОМ БЕЗГРАДИЕНТНОМ РЕАКТОРЕ

© 2022 г. Н. И. Кольцов*

Чувашский государственный университет им. И.Н. Ульянова, Чебоксары, Россия

**E-mail: fvh@inbox.ru* Поступила в редакцию 16.11.2020; после доработки 24.05.2021; принята в печать 21.06.2021

Изложен метод установления линейных законов сохранения по данным нестационарных экспериментов для химических реакций, протекающих по неидеальным кинетическим законам в открытом неизотермическом безградиентном реакторе. Показана возможность применения полученных законов сохранения для решения обратной задачи, связанной с установлением механизмов химических реакций, протекающих по кинетике Марселина—де Донде.

Ключевые слова: химические реакции, безградиентный реактор, нестационарные эксперименты, законы сохранения, неидеальная кинетика.

DOI: 10.31857/S0207401X22010083

введение

Основным постулатом химической кинетики является "идеальный" кинетический закон (КЗ) действующих масс (ЗДМ), открытый К. Гульдбергом и П. Baare (*C. Guldberg*, *P. Waage*, 1865). Согласно этому закону скорость элементарной необратимой реакции пропорциональна произведению концентраций реагентов с учетом их стехиометрии. Однако идеальный КЗ выполняется приближенно и применим только к элементарным реакциям, протекающим в изотермических системах при небольших концентрациях реагентов [1-3]. Поэтому при моделировании реальных систем необходимо учитывать возможное влияние различных осложняющих факторов, основным из которых является химическая неидеальность. Поиски "неидеальных" КЗ предпринимались Р. Марселином (R. Marcelin, 1915), Т. де Донде и П. Ван Риссельбергом (Th. de Donder, P. Van Rysselberghe, 1936), И. Пригожиным (I. Prigogin, 1954), М. Фейнбергом (*M. Feinberg*, 1972), Ф. Хорном, Р. Джексоном (F. Horn, R. Jackson, 1972) и другими [4-9]. В этих работах сформировались различные гипотезы адекватного описания скорости элементарной реакции по неидеальному КЗ – через химические активности, химическое сродство, химические потенциалы и др. Исследования корректности различных форм неидеальных КЗ проведены в серии работ Г.С. Яблонского, А.Н. Горбаня, В.И. Быкова с соавт. [10–17]. В этих работах были уточнены

термодинамические ограничения на КЗ и исследованы возможные последствия их нарушения (ложные критические явления [15]). Неидеальные КЗ применялись Ю.С. Снаговским, М.Г. Слинько, А.Г. Зыскиным и другими [18–21] при исследовании каталитических реакций на неоднородных поверхностях. Неидеальный КЗ для описания химических процессов в мозге человека использовали С.Д. Варфоломеев и соавт. [22].

Кинетические законы являются постулатами, но их формализм в первую очередь должен быть согласован с фундаментальными физическими принципами, основными из которых являются законы сохранения (ЗС). Так, в закрытых системах должны выполняться стехиометрические ЗС массы, а в изолированных системах – и ЗС энергии [3]. В открытых системах эти закономерности могут существенно нарушаться и обнаружение ЗС становится нетривиальной задачей. Новые типы таких ЗС (термодинамические) недавно обнаружены в закрытых [23-26] и открытых системах (мультиэкспериментные) [27-31]. Учитывая, что законы сохранения зависят от особенностей протекания химических реакций и известные ЗС применимы для реакций, описываемых идеальным ЗДМ, представляет интерес исследовать ЗС реакций, протекающих по неидеальным КЗ. В связи с этим рассмотрим метод установления линейных законов сохранения химических реакций, протекающих по неидеальным кинетическим законам общего вида в открытом неизотермическом безградиентном реакторе.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Пусть химическая реакция с участием веществ А_{*j*} включает стадии

$$a_{i1}\mathbf{A}_1 + a_{i2}\mathbf{A}_2 + \dots + a_{in}\mathbf{A}_n \Leftrightarrow$$

$$\Leftrightarrow b_{i1}\mathbf{A}_1 + b_{i2}\mathbf{A}_2 + \dots + b_{in}\mathbf{A}_n,$$
(1)

где a_{ij}, b_{ij} – стехиометрические коэффициенты; i = 1, ..., s – номер стадии; j = 1, ..., n – номер реагента. Динамика реакции (1) в открытом неизотермическом реакторе идеального смешения (НРИС) описывается системой обыкновенных дифференциальных уравнений (ОДУ) [1–3]:

$$A'_{j} = \sum_{i} (b_{ij} - a_{ij})r_{i} + q_{0}A_{j0} - qA_{j}, \qquad (2)$$

$$T' = \sum_{i} r_{i} Q_{i} + \alpha (T_{x} - T) + q_{0} T_{0} - q T, \qquad (3)$$

где $r_i(A_j, T, f_j)$ — неидеальный неизотермический КЗ общего вида, 1/с; A_j — концентрации реагентов, мольн. доли; T — безразмерная температура; f_j — безразмерные функции неидеальности реагентов; A_{j0} , T_0 — начальные условия (н.у.); q_0 , q — начальная и текущая скорости потока в реакторе, 1/с; T_x — безразмерная температура стенки реактора; α — коэффициент теплопередачи через стенку реактора, 1/с; Q_i — безразмерные относительные тепловые эффекты стадий.

Запишем для каждой элементарной стадии неидеальный КЗ общего вида, согласованный с термодинамикой [4—17]:

$$r_i(A_j,T) = r_i^0(A_j,T) \times \\ \times \left[\exp\left(\sum a_{ij}\mu_j\right) - \exp\left(\sum b_{ij}\mu_j\right) \right], \quad i = 1,...,s,$$
(4)

где $r_i^0 > 0$ – кинетические множители; r_i / r_i^0 – термодинамические функции скорости;

$$\mu_j = m_j / RT = \mu_{j0}(T) + \ln A_j + f_j(A_j, T)$$
 (5)

безразмерные псевдохимические потенциалы реагентов [8] (индекс "0" соответствует идеальной кинетике); здесь m_j – химические потенциалы реагентов. Будем считать, что для K3, описываемых выражениями (2)—(5), термодинамические ограничения (симметрия потенциалов, их положительность, существование функции Ляпунова) выполняются. Соотношения (4), (5) выражают различные K3 с учетом термодинамики реакции. В идеальных системах $f_j = 0$ и они совпадают с ЗДМ: $r_i = k_{i0} \times \exp(-E_i/RT)\Pi A_j^{aij} - k_{-i0}\exp(-E_{-i}/RT)\Pi A_j^{bij}$, где k_{i0} , k_{-i0} – предэкспоненты констант скоростей стадий в прямом и обратном направлениях, 1/с; E_i , E_{-i} – энергии активации стадий; R – универ-

сальная газовая постоянная. В неидеальных системах μ_j и f_j могут быть заданы различным (допустимым) образом.

В закрытых идеальных системах ($q = q_0 = 0$) число линейных стехиометрических 3С в соответствии с правилом Гиббса равно [32]

$$N = n - \operatorname{rank}(b_{ii} - a_{ii}), \tag{6}$$

где rank — ранг стехиометрической матрицы (число независимых реагентов). Такие 3С сохраняются в неидеальных системах и имеют вид

$$\sum_{j} \alpha_{mj} A_{j} = \sum_{j} \alpha_{mj} A_{j0}, \quad m = 1, 2, \dots, N,$$
(7)

где α_{mj} — константы, зависящие от стехиометрии стадий реакции. В изолированных идеальных и неидеальных системах (при $\alpha = 0$) могут также выполняться и температурные линейные 3С:

$$\sum_{j} \beta_{kj} A_{j} + \beta_{k} T = \sum_{j} \beta_{kj} A_{j0} + \beta_{k} T_{0}, \quad k = 1, 2, \dots, \quad (8)$$

где β_{kj} , β_k — константы, зависящие от стехиометрии и температурных параметров реакции.

Для открытых идеальных и неидеальных систем (при $q \neq q_0$) алгебраические 3С (7), (8) нарушаются, но формируются более общие линейные дифференциальные 3С вида

$$\sum_{j} \alpha_{mj} A'_{j} = q_{0} \sum_{j} \alpha_{mj} A_{0j} - q \sum_{j} \alpha_{mj} A_{j}, \quad m = 1, 2, \dots, N,$$
(9)

$$\sum_{j} \beta_{kj} A'_{j} + \beta_{k} T' = q_{0} \left(\sum_{j} \beta_{kj} A_{0j} + \beta_{k} T_{0} \right) -$$

$$- q \left(\sum_{j} \beta_{kj} A_{j} + \beta_{k} T \right), \quad k = 1, 2, \dots$$
(10)

Проинтегрируем эти линейные по концентрациям и температуре ОДУ:

$$q \sum_{j} \alpha_{mj} A_{j} =$$

$$= \sum_{j} \alpha_{mj} A_{0j} [q_{0} + (q - q_{0}) \exp(-qt)], \quad m = 1, 2, ..., N.$$

$$q \left(\sum_{j} \beta_{kj} A_{j} + \beta_{k} T\right) = \left(\sum_{j} \beta_{kj} A_{0j} + \beta_{k} T_{0}\right) \times$$

$$\times [q_{0} + (q - q_{0}) \exp(-qt)], \quad k = 1, 2,$$
(12)

Исключим время из каждой пары этих равенств и найдем концентрационные и температурные ли-

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 1 2022

нейные 3С, которые выполняются при любом К3 с любыми функциями неидеальности:

$$\sum_{j} \alpha_{mj} A_{j} \sum_{j} \beta_{mj} A_{0j} =$$

$$= \sum_{i} \beta_{mj} A_{j} \sum_{i} \alpha_{mj} A_{0j}, \quad m = 1, 2, \dots,$$
(13)

$$\sum_{j} \alpha_{mj} A_{j} \left(\sum_{j} \beta_{kj} A_{0j} + \beta_{k} T_{0} \right) =$$

$$= \left(\sum_{j} \beta_{kj} A_{j} + \beta_{k} T \right) \sum_{j} \alpha_{mj} A_{0j}, \quad k = 1, 2, \dots .$$
(14)

Эти 3С зависят не только от стехиометрических и температурных параметров реакции, но и от начальных условий. Кроме того, эти 3С могут быть использованы при решении обратной задачи, связанной с установлением механизма протекания реакции. Для этого перепишем соотношения (13) и (14) в удобном для экспериментальной проверки виде с постоянной правой частью (при этом знаменатели должны быть отличны от нуля):

$$K_{m} \equiv \sum_{j} \alpha_{mj} A_{j} / \sum_{j} \beta_{mj} A_{j} =$$

=
$$\sum_{i} \alpha_{mj} A_{0} / \sum_{i} \beta_{mj} A_{0}, \quad m = 1, 2, ...,$$
(15)

$$L_{k} \equiv \sum_{j} \alpha_{mj} A_{j} / \left(\sum_{j} \beta_{kj} A_{j} + \beta_{k} T \right) =$$

$$= \sum_{j} \alpha_{mj} A_{0} / \left(\sum_{j} \beta_{kj} A_{0} + \beta_{k} T_{0} \right), \quad k = 1, 2, \dots$$
(16)

Для решения обратной задачи для конкретной реакции необходимо измерить значения концентраций реагентов и температуры в различные моменты времени, подставить их в 3С (15), (16) и проверить выполнение этих 3С с учетом ошибок измерений.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Применим изложенный метод для установления линейных законов сохранения некоторых химических реакций, протекающих по неидеальным КЗ в открытом неизотермическом безградиентном реакторе.

Пример 1. Рассмотрим одностадийную реакцию

$$\mathbf{A} + \mathbf{B} = \mathbf{C},\tag{1.1}$$

протекающую в неизотермическом безградиентном реакторе по неидеальному КЗ (4) с псевдохимическими потенциалами (5):

$$\mu_{A} = \ln A + f_{A}, \quad \mu_{B} = \ln B + f_{B}, \\ \mu_{C} = \ln C + f_{C}, \quad (1.2)$$

где *A*, *B*, *C* – концентрации реагентов; $f_A = A$, $f_B = B^2$, $f_C = ABC$ – произвольно заданные функции не-

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 1 2022

идеальности реагентов. Запишем для такой системы ОДУ в виде выражений (2)–(5):

$$A' = -r_{1} + q_{0}A_{0} - qA, \quad B' = -r_{1} + q_{0}B_{0} - qB,$$

$$C' = r_{1} + q_{0}C_{0} - qC,$$

$$T' = r_{1}Q_{1} + \alpha(T_{x} - T) + q_{0}T_{0} - qT,$$
(1.3)

где $r_1 = k_{10} \exp(-E_1/RT)AB\exp(A)\exp(B^2) - k_{-10} \times \exp(-E_{-1}/RT)C\exp(ABC)$. Для этой системы $\alpha_{11} = -\alpha_{12} = 1, \alpha_{13} = 0, \alpha_{21} = \alpha_{22} = 1, \alpha_{23} = \alpha_{31} = 0, \alpha_{32} = \alpha_{33} = 1, \beta_{11} = 1, \beta_{12} = \beta_{13} = 0, \beta_1 = 1, \beta_{21} = 0, \beta_{22} = 1, \beta_{23} = 0, \beta_2 = 1, \beta_{31} = \beta_{32} = 0, \beta_{33} = 1, \beta_3 = -1$ и соотношения (9), (10) примут вид

$$A' - B' = q_0(A_0 - B_0) - q(A - B),$$
(1.4)

$$A' + C' = q_0(A_0 + C_0) + q(A + C),$$

$$B' + C' = q_0(B_0 + C_0) + q(B + C),$$

$$A'Q_1 + T' = q_0(A_0Q_1 + T_0) - q(AQ_1 + T),$$

$$B'Q_1 + T' = q_0(B_0Q_1 + T_0) - q(BQ_1 + T),$$

$$C'Q_1 - T' = q_0(C_0Q_1 - T_0) - q(CQ_1 - T).$$

Решения этих ОДУ в виде выражений (11), (12) соответственно запишутся как

$$q(A - B) = q_0 (A_0 - B_0) + + (q - q_0)(A_0 - B_0) \exp(-qt),$$
(1.5)

$$q(A+C) = q_0(A_0 + C_0) + + (q - q_0)(A_0 + C_0) \exp(-qt),$$
(1.6)

$$q(B+C) = q_0(B_0 + C_0) +$$
(1.7)

$$+ (q - q_0)(B_0 + C_0)\exp(-qt),$$

$$q(AQ_{1} + T) = q_{0}(A_{0}Q_{1} + T_{0}) + (q - q_{0})(A_{0}Q_{1} + T_{0})\exp(-qt).$$
(1.8)

$$q(BQ_1 + T) = q_0(B_0Q_1 + T_0) +$$
(1.9)

$$+ (q - q_0)(B_0Q_1 + T_0)\exp(-qt).$$

$$q(CQ_{1} - T) = q_{0}(C_{0}Q_{1} - T_{0}) + + (q - q_{0})(C_{0}Q_{1} - T_{0})\exp(-qt).$$
(1.10)

Разбивая эти шесть равенств на все возможные пары и исключая из них время, найдем $6!/(3! \times 3!) =$ = 20 линейных 3С, справедливых при любом K3. Приведем для краткости только два из них, полученные, например, из пар (1.5)–(1.6) и (1.7)–(1.8) соответственно

$$(A+C)(A_0 - B_0) = (A - B)(A_0 + C_0).$$
(1.11)

$$(AQ_1 + T)(B_0 + C_0) = (B + C)(A_0Q_1 + T_0).$$
(1.12)

Применим эти 3С для решения обратной задачи. Решим вначале прямую задачу, например, при $k_{10} = k_{-10} = 1, q_0 = 1, q = 1/2, T_x = 2/3, E_1 = E_{-1} = 2,$ $R = 2, \alpha = 0, A_0 = B_0 = 1/2, C_0 = 0, T_0 = 1, Q_1 = 1$ и примем расчетные нестационарные данные за экспериментальные. Пусть для трех различных моментов времени t = (1, 2, 3) они составили $A \approx B \approx$ $\approx (0.52, 0.54, 0.55), C \approx (0.17, 0.28, 0.34), T \approx (1.57, 0.28)$ 1.91, 2.11). Подставим эти значения в ЗС (1.11) и (1.12) и убедимся, что они приближенно выполняются. Следовательно, ЗС (1.11) и (1.12) согласуются со схемой реакции (1.1).

Пример 2. Рассмотрим реакцию

$$A = C + D, \qquad (2.1)$$

протекающую через две стадии по схеме

$$A = B, \quad B = C + D \tag{2.2}$$

по неидеальному КЗ вида (4) с потенциалами вида (5), например

$$\mu_A = \mu_{A0} + \ln A + A^{3/4}, \quad \mu_B = \mu_{B0} + \ln B + B^{1/2}, \quad (2.3)$$
$$\mu_C = \mu_{C0} + \ln C + C^{1/4}, \quad \mu_D = m_{D0} + \ln D + D^{1/8},$$

где A, B, C, D – концентрации реагентов. Запишем уравнения (2)–(5) для схемы (2.2) в виде

. ...

$$A' = -r_1 + q_0 A_0 - qA, \quad B' = r_1 - r_2 + q_0 B_0 - qB,$$

$$C' = r_2 + q_0 C_0 - qC, \quad D' = r_2 + q_0 D_0 - qD, \quad (2.4)$$

$$T' = r_1 Q_1 + r_2 Q_2 + \alpha (T_x - T) + q_0 T_0 - qT,$$

где $r_1 = k_{10} \exp(-E_1/RT)A\exp(A^{3/4}) - k_{-10}\exp(-E_{-1}/RT) \times B\exp(B^{1/2}), r_2 = k_{20}\exp(-E_2/RT)B\exp(B^{1/2}) - k_{-20} \times \exp(-E_{-2}/RT)CD\exp(C^{1/4})\exp(D^{1/8}).$

Для системы (2.4) соотношения (9), (10) примут вид

$$A' + B' + C' = q_0 (A_0 + B_0 + C_0) + q (A + B + C),$$

$$A' + B' + D' = q_0 (A_0 + B_0 + D_0) + q (A + B + D),$$

$$C' - D' = q_0 (C_0 - D_0) - q (C - D),$$

$$A' Q_1 - C' Q_2 + T' =$$

(2.5)

$$= q_0 (A_0 Q_1 - C_0 Q_2 + T_0) - q (AQ_1 - CQ_2 + T),$$

$$A' Q_1 - D' Q_2 + T' =$$

$$= q_0 (A_0 Q_1 - D_0 Q_2 + T_0) - q (AQ_1 - DQ_2 + T).$$

Запишем решения этих ОДУ в виде выражений (11) и (12) соответственно

$$q(A + B + C) = q_0 (A_0 + B_0 + C_0) + + (q - q_0) (A_0 + B_0 + C_0) \exp(-qt),$$

$$q(A + B + D) = q_0 (A_0 + B_0 + D_0) + + (q - q_0) (A_0 + B_0 + D_0) \exp(-qt),$$

$$q(C - D) = q_0 (C_0 - D_0) + + (q - q_0) (C_0 - D_0) \exp(-qt),$$

$$q(AQ_1 - CQ_2 + T) = q_0 (A_0Q_1 - C_0Q_2 + T_0) +$$
(2.6)

+ $(q - q_0)(A_0Q_1 - C_0Q_2 + T_0)\exp(-qt)$,

ргласу-
ных K3 (приведем некоторые из них):
$$(A + B + C)(C_0 - D_0) = (C - D)(A_0 + B_0 + C_0),$$

$$(A + B + D)(C_0 - D_0) = (C - D)(A_0 + B_0 + D_0),$$

$$(C - D)(A_0Q_1 - C_0Q_2 + T_0) =$$

$$= (AQ_1 - CQ_2 + T)(C_0 - D_0),$$

$$(A + B + C)(A_0Q_1 - C_0Q_2 + T_0) =$$

$$= (AQ_1 - CQ_2 + T)(A_0 + B_0 + C_0),$$

$$(A + B + D)(B_0Q_1 - C_0Q_2 + T_0) =$$

$$= (BQ_1 - CQ_2 + T)(A_0 + B_0 + D_0) \text{ M } \text{др.}$$

(2.7)

 $q(AQ_1 - DQ_2 + T) = q_0(A_0Q_1 - D_0Q_2 + T_0) +$

 $+ (q - q_0)(A_0Q_1 - D_0Q_2 + T_0)\exp(-qt).$

Из этих равенств после исключения времени сле-

луют $5!/(2! \times 3!) = 10$ линейных 3C для неидеаль-

Перепишем их в виде (15), (16), удобном для экспериментальной проверки:

$$K_{1} = (C - D)/(A + B + C) =$$

$$= (C_{0} - D_{0})/(A_{0} + B_{0} + C_{0}),$$

$$K_{2} = (C - D)/(A + B + D) =$$

$$= (C_{0} - D_{0})/(A_{0} + B_{0} + D_{0}),$$

$$L_{1} = (C - D)/(AQ_{1} - CQ_{2} + T) =$$

$$= (C_{0} - D_{0})/(A_{0}Q_{1} - C_{0}Q_{2} + T_{0}),$$

$$L_{2} = (AQ_{1} - CQ_{2} + T)/(A + B + C) =$$

$$= (A_{0}Q_{1} - C_{0}Q_{2} + T_{0})/(A_{0} + B_{0} + C_{0}),$$

$$L_{3} = (BQ_{1} - CQ_{2} + T)/(A + B + D) =$$

$$= (B_{0}Q_{1} - C_{0}Q_{2} + T_{0})/(A_{0} + B_{0} + D_{0})$$
 и др.
$$(2.8)$$

Пример 3. Если же реакция (2.1) протекает по альтернативной схеме:

$$A = B + C, \quad B = D \tag{3.1}$$

по тому же КЗ (4) с потенциалами (2.3), то уравнения (2)-(5) примут вид

$$A' = -r_1 + q_0 A_0 - qA, \quad B' = r_1 - r_2 + q_0 B_0 - qB,$$

$$C' = r_1 + q_0 C_0 - qC, \quad D' = r_2 + q_0 D_0 - qD, \quad (3.2)$$

$$T' = r_1 Q_1 + r_2 Q_2 + \alpha (T_x - T) + q_0 T_0 - qT.$$

Для системы (3.2) соотношения (9), (10) запишутся как

$$A' + C' = q_0 (A_0 + C_0) + q (A + C),$$

$$A' + B' + D' =$$

$$= q_0 (A_0 + B_0 + D_0) + q (A + B + D),$$

$$A' Q_1 - D' Q_2 + T' =$$

$$= q_0 (A_0 Q_1 - D_0 Q_2 + T_0) - q (A Q_1 - D Q_2 + T),$$

(3.3)

ХИМИЧЕСКАЯ ФИЗИКА том 41 **№** 1 2022

$$C'Q_{1} - D'Q_{2} + T' =$$

= $q_{0}(C_{0}Q_{1} - D_{0}Q_{2} + T_{0}) - q(CQ_{1} - DQ_{2} + T).$

Запишем решения этих ОДУ в виде выражений (11), (12) соответственно

$$q(A + C) = q_0 (A_0 + C_0) + + (q - q_0) (A_0 + C_0) \exp(-qt),$$

$$q(A + B + D) = q_0 (A_0 + B_0 + D_0) + + (q - q_0) (A_0 + B_0 + D_0) \exp(-qt),$$
(3.4)

$$q(AQ_{1} - DQ_{2} + T) = q_{0}(A_{0}Q_{1} - D_{0}Q_{2} + T_{0}) + + (q - q_{0})(A_{0}Q_{1} - D_{0}Q_{2} + T_{0})\exp(-qt),$$

$$q(CQ_{1} - DQ_{2} + T) = q_{0}(C_{0}Q_{1} - D_{0}Q_{2} + T_{0}) + + (q - q_{0})(C_{0}Q_{1} - D_{0}Q_{2} + T_{0})\exp(-qt).$$

Из этих равенств следуют $4!/(2! \times 2!) = 6$ линейных 3С, справедливых при неидеальных K3, (приведем их полностью) в виде

$$A + C)(A_{0} + B_{0} + D_{0}) = (A + B + D)(A_{0} + C_{0}),$$

$$(A + C)(A_{0}Q_{1} - D_{0}Q_{2} + T_{0}) =$$

$$= (AQ_{1} - DQ_{2} + T)(A_{0} + C_{0}),$$

$$(A + C)(C_{0}Q_{1} - D_{0}Q_{2} + T_{0}) =$$

$$= (CQ_{1} - DQ_{2} + T)(A_{0} + C_{0}),$$

$$(A + B + D)(A_{0}Q_{1} - D_{0}Q_{2} + T_{0}) =$$

$$= (AQ_{1} - DQ_{2} + T)(A_{0} + B_{0} + D_{0}),$$

$$(A + B + D)(C_{0}Q_{1} - D_{0}Q_{2} + T_{0}) =$$

$$= (CQ_{1} - DQ_{2} + T)(A_{0} + B_{0} + D_{0}),$$

$$(AQ_{1} - DQ_{2} + T)(A_{0} + B_{0} + D_{0}),$$

$$(AQ_{1} - DQ_{2} + T)(C_{0}Q_{1} - D_{0}Q_{2} + T_{0}) =$$

$$= (CQ_{1} - Q_{2} + T)(A_{0}Q_{1} - D_{0}Q_{2} + T_{0}) =$$

Как видно, эти 3С отличаются от 3С, описываемых выражениями (2.7) и поэтому могут быть использованы для решения обратной задачи, связанной с уточнением механизма реакции (2.1) при описании ее кинетики неидеальными КЗ. Перепишем 3С (3.5) в виде (15), (16):

$$K_{1} = (A + C)/(A + B + D) =$$

$$= (A_{0} + C_{0})/(A_{0} + B_{0} + D_{0}),$$

$$L_{1} = (AQ_{1} - DQ_{2} + T)/(A + C) =$$

$$= (A_{0}Q_{1} - D_{0}Q_{2} + T_{0})/(A_{0} + C_{0}),$$

$$L_{2} = (AQ_{1} - DQ_{2} + T)/(A + B + D) =$$

$$= (A_{0}Q_{1} - D_{0}Q_{2} + T_{0})/(A_{0} + B_{0} + D_{0}),$$

$$L_{3} = (CQ_{1} - DQ_{2} + T)/(A + B + D) =$$

$$= (C_{0}Q_{1} - D_{0}Q_{2} + T_{0})/(A_{0} + B_{0} + D_{0}),$$

$$L_{4} = (CQ_{1} - DQ_{2} + T)/(AQ_{1} - DQ_{2} + T_{0}).$$
(3.6)

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 1 2022

Применим 3С (2.8) и (3.6) для решения обратной задачи по уточнению механизма реакции (2.1). Измерим нестационарные концентрации реагентов и температуры, подставим их в любые из 3С (2.8) и (3.6) и проверим выполнение последних с учетом ошибок измерений.

Пусть для реакции (2.1) в моменты времени t == (0, 1, 2, 3, 4, 5) при $A_0 = 1, B_0 = 0, C_0 = 0, D_0 = 0,$ $T_0 = 1, Q_1 = 1, Q_2 = 1$ получены с ошибкой 5% следующие экспериментальные данные $A \approx (1, 0.81,$ $0.81, 0.84, 0.86, 0.87), B \approx (0, 0.46, 0.52, 0.58, 0.62)$ 0.64), $C \approx (0, 15, 0.34, 0.40, 0.43, 0.45), D \approx (0, 15, 0.64)$ $0.35, 0.41, 0.42, 0.43), T \approx (1, 1.03, 2.18, 2.84, 3.17,$ 3.35). Тогда, для схемы (2.2) согласно (2.8) теоретическое (точное) значение $3C L_2 = (AQ_1 - CQ_2 + T)/$ (A + B + C) = 2, а экспериментальные (приближенные) значения $L_2 \approx (2, 1.96, 1.98, 1.97, 1.98, 1.96)$ согласуются с теорией в пределах ошибки порядка 5%. При этом для схемы (3.1) согласно (3.6) точное значение 3C $L_3 = (CQ_1 - DQ_2 + T)/(A + B + D) = 1$, а экспериментальные значения $L_3 \approx (1, 1.53, 1.70, 1.53, 1.70, 1.53, 1.70, 1.53, 1.70, 1.53, 1.70, 1.53, 1.70, 1.53, 1.70, 1.53, 1.$ 1.74, 1.76, 1.77) отличаются от точного значения на 50-70%. Следовательно, реакция (2.1) протекает по схеме (2.2), а не по схеме (3.1).

ЗАКЛЮЧЕНИЕ

Разработан метод установления линейных законов сохранения (3С) на основе данных нестационарных экспериментов для химических реакций с неидеальной кинетикой Марселина—де Донде, протекающих в открытом неизотермическом безградиентном реакторе. Эти 3С связывают концентрации реагентов и температурные параметры химических реакций и справедливы при любых других кинетических законах. Найденные с помощью данного метода законы сохранения позволяют исследовать особенности протекания и решать обратную задачу установления механизмов химических реакций в неидеальных условиях.

Автор выражает благодарность В.Х. Федотову за полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. Киперман С.Л. Основы химической кинетики в гетерогенном катализе. М.: Химия, 1979.
- 2. Яблонский Г.С., Быков В.И., Горбань А.Н. Кинетические модели каталитических реакций. Новосибирск: Наука, 1983.
- Кубасов А.А. Химическая кинетика и катализ. М.: Изд-во МГУ, 2004.
- 4. Marcelin R. // Ann. Phys. 1915. V. 9. № 3. P. 120.
- 5. Де Донде Т., Ван Риссельберг П. Термодинамическая теория сродства (книга принципов). М.: Металлургия, 1984.
- 6. *Van Rysselberghe P.* // J. Chem. Phys. 1958. V. 29. № 3. P. 640.

- 7. *Пригожин И., Дефэй Р.* Химическая термодинамика. Новосибирск: Наука, 1966.
- *Feinberg M.* // Arch. Ration. Mech. Anal. 1972. V. 46. № 1. P. 1.
- 9. Horn F., Jackson R. // Ibid. V. 47. № 2. P. 81.
- 10. *Bykov V.I., Gorban A.N., Dimitrov V.I. //* React. Kinet. Catal. Lett. 1979. V. 12. № 1. P. 19.
- Bykov V.I., Gorban A.N., Yablonskii G.S. // Ibid. 1982.
 V. 20. № 3–4, P. 261.
- 12. Горбань А.Н., Быков В.И., Яблонский Г.С. // Кинетика и катализ. 1983. Т. 24. № 5. С. 1239.
- 13. Горбань А.Н. Обход равновесия (уравнения химической кинетики и их термодинамический анализ). Новосибирск: Наука, 1984.
- Горбань А.Н., Быков В.И., Яблонский Г.С. Очерки о химической релаксации. Новосибирск: Наука, 1986.
- 15. *Быков В.И., Иванова А.Н.* // Кинетика и катализ. 1986. Т. 27. Вып. № 1. С. 73.
- 16. *Быков В.И.* Моделирование критических явлений в химической кинетике. М.: URSS, 2006.
- 17. *Gorban A.N., Kolokoltsov V.N.* // Math. Model. Nat. Phenom. 2015. V. 10. № 5. P. 16.
- Снаговский Ю.С. // Кинетика и катализ. 1980. Т. 21. № 1. С. 189.
- 19. Зыскин А.Г., Снаговский Ю.С., Слинько М.Г. // Кинетика и катализ. 1981. Т. 22. № 4. С. 1031.
- Zyskin A.G., Snagovskii Yu.S., Slinko M.G. // React. Kinet. Catal. Lett. 1981. V. 17. № 34. P. 257.

- 21. *Товбин Ю.К., Черкасов А.В.* // Теорет. и эксперим. химия. 1984. Т. 20. № 4. С. 507.
- Варфоломеев С.Д., Семенова Н.А., Быков В.И., Цыбенова С.Б. // ДАН. 2019. Т. 484. № 4. С. 441; https://doi.org/10.31857/S0869-56524844441-446
- 23. *Yablonsky G.S.* // Theor. Found. Chem. Eng. 2014. V. 48. № 5. P. 608.
- Branco P.D., Yablonsky G.S., Marin G.B., Constales D. // Chem. Eng. Sci. 2017. V. 158. P. 370; https://doi.org/10.1016/J.CES.2016.10.032
- 25. Peng B., Yablonsky G.S., Constales D., Marin G.B., M. Muehler. // Ibid. 2018. V. 191. P. 262.
- 26. Yablonsky G.S., Branco P.D., Marin G.B., Constales D. // Ibid. 2019. V. 196. P. 384.
- Федотов В.Х., Кольцов Н.И. // Хим. физика. 2019. Т. 38. № 4. С. 23; https://doi.org/10.1134/S0207401X19040046
- Федотов В.Х., Кольцов Н.И. // Изв. вузов. Химия и хим. технология. 2019. Т. 62. № 8. С. 76; https://doi.org/10.6060/ivkkt.20196208.5891
- Федотов В.Х., Кольцов Н.И. // Кинетика и катализ. 2019. Т. 60. № 6. С. 756; https://doi.org/10.1134/S0453881119060042
- 30. Федотов В.Х., Кольцов Н.И., Косьянов П.М. // Хим. физика. 2020. Т. 39. № 3. С. 48; https://doi.org/10.31857/S0207401X20030048
- 31. *Кольцов Н.И.* // Хим. физика. 2020. Т. 39. № 9. С. 23; https://doi.org/10.31857/S0207401X2009006X
- 32. Гиббс Дж. Термодинамические работы. М.: Гостехиздат, 1950.