ХИМИЧЕСКАЯ ФИЗИКА, 2022, том 41, № 1, с. 9–16

КИНЕТИКА И МЕХАНИЗМ ХИМИЧЕСКИХ РЕАКЦИЙ, КАТАЛИЗ

УДК 535.21 + 541.14 + 541.61; 556.33

КОРРЕКЦИЯ МЕХАНИЗМА ФОТОЛИЗА АМИНОАЗОБЕНЗОЛА ПО ДАННЫМ КИНЕТИЧЕСКОЙ ПИКОСЕКУНДНОЙ СПЕКТРОСКОПИИ

© 2022 г. Ю. А. Михеев^{1*}, С. М. Ломакин¹

¹ Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, Москва, Россия *E-mail: mik@sky.chph.ras.ru Поступила в редакцию 09.12.2020; после доработки 17.05.2021;

принята в печать 20.05.2021

Исправлен механизм фотолиза красителя транс-аминоазобензола (*t*-AAB), возбуждаемого импульсным лазерным видимым (Vis) излучением ($\lambda_{ex} = 400$ нм) и зондируемого методом пикосекундной абсорбционной спектроскопии. Учтено, что за поглощение света ответственны два типа фениламинильных катионов, принадлежащих ридимерам *t*-AAB₂ (основное состояние красителя). Фотовозбуждение этих катионов приводит к расщеплению ридимеров *t*-AAB₂ на мономерные франк-кондоновские (FC) пары двух видов. Один вид FC-пар состоит из нейтральных мономеров, которые релаксируют с потерей колебательного возбуждения и регенерацией *t*-AAB₂. Другие FCпары состоят из нейтрального и электронно-поляризованного мономера, в котором ридберговская *3s*-орбиталь азогруппы занята парой электронов, возбужденных с *sp*²-орбиталей азогруппы. Нейтральные мономеры этих FC-пар регенерируют ридимеры *t*-AAB₂, встречаясь в ходе самодиффузии, а электронно-поляризованные мономеры претерпевают изомеризацию в *цис*-AAB.

Ключевые слова: аминоазобензол, ридимеры, катионы фениламинильного типа, транзитные пикосекундные Vis-спектры, *t*–*c*-изомеризация.

DOI: 10.31857/S0207401X22010113

ВВЕДЕНИЕ

Строение и цветность аминоазобензольных красителей

Недавно опубликованы работы [1—7], являющиеся фактически началом реновации научных представлений о структурно-спектроскопических свойствах простых аминоазобензольных красителей, служивших в течение 100 лет модельными соединениями в науке о природе цветности органических соединений. До сих пор большинство публикаций по красителям на основе аминоазобензола (ААВ) базируется на той идее, возникшей на этапе становления оганической химии, что они в своем основном состоянии являются мономерами. Считается, например, что желто-оранжевая окраска аминоазобензола и его замещенных производных обусловлена электронным (е-) таутомером Q (*Схема 1*), имеющим хиноидное строение [8].

На *Схеме 1* R = H в транс-аминоазобензоле (*t*-AAB) и $R = CH_3$ в диметиламиноазобензоле.

Между тем обобщение [1, 3–7] большого числа экспериментальных данных по спектроскопическим свойствам замещенных производных аминоазобензола в УФ/видимом (UV-Vis) диапазоне, находящихся в нейтральных и кислотных средах, показало неадекватность мономерно-хиноидной природы цветности (*Схема 1*). В реальности, согласно [1, 3–7], основным состоянием аминоазобензольных красителей являются ридберговские димеры (ридимеры), за окраску которых ответственны функционирующие в них хромогенные катионы фениламинильного типа (PhAT).

Межмономерная связь в ридимерах образуется в результате спаривания электронов, промотиро-

ванных с sp^2 -орбиталей атомов N азогрупп аминоазокрасителей на ридберговские 3*s*-орбитали азогрупп. Азогруппа N=N каждого мономера выступает в качестве водородоподобного атома и служит квантовохимическим посредником между sp^2 -орбиталями атомов азота и собственной ридберговской 3*s*-орбиталью (R_{3s}). Перекрывание этих орбиталей обеспечивает промотирование одного из sp^2 -электронов на R_{3s} и способность образовывать ридберговские межмономерные связи $(R_{3s}-R_{3s})$, а также особенности структурных, спектроскопических, физико-химических свойств азобензола (AB) и его замещенных производных.

Опираясь на результаты работ [1, 3-7], можно заключить, что при синтезе красителя AAB_2 и его **R**-производных происходит сборка молекул в ридимеры по *Схеме 2*.

На Схеме 2 точки под атомами N обозначают электроны на *sp*²-орбиталях, точки над атомами $N - электроны на p_{z}$ -орбиталях. В ней показано, что молекулы красителя, встретившиеся в виде пар (2а), претерпевают трансформацию своего е-состояния под влиянием образующейся ридберговской ковалентной связи R_{3s}•-•R_{3s} (показана на схемах (26), (26₁)). Здесь важно, что опреденная степень перекрывания *sp*²- и R_{3s}-орбиталей создает условия не только для поочередного промотирования sp²-электронов с азотов азогруппы на R_{3s} -орбиталь в локальном хромофоре -N=N-, но и для обратимого (волнового, ультрабыстрого) обмена электронами между sp²-орбиталями спаренных мономеров через связи $R_{3s} - R_{3s} : (.+sp^2) +$ $+ \mathbf{R}_{3s} \bullet \bullet \bullet \mathbf{R}_{3s} + (..sp^2) \leftrightarrow (..sp^2) + \mathbf{R}_{3s} \bullet \bullet \bullet \mathbf{R}_{3s} + (..sp^2).$ В данном е-обмене каждая из *sp*²-орбиталей, поочередно теряющая электрон и получающая положительный заряд (в схеме 2 он указан под атомами N), поляризует π -связь азогруппы, стягивая на свой атом N оба *п*-электрона азогруппы и оставляя на р_г-орбитали соседнего азота положительный заряд. Этот заряд делокализуется с образованием PhAT за счет сопряжения в группах N^+Ph^+ – схема (2б) и N^+Ph^+ – схема (2б₁).

Согласно *Схеме 2* образование ридимера генерирует ультрабыстрый е-обмен, вызывающий осцилляцию положительных зарядов между противолежащими PhAT-катионами N⁺Ph⁺ и N⁺Pħ⁺. В результате этого исходная пара (2а) электронейтральных мономеров трансформируется в равновесную смесь ридимерных е-таутомеров (2б) \leftrightarrow (2б₁).

Отметим, что заряды в PhAT-катионах Ph⁺N⁺_{..} и N⁺Ph⁺ \equiv R₂N^{\pm}Ph⁺N⁺_{..} на схемах (26), (26₁)) находятся преимущественно на атомах углерода колец в орто- и пара-положениях, как в бензильных и фениламинильных катионах. Сходным образом катионы PhAT имеют не только связывающие и разрыхляющие молекулярные π -орбитали (MO), но и нижние свободные орбитали (HCMO) с нулевой энергией. В PhAT-катионах переход электронов с высших занятых π -орбиталей (B3MO) происходит на HCMO при поглощении Vis-света ($\pi \rightarrow \pi^*$ -переход) при 400 нм, обеспечивая им желто-оранжевый цвет.

Ридимеры (2б) обладают не только таутомерным е-обменом (2б) \leftrightarrow (2б₁). В них каждая аминная группа способна подавать один из двух p_z -электронов в сопряженное с ней фениленовое Рћ-кольцо, преобразуя ридимер (2б) в (2в) с группами $R_2N^{+}P\hbar^{-}$. Получив электроны, кольца $P\hbar^{-}$ становятся донорами электронов для катионов Ph^+N^+ соседнего мономера, что служит причиной образования промежуточных комплексов с переносом заряда. На схеме (2в) стрелками обозначены характерные для КПЗ кулоновские и обменные взаимодействия между фениленовыми анионами $P\hbar^{-}$ и PhAT-катионами Ph^+N^+ . В момент, когда электрон переносится с аниона $P\hbar^{-}$ группы $R_2N^{+}P\hbar^-$ на вакантную HCMO катиона Ph^+N^+ , возникает катион $R_2N^{+}P\hbar^+$ с вакантной

Итоговый ридимер (2г) является е-таутомером ридимера (26), но более прочным. В (2г) имеются не только ридберговская межмономерная связь

HCMO.

R_{3s} → R_{3s}, но еще две одноэлектронных связи между противолежащими катионами PhAT обоих

мономеров (по типу связи в катионе H⁺₂). Таким образом, фиксируются четыре катиона PhAT, обладающие Vis-поглощением в области 390–420 нм и раскрывающие физическую сущность ауксохромии, т.е. усиления желто-оранжевого цвета относительно незамещенного азобензола. При этом квантово-волновая компенсация зарядов в ридимерах (2г) обеспечивает им практическую электронейтральность.

В среде с невысокой кислотностью у тех же ридимеров наблюдается углубление окраски, связанное с протонированием ридимерных аминогрупп без распада ридимеров [1].

На *Схеме 3* структуры (3а) и (3б) тоже являются следствием е-таутомерной ультрабыстрой переполяризации мономеров с осцилляцией положительных зарядов между атомами N в азогруппе за счет е-обмена по схеме $(...sp^2) + R_{3s} - R_{3s} + (...sp^2) \leftrightarrow (...sp^2) + R_{3s} - R_{3s} + (...sp^2)$. При этом не имеющие положительных зарядов кольца (отмечены на схеме (3а) светлыми треугольниками) периодически становятся катионами (кольца над черными треугольниками на схеме (3б)), повторяя ситуацию с е-таутомерами непротонированных ридимеров (*Схема 2*, (2б) \leftrightarrow (2б₁)).

Сочетание е-конфигураций (26) \leftrightarrow (26₁) и (3а) \leftrightarrow \leftrightarrow (3б) позволило [1, 3–7] объяснить наличие у них характерных полос UV-поглощения (при 320 нм) и Vis-поглощения в области $\lambda \ge 500$ нм на основе механизма Симпсона, показанного на примере азобензола [9]. Согласно [9] отсутствующая у алкилзамещенных бензола полоса UV-поглощения при 320 нм характерна для незамещенного AB. Появление этой UV-полосы у AB объясняется механизмом делокализации электронного возбуждения между фенильными группами, которые в работе [9] рассматриваются как резонаторы, не имеющие электронного π -сопряжения. Взятые в отдельности они имеют одинаковые

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 1 2022

энергетические (вырожденные) π^* -состояния. Это вырождение снимается за счет расщепления π^* -уровней смежных фенильных колец AB вследствие резонансного переноса энергии возбуждения, поэтому в спектрах молекул AB в дополнение к UV-полосе бензольного поглощения с $v_{max} = 44000 \text{ сm}^{-1} (227 \text{ нм})$ появляется батохромно смещенная UV-полоса с $v_{max} \approx 32000 \text{ сm}^{-1} (313 - 320 \text{ нм})$ [9].

Сходные UV-полосы имеют дипротонированные ридимеры аминоазобензола ((AAB⁺H)₂, *Cxeма 3*) из-за наличия в их незаряженных фенильных и фениленовых колец (отмечены светлыми треугольниками) [1, 3–7]. Между этими кольцами нет π -сопряжения по механизму Хюккеля, что превращает их в резонаторы с расщеплением π^* -уровней по механизму Симпсона [1, 3–7, 9].

Аналогичный механизм расщепления π^* -уровней "по-Симпсону" имеет место и для катионов PhAT [1, 3–7]. Каждый из них индивидуально обладает Vis-полосами при 390–410 нм, а их бинарное сочетание (на *Схеме 3* оно отмечено черными треугольниками) приводит к появлению у протонированных ридимеров аминоазобензола (AAB⁺H)₂ Vis-полос при 500 нм. Такой же эффект наблюдается на *Схеме 2* у непротонированных ридимеров (2б) и (2б₁), но концентрация последних значительно меньше, чем ридимеров (2г), и полоса их слабого Vis-поглощения налагается на "хвост" Vis-полосы ридимера (2г) с λ_{max} при 390–410 нм [5].

Тот факт, что образование ридимеров с их етаутомерами (*Схемы 2 и 3*) продемонстрировано на большом числе производных аминоазобензола [1], заставляет обратиться к реновационному анализу экспериментальных данных по фотонике AAB-красителей. Ниже представлена новая трактовка результатов, полученных методом пикосекундной абсорбционной спектроскопии (PAS) в работе [10] при лазерном импульсном возбуждении аминоазобензола. Одновременно раскрыто противоречие между кинетическим экспериментом [10] и его авторским описанием, даны адекватная кинетика и механизм процесса в аспекте ридимерной концепции.

Новое объяснение важных данных работы [10] в плане природы элементарных актов фотопроцессов позволяет надеяться, что аминоазобензольные красители (модельные соединения в теории цветности [8]) могут вызывать интерес исследователей и в плане практического применения, характерного, например, для бурно развивающейся биомедицинской оптики с созданием новых абсорбционных и флуоресцентных зондов, а также материалов для изучения и регуляции активности живых клеток и задач фотодинамической терапии [11–14].

ИНТЕРПРЕТАЦИЯ ДАННЫХ PAS Авторами работы [10]

Авторы работы [10] преследовали цель с помощью методики PAS уточнить механизм *транс* \rightarrow \rightarrow *цис* ($t \rightarrow c$)-фотоизомеризации аминоазобензола, традиционно считая его мономером *t*-AAB. Спектры транзитных (tr-) состояний генерировали, возбуждая раствор "мономерного *t*-ААВ" в этаноле (и гептаноле) с концентрацией 1 мМ (Т= = 296 K) на лазерной установке импульсами Visсвета с длиной волны $\lambda_{ex} = 400$ нм и энергией меньше 200 мкДж/импульс при частоте повторения импульсов 1 Мгц. Для зондирования tr-coстояниий на той же установке формировали пучки белого света (350-750 нм). Небольшую часть зондового пучка направляли в канал сравнения для получения разностных спектров. Пучки возбуждения и зондирования фокусировали под малым углом на кварцевую проточную ячейку. Зондирующие импульсы подавали с определенным временем задержки (Δt_i) после импульсов возбуждения. Итоговые спектры регистрировали в виде разности между спектрами Vis-поглощения tr-состояний и исходного аминоазобензола.

Приведенные на рисунке из работы [10] tr-спектры (зависимости 1-4 разностной оптической плотности ΔD от λ_{30HJ}) представляют собой сумму нескольких Vis-полос, интенсивность которых спадает в течение нескольких пикосекунд. Согласно расчетам из [10], наблюдаемый сразу после возбуждения (при $\Delta t_1 = 0.1$ пс) спектр 1 (здесь и всюду ниже мы обсуждаем рисунок из работы [10]) представляет собой суперпозицию широкой полосы tr-поглощения в области 410-750 нм и полосы относительно долгоживушего отбеливания (bleachihg) с отрицательным значением ΔD в полосе поглощения основного состояния аминоазобензола (т.е. ридимеров *t*-ААВ₂ [1]) при 370-410 нм. Суммарное поглощение в области 450-750 нм (кривые 1-4) снижается в течение нескольких пикосекунд, причем наиболее быстро в интервале 600-750 нм.

Отмечается [10], что в области 400—450 нм идет сначала прирост ΔD (кривая 2), а затем снижение ΔD с переходом в отрицательную область. Отмеченный прирост ΔD в области 400—450 нм (кривая 2) авторы [10] не обсуждают, уделяя основное внимание кинетике затухания Vis-поглощения в области 450—750 нм.

По результатам расчетов установлено [10], что в спектральном интервале 600–725 нм снижение ΔD описывается суммой трех экспоненциальных функций $\Delta D_i = A_i \exp(-t/\tau_i)$, принадлежащих Visполосам трех транзитных компонент с характеристическими временами релаксации $\tau_1 = 0.2$ пс, $\tau_2 = 0.6$ пс и $\tau_3 = 1.9$ пс соответственно. Результаты расчетов позволили также установить максимумы Vis-полос: компонента с $\tau_1 = 0.2$ пс имеет $\lambda_{max} = 625-650$ нм, у компонент с $\tau_2 = 0.6$ пс и $\tau_3 = 1.9$ пс $\lambda_{max} = 500-550$ нм, причем спектральные формы Vis-полос двух последних компонент практически совпадают в ходе затухания.

Отмечается, что в интервале 450–600 нм компонента с $\tau_1 = 0.2$ отсутствует и затухание *tr*-поглощения описывается только двумя более медленными функциями: с $\tau_2 = 0.6$ пс и $\tau_3 = 1.9$ пс. В области 425–475 нм эти две компоненты налагаются на полосу отбеливания, возвратная эволюция которой соответствует моноэкспоненциальной функции с характеристической константой $\tau = 15$ пс. В конце эволюционной релаксации остается раствор, обедненный формой *t*-AAB₂ и обогащенный формой *c*-AAB, в которую превращается $\approx 25\%$ мономеров *t*-AAB₂. (Та же картина с транзитными Vis-полосами полностью воспроизводится в опытах с аминоазобензолом в гептаноле [10].)

13

Касаясь механизма ($t \rightarrow c$)-изомеризации, авторы работы [10] традиционно постулируют, что имеют дело с мономерами t-AAB, которые при фотовозбуждении светом с $\lambda_{ex} = 400$ претерпевают $\pi \to \pi^*$ -переход $S_0 \to S_2$. Состоянию S_2 приписывают *tr*-полосу Vis-поглощения с $\lambda_{max} = 625 -$ 650 нм, быстро затухающую (с $\tau_1 = 0.2$ пс) за счет внутренней конверсии энергии возбуждения на низкий возбужденный уровень: S₂ ~~→ S₁. Уровень S₁ связывают с n, π^* -состоянием и считают, что слабая полоса $n \rightarrow \pi^*$ -перехода в "мономере *t*-ААВ" должна находиться в той же Vis-области спектра (при 420-440 нм), к которой в литературе отнесли $n \to \pi^*$ -полосу молекул *t*-AB. Состоянию S₁ авторы [10] приписывают Vis-поглощение в виде широкой *tr*-полосы с $\lambda_{max} =$ = 525-550 нм. Последняя, согласно [10], затухает вследствие внутренней конверсии $S_1 \sim \to S_0$, идущей двумя разными путями: с $\tau_2 = 0.6$ пс и $\tau_3 =$ = 1.9 пс, при участии ($t \rightarrow c$)-изомеризации (конкретная природа этих путей не обсуждается).

КРИТИКА ИНТЕРПРЕТАЦИИ ДАННЫХ РАЅ ИЗ РАБОТЫ [10]

Сделанное в [10] описание ($t \rightarrow c$)-фотоизомеризации аминоазобензола по механизму последовательно-параллельной реакции: $S_2 \sim \rightarrow S_1, S_1 \sim \rightarrow S_0$ (с константой скорости $k_2 = 1/\tau_2$) и S₁ ~~ \rightarrow S₀ (с $k_3 = 1/\tau_3$), противоречит эксперименту. Действительно, согласно [10], транзитное Vis-поглощение в спектральном λ-интервале 410-750 нм затухает с самого начала по моноэкспоненциальному закону релаксации трех Vis-компонент с максимальными начальными скоростями и постоянными для каждой компоненты характеристическими временами: $\tau_1 = 0.2$ пс и $\tau_2 = 0.6$ пс, $\tau_3 = 1.9$ пс. Следовательно, изначально кинетика затухания этих компонент соответствует механизму параллельных реакций. При этом Vis-поглощение наиболее быстро распадающейся компоненты с $\tau_1 = 0.2$ пс (в области 600-725 нм) становится пренебрежимо низким после десяти периодов ее полураспада: $10T_{0.5} = 10(\ln 2)\tau_1 = 10 \cdot 0.693\tau_1 = 1.38$ пс. Вместе с тем исчезновение быстрой компоненты не связано (в противоположность мнению авторов [10]) с ее превращением в компоненты с $\tau_2 = 0.6$ пс и $\tau_3 =$ = 1.9 пс. Действительно, при последовательной реакции ее распад на начальной стадии должен был сочетаться с ростом ΔD медленных компонент, что противоречит их моноэкспоненциальной кинетике и, соотвественно, адекватному механизму реакций. Адекватный механизм, кроме того, должен учесть оставленный в [10] без обсуждения факт, что только распад быстрой компоненты с $\tau_1 = 0.2$ пс приводит к появлению промежуточного Vis-пичка в области 400—450 нм (кривая 2).

Отмеченное выше противоречие между авторской трактовкой механизма и реальной кинетикой Vis-полос обусловлено ее концептуальным противоречием факту ридимерного строения *t*-ААВ₂. Теперь понятно [1, 3–7], что логика теоретических построений в [10] базировалась на ошибочном постулате о мономерном основном состоянии аминоазобензольных красителей, характеризующихся таким же $n \to \pi^*$ -переходом, как и у *t*-AB. Опираясь на традиционное отнесение $n \to \pi^*$ -перехода в *t*-AB к слабой полосе при 440 нм (которое, как показано в [1, 4-8], не соответствует действительности), авторы [10] постулировали, что $n \to \pi^*$ -переход у "молекул *t*-AAB" тоже находится при 440 нм, располагаясь на длинноволновом крыле интенсивной полосы поглощения "*t*-AAB" ($\lambda_{max} \sim 390$ нм). Между тем слабая Vis-полоса *t*-AB, находящаяся при $\lambda_{max} =$ = 430-440 нм, принадлежит не $n \to \pi^*$, а $\pi \to \pi^*$ -возбуждению катиона PhAT в одном из электронных таутомеров t-AB [3]. При этом, в противоположность традиционному представлению, $n \rightarrow \pi^*$ -переходы в *t*-AB и ридимерах диметиламиноазобензола и диэтиламиноазобензола находятся в UV-области спектра при 300-330 нм [3-7], что естественно относится и к t-AAB₂. Что же касается приписанного $n \rightarrow \pi^*$ -переходу [10] небольшого усиления интенсивности на длинноволновом крыле Vis-полосы аминоазобензола в области $\lambda > 420$ нм, то оно обусловлено не $n \rightarrow \pi^*$ -переходом, а некоторым увеличением содержания е-таутомеров (2б) и (2б₁) Схемы 2 вследствие небольшого смещения равновесия $(2\Gamma) \rightarrow (2G) \leftrightarrow (2G_1)$ в полярной спиртовой среде [5].

МЕХАНИЗМ ФОТОЛИЗА РИДИМЕРОВ *t*-ААВ₂

Согласно изложенному выше за поглощение света с $\lambda_{ex} = 400$ нм ридимером *t*-AAB₂ ответственны фениленовый, R₂N⁺PħN⁺, и фенильный, Ph⁺N⁺_. катионы в его наиболее устойчивой форме (схема (2г), R = H). Соответствующие франккондоновские состояния (FC), возникающие при фотовозбуждении, претерпевают последующие трансформации по (*Схема 4*).

Согласно Схеме 4 фотовозбуждение ведет к разрыву ридберговских связей R₃, •-•R₃, на стадии промежуточных FC-конфигураций (4а₁) и (4б₁). Не представленный на схеме (для экономии места) путь образования е-конфигурации (4а₁) можно описать следующим образом. Сначала в группе $R_2 N^{+} P \hbar^+ N_{+}$ верхнего мономера (2г) электрон возбуждается с ВЗМО на НСМО. Вслед за этим идет е-переход с HCMO на p_{z} -орбиталь атома N⁺ аминогруппы с образованием промежуточной структуры $R_2 N$ Р $\hbar^+ N_{\cdot \cdot}$ (на схеме не представлена для экономии места). Затем происходит перенос электрона на катион $P\hbar^+$ аминогруппы с p_7 -орбитали смежного с ним азота азогруппы N.... В итоге вместо исходной группы $R_2 N^{+} P \hbar^+ N_{+}$ появляется $R_2 N$ $Ph^+ N_{++}^{++}$, и в азогруппе верхнего мономера (4a₁) возникает атом N_{+}^{+} с двумя зарядами (на p_{z} и *sp*²-орбитали). Одновременно растет кулоновское возмущение ридберговской связи R_{3s} -- R_{3s} , ведущее к ее разрыву.

е-Конфигурация (4б₁) образуется при фотовозбуждении нижнего мономера (2г) путем перехода электрона с ВЗМО на НСМО в катионе Ph⁺N⁺ (*Схема 4*) и последующего *е*-переноса с HCMO на p_z -орбиталь атома N⁺ азогруппы. При этом бензоидный секстет исходного катиона Ph^+N^+ трансформируется в катион $Ph^+=N_{..}$ (типа катиона бензония [15]).

Согласно Схеме 4 на азогруппах мономеров исходной е-конфигурации (2г) заряды распределены поровну, а в FC-конфигурациях (4a₁) и (4б₁) – не поровну. Такая ситуация способствует их расщеплению на мономеры. При этом число зарядов на азогруппах в конфигурации (4а1) превышает их число на азогруппах в конфигурации (461), создавая более сильное кулоновское напряжение на азосвязи и ридберговской межмономерной связи. Это позволяет ожидать, что расщепление (4a₁) будет более легким по сравнению с (4б₁). Еще, согласно *Схеме 4*, расщепление ридимерных FC-конфигураций (4а1) и (4б1) ведет к образованию гомогенных FC-пар (4а₂) и (4б₂), состоящих из нейтральных мономеров, а также гетерогенных FC-пар ($4a_4$), ($4b_4$) с нейтральным и поляризованным мономерами.

Гомогенные FC-пары появляются вследствие того, что разрыв ридберговских связей $R_{3s} \rightarrow R_{3s}$ в ридимерах (4a₁) и (4б₁) приводит к возвращению обоих освободившихся электронов на исходные sp^2 -орбитали атомов N обоих мономеров, лишая sp^2 -орбитали зарядов: .₊ $sp^2 + e \rightarrow :sp^2$. После этого катионы Ph⁺N⁺_n и бензония восстанавливаются в нейтральные группы PhN_n=, что приводит к нейтрализации зарядов на фениленовых группах путем захвата ими электронов из одноэлектронных связей. Появляющиеся при этом гомогенные (нейтральные) FC-пары (4а₂) и (4б₂) мономеров являются промежуточными состояниями (их последующее возвращение в основное состояние рассмотрено ниже).

Второй путь е-эволюции после разрыва ридберговской связи сочетает в себе образование мономерных пар (4a₄) и (4б₄), состоящих из нейтрального и е-поляризованного мономера. В этом случае разрыв связи $R_{3s} \leftarrow R_{3s}$ в каждом из ридимеров (4a₁) и (4б₁) ведет к возврату только одного из двух освободившихся ридберговских электронов на *sp*²-орбиталь азогруппы с повышенным зарядом (верхние мономеры в конфигурациях (4a₁) и (4б₁)). В данном случае верхние мономеры в конфигурациях (4a₁), (4б₁) нейтрализуются вследствие возврата на их фениленовые кольца по электрону из одноэлектронных связей.

На этом же пути е-эволюции ((4a₁), (4б₁) \rightarrow (4a₃), (4б₃)) вторая появившаясяся при разрыве связи $R_{3s} \rightarrow R_{3s}$ орбиталь R_{3s}^{\bullet} (с одним электроном) сама захватывает электрон из оставшейся одноэлектронной связи. Таким образом появляются ридберговские орбитали с неподеленной е-парой R_{3s}^{\bullet} , которые стабилизируют на некоторое время поляризованные формы нижних мономеров (4a₃), (4б₃).

Далее в поляризованных мономерах (4a₃) и (4б₃) происходит обмен электронов с участием орбитали $R_{3s}^{"}$. Сначала $R_{3s}^{"}$ отдает один электрон на p_z -орбиталь положительно заряженного атома $N_{..}^{+}$ (левый азот в азогруппе), но снова захватывает электрон с sp^2 -орбитали того же атома. Это приводит к образованию атома $N_{.+}^{+*}$ с двумя зарядами. Затем орбиталь $R_{3s}^{"}$ вновь отдает электрон, но уже на p_z -орбиталь заряженной аминогруппы, аннулируя катион $Ph^+N^+R_2$, и вновь восстанавливаясь путем захвата p_z -электрона с правого атома $N_{+.}^{"}$ азогруппы, переводя его в N_{++}^{+*} . В результате появляются поляризованные мономеры с бинарными катионами PhAT и сильно ослабленными связями N_{++}^{*+} в азогруппе, чьи заряды уравно-

вешиваются отрицательными зарядами $R_{3s}^{"}$ (нижние мономеры в парах (4a₄), (4б₄)). Итогом описанных е-трансформаций являются FC-гетеропары из поляризованного и нейтрального мономеров.

Относительно изложенной последовательности фотоиндуцированных электронных переходов (*Cxema 4*) следует отметить, что она фактически отражает волновую природу электронов, которые перераспределяются, как сказано в [16] "последовательно по всей мезомерной системе связей".

Механизм (t → c)-изомеризации

Предпочтение для $(t \rightarrow c)$ -изомеризации следует отдать не электронейтральным мономерам *t*-AAB, имеющим прочную двойную связь N=N, а мономерам с е-конфигурацией $PhN_{++}^{++} = N_{++}^{++} Ph^+ N^{++} R_2 - N_{++}^{++} Ph^+ N^{++} R_2$ это (4а₄) и (4б₄). В них сильно ослабленная азосвязь N^{+•}₊----N⁺⁺₊ сочетается с сильным кулоновским отталкиванием положительно заряженных атомов азота. Именно этим можно объяснить наличие наиболее быстро затухающей Vis-полосы с $\lambda_{max} = 625 - 650$ нм (с характеристическим временем $\tau_1 = 0.2$ пс). Кроме того, только мономеры катионами PhAT ответственны за полосу Vis-поглощения в области спектра с $\lambda_{max} = 625 - 650$ нм. (Сходные Vis-полосы имеют дикатионы Ph⁺HN⁺-N⁺HPh⁺ протонированного азобензола и Ph⁺N⁺-N⁺Ph⁺ возбужденного AB [2, 3].)

Именно $(t \rightarrow c)$ -изомеризация мономеров PhN⁺⁺ ----N⁺⁺ Pħ⁺N⁺R₂ объясняет также и, "забытый" авторами [10] факт, что исчезновение Visполосы с $\lambda_{max} = 625-650$ нм нм сочетается с сопутствующим появлением пичка Vis-поглощения в области 400–450 нм. Это происходит из-за потери мономерами PhN⁺⁺ ---- N⁺⁺ Pħ⁺ N⁺⁺ R₂ своего плоского трансизомерного строения и бинарно связанных (по механизму Симпсона) хромогенов-резонаторов. В свою очередь, появляющиеся транзитные индивидуальные, не способные резонировать по механизму Симпсона, катионы PhAT (Pħ⁺N⁺⁺ R₂ и Ph⁺N⁺) поглощают свет в области 400–450 нм [1–7] и в ходе изомеризации рекомбинируют с электро-

нами $R_{3s}^{"}$ орбиталей: (PhN $\frac{1}{1+1} - N_{1+}^{"+}$ Ph⁺N^{*}R₂) $R_{3s}^{"} \rightarrow c$ -PhN=NPhNR₂ (*c*-AAB). Доля образующихся этим путем молекул *c*-AAB должна, согласно *Схеме 4* и в соответствии с экспериментом [10], составлять всего около четверти от числа исходных мономеров в составе *t*-AAB₂, так как претерпеть изомеризацию способны только поляризованные мономеры PhN $\frac{1}{1+1} - N_{1+}^{*+}$ Ph⁺N^{**}R₂.

Реакции нейтральных мономеров t-ААВ

Нейтральные мономеры *t*-AAB образуются попарно ((4a₂), (4б₂)) и одиночно в гетеропарах (4a₄) и (4б₄). Их двойная связь N=N исключает ($t \rightarrow c$)изомеризацию, и для них остается только путь возвращения к ридимерам *t*-AAB₂ (*Схема 2*). Образование ридимеров (4a₂) и (4б₂) из FC-пар должно идти значительно быстрее, чем из непарных мономеров *t*-AAB, которым для встречи и реакции по *Схеме 2* необходимо пройти стадию самодиффузии. Мономеры *t*-AAB и *c*-AAB поглощают Vis-свет значительно слабее образующихся из них ридимеров (2г), и, скорее всего, их самодиффузия определяет релаксацию полосы "отбеливания" ($\tau \approx 15$ пс).

В отличие от встречающихся мономеров *t*-AAB, FC-пары (4a₂) и (4б₂) вступают в релаксацию с опрелеленной энергией колебательного (инлекс "v") возбуждения относительно термически равновесных пар (схема (2а)) основного состояния. При этом из FC-ридимеров (4a₁) образуются гомопары (4а₂)^v с более высоким запасом колебательной энергии, чем образующиеся из ридимеров (46,) гомопары (4б₂)^v. Поэтому процессы релаксации колебательно-возбужденных пар, ведущие к восстановлению ридимеров по схеме (2), идут с разными скоростями. По-видимому, именно различие в получаемых для этих гомопар величинах колебательной энергии (Схема 4) отражается в неодинаковых значениях $\tau_2 = 0.6$ пс и $\tau_3 = 1.9$ пс [10], но при наличии у них одинаковых транзитных полос Vis-поглощения с $\lambda_{max} = 500 - 550$ нм.

ЗАКЛЮЧЕНИЕ

На основе анализа экспериментальных данных работы [10] в рамках недавно созданной ридимерной концепции строения аминоазобензольных красителей исправлено представление о механизме появления и кинетике релаксации транзитных полос Vis-поглощения промежуточных продуктов импульсного лазерного фотолиза аминоазобензола. Показана несостоятельность традиционной мономерной азоидно-катионной (хиноидной) модели данного красителя для описания его фотоники. Представлен адекватный механизм фотопревращения, включающий в себя два параллельных пути фотовозбуждения ридимерных катионов фениламинильного типа, ведущих к расщеплению *t*-AAB₂ на транзитные мономеры, один из которых ответствен за образование с-ААВ и неполную регенерацию *t*-AAB₂.

СПИСОК ЛИТЕРАТУРЫ

- Михеев Ю.А., Ершов Ю.А. // ЖФХ. 2018. Т. 92. № 10. С. 1552; https://doi.org/10.1134/S0036024418100205
- 2. *Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. //* ЖФХ. 2015. Т. 89. № 2. С. 243.
- Михеев Ю.А., Гусева Л.Н., Ершов Ю.А. // ЖФХ. 2015. Т. 89. № 11. С. 1773; https://doi.org/10.1134/S0036024415110138
- Muxees IO.A., Epuios IO.A. // ЖФХ. 2018. Т. 92. № 8. C. 1251; https://doi.org/10.1134/S0036024418080174
- *Михеев Ю.А., Ершов Ю.А.* // ЖФХ. 2020. Т. 94. № 1. C. 143; https://doi.org/10.1134/S0036024420010227
- Muxees IO.A., Epuios IO.A. // ЖФХ. 2020. Т. 94. № 8. C. 1269; https://doi.org/10.1134/S0036024420080208
- *Михеев Ю.А., Ершов Ю.А.* // ЖФХ. 2020. Т. 94. № 11. С. 1706; https://doi.org/10.31857/S0044453720110254
- 8. *Гордон П, Грегори П*. Органическая химия красителей. М.: Мир, 1987. С. 125.
- 9. *Robin M. B., Simpson W.T.* // J. Chem. Phys. 1962. V. 36. № 3. P. 580.
- Hirose Ya., Yui H., Sawada Ts. // J. Phys. Chem. A. 2002. V. 106. № 13. P. 3067.
- 11. Татиколов А.С., Пронкин П.Г., Шведова Л.А. и др. // Хим. физика. 2019. Т. 38. № 12. С. 11; https://doi.org/10.1134/S0207401X19120185
- 12. Бердникова Н.Г., Донцов А.Е., Ерохина М.В. и др. // Хим. физика. 2019. Т. 38. № 12. С. 48; https://doi.org/10.1134/S0207401X19120045
- Пронкин П.Г., Татиколов А.С. // Хим. физика. 2021. Т. 40. № 2. С. 3; https://doi.org/10.31857/S0207401X2102014X
- 14. *Татиколов А.С.* // Хим. физика. 2021. Т. 40. № 2. С. 11; https://doi.org/10.31857/S0207401X21020163
- 15. Стрейтвизер Э. Теория молекулярных орбит для химиков-органиков. М.: Мир, 1965. С. 217.
- Хюккель В. Химическая связь. Критическое рассмотрение систематики, способов выражения и изображения в формулах. М.: Изд-во иностр. лит., 1960. С. 77.