——— ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ ———

УДК 547.556.3:547.771:547.781:547.792

ЭНЕРГЕТИЧЕСКИЕ ВОЗМОЖНОСТИ НЕКОТОРЫХ АЗИДО- И НИТРОПРОИЗВОДНЫХ *N,N*-АЗОАЗОЛОВ КАК КОМПОНЕНТОВ СМЕСЕВЫХ ЭНЕРГЕТИЧЕСКИХ СИСТЕМ

© 2022 г. И. Н. Зюзин¹*, И. Ю. Гудкова¹, Д. Б. Лемперт¹

¹Институт проблем химической физики Российской академии наук, Черноголовка, Россия *E-mail: zyuzin@icp.ac.ru

Поступила в редакцию 09.09.2021; после доработки 05.10.2021; принята в печать 20.10.2021

Рассмотрены энергетические и баллистические характеристики модельных смесевых твердых топлив (СТТ) на основе некоторых азидо- и нитропроизводных N,N-азоазолов. Установлены количественные зависимости энергетических параметров топлив от свойств изучаемого соединения (основного наполнителя), доли алюминия, наличия дополнительных окислителей в композиции и от типа связующего. Наиболее эффективным компонентом оказался 1,2-бис(3,5-динитро-1*H*-1,2,4триазол-1-ил)диазен (I) в составе без алюминия со смесью активного и углеводородного связующего в соотношении 1.9 : 1. В классе составов СТТ без конденсированных продуктов сгорания соединение I существенно превосходит по величине эффективного импульса на третьей ступени (268.5 с) многие из известных компонентов.

Ключевые слова: азоазолы, азидоазолы, нитроазолы, пиразол, триазол, (*E*)-1,2-бис(3,5-динитро-1*H*-1,2,4-триазол-1-ил)диазен, смесевое твердое топливо, термодинамические расчеты. **DOI:** 10.31857/S0207401X22120123

введение

Мы продолжаем поиск потенциальных компонентов смесевых твердых топлив (СТТ) в ряду известных энергоемких соединений [1-5]. В рамках этой задачи мы обратили внимание на относительно новый класс производных гетероциклов -*N*,*N*-азоазолы [6–19]. Некоторые недавно синтезированные азидо- и нитропроизводные N, N-азоазолов сочетают в себе высокие энергетические параметры с неплохой термической стабильностью и не слишком высокой чувствительностью к удару и трению. Благодаря такому сочетанию N,N-азоазолы рассматривались как перспективные взрывчатые вещества. Целью настоящей работы было изучение возможности применения азидо- и нитропроизводных N,N-азоазолов для создания высокоимпульсных композиций СТТ и термодинамическое обоснование этой задачи.

ПОСТАНОВКА ЗАДАЧИ И МЕТОДИКА РАСЧЕТОВ

1. Выбор объектов изучения

Нитропроизводные азолов (пиразолов, имидазолов, тетразолов) — большая группа энергоемких соединений. Но у них есть серьезный недостаток — высокая кислотность, быстро растущая по мере увеличения числа как нитрогрупп, так и атомов азота в цикле. Этот недостаток преодолевается замещением кислого атома водорода у атома азота в цикле нейтральными группами (лучше энергоемкими) например, тринитрометильной [2]. С другой стороны, соединение двух азолов по атомам азота разнообразными мостиковыми группами служит эффективным приемом при конструировании молекул новых энергоемких соединений, поскольку, решая проблему N–H кислотности, этот прием зачастую улучшает и другие параметры — плотность, термическую стабильность, температуру плавления и др. [19].

Азо-группа (-N=N-) – одна из наиболее эффективных мостиковых групп с энергетической точки зрения, причем *N*,*N*-азоазолы существенно превосходят по энтальпии образования *C*,*C*'-азоазолы [12]. В ряду незамещенных *N*,*N*-азоазолов стабильность снижается по мере роста непрерывной цепочки атомов азота [10–13], чувствительность к механическим воздействиям растет в том же порядке, достигая максимума у (*E*)-1,2-бис(1*H*-тетразол-1-ил)диазена с 10 атомами азота в цепочке (это соединение во много раз более чувствительно, чем азид свинца) [6, 13].

Рис. 1. Структурные формулы соединений I—V: I – (E)-1,2-бис(3,5-динитро-1H-1,2,4-триазол-1-ил)диазен; II – (E)-1,2-бис(3,4-динитро-1H-пиразол-1-ил)диазен; III – (E)-1,2-бис(5-азидо-4-нитро-1H-имидазол-1-ил)диазен; IV – (E)-1,2-бис(4-нитро-2H-1,2,3-триазол-2-ил)диазен; V – (E)-1,2-бис(3,5-диазидо-1H-1,2,4-триазол-1-ил)диазен.

нию IV.

Первые упоминания о нитропроизводных *N*,*N*-азоазолов (*N*,*N*-азобис-нитроазолов) относятся к патенту 1999 г. [9], в котором перечислены примеры синтеза четырех соединений этого класса с указанием выхода для одного из них. но нет никаких сведений о свойствах полученных соединений. В реферируемых журналах первое нитропроизводное *N*,*N*-азоазола описано в 2012 г. [14]. В период 2012-2020 гг. было синтезировано 13 нитропроизводных N, N-азоазолов и 5 азидопроизводных [6-8, 14-18]. Из них для дальнейшей работы мы выбрали соединения I-V (рис. 1). По предварительной оценке совокупности свойств соединения І–V наиболее перспективны в качестве потенциальных компонентов СТТ. В табл. 1 представлены свойства соединений I-V.

Удивительно, что один из самых энергонасыщенных нитро-N,N'-азоазолов — (E)-1,2-бис(5нитро-2H-тетразол-2-ил)диазен (**VI**, рис. 2), описан первым [14]. Он оказался экстремально чувствительным (осадок на фильтре спонтанно детонировал), поэтому как компонент СТТ совершенно непригоден.

Среди известных N, N-азоазолов две группы соединений имеют одинаковый элементный состав: С₄H₂N₁₀O₄ у трех соединений на базе нитротриазолов (**IV**, **VII**, **VIII**, рис. 1, 2) и $C_6H_2N_{10}O_8$ у четырех на базе динитродиазолов (II, IX-XI, рис. 1, 2). От каждой из этих двух групп мы выбрали для расчетов по одному соединению. Из двух соединений на базе 4-нитро-1,2,3-триазола (IV и VII) выбрано соединение IV. Соединение IV гораздо менее чувствительно к удару (IS = 4-4.5 Дж против менее 1 Дж) и трению (FS = 36-40 Н против менее 5 Н) по сравнению с VII при близких значениях плотности (1.840 и 1.818 г/см³ при 150 K) и ΔH_{f}° (3310 и 3410 кДж/кг) [8 Supporting Information]. Кроме того, соединение IV термически более стабильно ($T_{dec} = 227 \,^{\circ}$ С против 160 $^{\circ}$ С). Соединение VIII (третий изомер с брутто-формулой $C_4H_2N_{10}O_4$) еще менее чувствительно (IS = 10 Дж, FS = 160 H) и более стабильно ($T_{dec} = 242$ °C) [7], но ΔH_f° у него существенно ниже (2830 кДж/кг) [7]. Поэтому предпочтение было отдано соедине-

Рис. 2. Структурные формулы соединений VI–XI: VI – (E)-1,2-бис(5-нитро-2*H*-тетразол-1-ил)диазен; VII – (E)-1,2-бис(4-нитро-1*H*-1,2,3-триазол-1-ил)диазен; VIII – (E)-1,2-бис(3-нитро-1*H*-1,2,4-триазол-1-ил)диазен; IX – (E)-1,2- бис(3,5-динитро-1*H*-пиразол-1-ил)диазен; X – (E)-1,2-бис(2,4-динитро-1*H*-имидазол-1-ил)диазен; XI – (E)-1,2-бис(4,5-динитро-1*H*-имидазол-1-ил)диазен.

N,N-Азоазолы с брутто-формулой $C_6H_2N_{10}O_8$ были синтезированы на основе динитропиразолов (**II**, **IX**) и динитроимидазолов (**X**, **XI**) [7]. Соединения **II** и **IX** с одинаковой энтальпией образования ($\Delta H_f^\circ = 2010 \text{ кДж/кг}$) заметно превосходят по этому показателю соединения **X** и **XI** (1730 и 1790 кДж/кг) соответственно, что и определило выбор в пользу **II** и **IX**. Из пары азодинитропиразолов **II** и **IX** мы выбрали соединение **II** произвольно, поскольку остальные параметры этих соединений очень близки [7].

В 2018 г. синтезировано соединение I, обладающее уникальным сочетанием высоких энергетических свойств с относительно низкой чувствительностью к механическим воздействиям (табл. 1) [6]. С учетом нулевого кислородного баланса по CO₂ и положительного по CO ($\Omega_{CO} = 18.6$) можно ожидать весьма высоких энергетических показателей CTT на базе этого потенциального компонента.

В той же работе описан синтез соединения V – азидного аналога соединения I [6]. Такого рода полиазотистые соединения с очень высокой эн-

тальпией образования могут оказаться полезными в составах СТТ в качестве энергетических добавок (замена металлическому горючему). Ранее был получен региоизомер соединения V - (E)-1,2бис(3,5-диазидо-4*H*-1,2,4-триазол-4-ил)диазен (**XII**) [15].

У соединения XII по сравнению с соединением V более высокие величины энтальпии ΔH_f° (6845 против 6557 кДж/кг) и плотности (1.79 против 1.71 г/см). Тем не менее из этих двух азодиазидо-пиразолов для расчетов взяли соединение V, поскольку соединение XII менее стабильно ($T_{dec} = 136$ °C против 168.8°C) и гораздо более чувствительно к удару (IS < 3 Дж против 6 Дж). Стоит отметить, что удивительно низкие показатели чув-

ЭНЕРГЕТИЧЕСКИЕ ВОЗМОЖНОСТИ НЕКОТОРЫХ

Соеди- нение	Брутто- формула	Δ <i>Н</i> кДж/моль	°а f кДж/кг	ρ ^б , г/см ³	N ^в , %	α^{r}	$\Omega_{CO_2}{}^{\pi}$	$\Omega_{CO}{}^{^{\mathcal{I}}}$	<i>D</i> ^e , м/с	IS ^ж , Дж	FS³, H	$T_{ m dec}^{ m \tiny M}, ^{\circ} m C$	Литера- тура
Ι	$C_4N_{12}O_8$	973.9	2831	1.93	48.8	1.0	0	18.6	9490	10	160	262.4	[6]
II	$C_6H_2N_{10}O_8$	687	2010	1.82	40.9	0.62	-23.4	4.7	8964	5	80	223	[7]
III	$C_6H_2N_{14}O_4$	1260	3770	1.77	58.7	0.31	-43.1	-14.4	8702	2	40	154	[7]
IV	$C_4H_2N_{10}O_4$	841.4	3310	1.80к	55.1	0.44	-31.5	-6.3	9068	4-4.5	36-40	227	[8] ^л
V	$C_4 N_{20}$	2150.8	6557	1.71	85.4	0	-39.0	-19.5	8220	6	80	168.8	[6]

Таблица 1. Физико-химические свойства соединений I-V

^аСтандартная энтальпия образования (расчетная).

^бПлотность (экспериментальная).

^вПроцентное содержание азота в соединении.

^гКоэффициент обеспечения молекулы кислородом (для соединения $C_x H_y N_z O_w \alpha = 2w/(4x + y)$).

 $^{A}\Omega_{CO_{2}}$ или Ω_{CO} – кислородный баланс с окислением углерода до CO₂ или CO (для соединения $C_{x}H_{y}N_{z}O_{w}$ $\Omega_{CO_{2}} = 800(2w - 4x - y)/M$, $\Omega_{CO} = 800(2w - 2x - y)/M$, где M – молекулярная масса).

еСкорость детонации (расчетная).

^жЧувствительность к удару (экспериментальная).

³Чувствительность к трению (экспериментальная).

^иТемпература разложения.

^кПлотность соединения **IV** при комнатной температуре получена делением плотности при 150 K на (1.840 г/см^3) 1.022 (соотношение плотностей (E)-1,2-бис(3,5-динитро-1H-пиразол-1-ил)диазена (**IX**, рис. 2) при тех же температурах [7]). ^лSupporting Information.

ствительности к удару и трению соединений I и V, приведенные в работе [6], вызывают некоторое сомнение, особенно при сравнении с опубликованными в других работах параметрами родственных соединений. В частности, соединение V менее чувствительно по сравнению с (*E*)-1,2-бис(4,6-диазидо-1,3,5-триазин-2-ил)диазеном (XIII) [20] (IS = 6 Дж, FS = 80 Н против 1.5 Дж, 24 Н соответственно), хотя у соединения V по сравнению с соединением XIII более высокая величина ΔH° .

единением XIII более высокая величина ΔH_f° (6557 против 6164 кДж/кг) и оно содержит больше азота (85.4% против 79.5%).

2. Методика расчетов

Создание СТТ представляет собой сложную многофункциональную задачу, так как создаваемые составы должны не только обладать высокими энергетическими характеристиками, но и удовлетворять многим другим требованиям, таким, например, как химическая и термическая стабильность, приемлемая чувствительность и др. Энергетические свойства СТТ определяются не только характеристиками основного компонен-

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 12 2022

та, но и всей рецептуры. В результате удачного подбора компонентов и их соотношения в составе СТТ можно добиться максимально достижимой величины удельного импульса І_{sp} для имеющегося набора рассматриваемых компонентов. Однако в публикациях о новых энергоемких соединениях авторы, если и приводят величину удельного импульса СТТ, то только для соединения в индивидуальном состоянии (за редкими исключениями). Эта величина мало говорит о потенциальных возможностях обсуждаемого компонента. Более того, оценка энергетического потенциала только по величине удельного импульса индивидуального компонента приведет к совершенно неверной оценке его потенциала, что было подробно разобрано в работе [21].

В настоящей работе оценены энергетические характеристики модельных композиций СТТ, содержащих в качестве основного компонента соединения **I**–**V**, а в качестве связующего – одно из двух типовых связующих: активное связующее (АС, $C_{18.96}H_{34.64}N_{19.16}O_{29.32}$; стандартная энтальпия образования $\Delta H_f^{\circ} = -757$ кДж/кг; $\rho = 1.49$ г/см³) и обычное углеводородное связующее (УС, $C_{72.15}H_{119.21}O_{0.68}$; стандартная энтальпия образования $\Delta H_f^{\circ} = -393$ кДж/кг; плотность $\rho = 0.92$ г/см³ [21]). Кроме таких бинарных композиций рассмотрены более сложные составы, содержащие алюминий как энергетический компонент. Часть исследуемых наполнителей (**III–V**) содержат мало кислорода (α лежит в интервале 0.44–1.0). По-

этому дополнительно изучены трехкомпонентные составы с добавкой одного из окислителей с высокой величиной α , а именно, перхлората аммония (ПХА, NH₄ClO₄; $\Delta H_f^\circ = -2495 \text{ кДж/кг; } \rho =$ = 1.95 г/см³; $\alpha = 2.25$) или аммониевой соли динитразовой кислоты (АДНА, NH₄N₃O₄, $\Delta H_f^\circ =$ = -1129 кДж/кг; $\rho = 1.82 \text{ г/см}^3$; $\alpha = 2.0$ [22]). В качестве эталонных составов сравнения были выбраны бинарные СТРТ на основе октогена (HMX, $\Delta H_f^\circ = 295 \text{ кДж/кг; } \rho = 1.9 \text{ г/см}^3$; $\alpha = 0.67$) – одного из самых эффективных наполнителей СТТ среди доступных соединений.

Расчеты величин удельного импульса I_{sp} и температуры в камере сгорания T_c (при давлении в камере и на срезе сопла 4.0 и 0.1 МПа соответственно) проводили с помощью программы расчета высокотемпературных химических равновесий ТЕРРА [23]. Анализ эффективности исследуемых компонентов проводили по алгоритму, описанному ранее [24, 25]. Для сравнения баллистической эффективности композиций, имеющих разные плотности, при их использовании в двигателях с различными объемно-массовыми характеристиками использовали так называемые величины эффективных импульсов $I_{ef}(n)$ на разных ступенях ракетных систем (n – номер ступени) [26].

$$\begin{split} I_{ef}(1) &= I_{sp} + 100(\rho - 1.9), \\ I_{ef}(2) &= I_{sp} + 50(\rho - 1.8), \\ I_{ef}(3) &= I_{sp} + 25(\rho - 1.7), \end{split}$$

где ρ – плотность состава СТТ в г/см³.

Эти величины характеризуют баллистическую эффективность топлива на соответствующих ступенях ракетных систем.

Поскольку составы, содержащие алюминий, имеют потери в реальном значении I_{sp} из-за образования конденсированной фазы в продуктах сгорания (двухфазные потери), а величина этих потерь оценивается в 0.22% от значения I_{sp} на каждый 1% алюминия [22], эффективность составов с конденсированной фазой в продуктах сгорания рассчитывают по эффективному импульсу с учетом двухфазных потерь как $I_{ef}^*(n) = I_{ef}(n) - 0.0022I_{sp}$ [Al], где [Al] – процентное содержание алюминия в композиции. Очевидно, что для составов без металлического горючего показатели $I_{ef}^*(n)$ и $I_{ef}(n)$

таллического горючего показатели $I_{ef}(n)$ и $I_{ef}(n)$ совпадают.

В этом исследовании нас интересуют величины удельного и эффективного импульсов с учетом двухфазных потерь только на третьей ступени, так как на нижних ступенях (где масса топлива в 4—10 раз выше, чем на третьей) чрезвычайно важны стоимость компонентов и их чувствительность к механическим воздействиям, поэтому соединения **I–V** и им подобные никак не могут быть реально использованы на нижних ступенях.

Для обеспечения удовлетворительных физико-механических характеристик СТТ и реологических свойств неотвержденной топливной массы составы должны содержать достаточное количество полимерсодержащего связующего. Обычно это достигается при объемном содержании связующего не ниже 18–19 об.%. На этот параметр было обращено особое внимание. Для корректного сравнения все рассматриваемые в настоящей работе составы СТТ специально "подогнаны" под примерно одинаковую объемную долю связующего (18.0 \pm 0.05 об.%). Более подробно методика расчетов была представлена в работах [1–5].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Рецептуры без конденсированных продуктов сгорания: "исследуемое соединение + AC или УС", "исследуемое соединение + AC + УС"

У соединения I высокие показатели $\Delta H_f^{\circ} = 2831 \text{ кДж/кг и } \rho = 1.93 \text{ г/см}^3$, благодаря которым бинарная композиция "85.5% I + 14.5% AC" имеет высокую величину эффективного импульса $I_{ef}(3) = 265.1 \text{ с при приемлемой температуре } T_c = 3756 \text{ K}$ (табл. 2). Соединение I имеет величину $\alpha = 1$, поэтому его можно компоновать как с AC, так и с УС. Бинарный состав "90.5% I + 9.5% УС" по удельному импульсу I_{sp} превосходит состав с AC на 1.1 с, но по практически более важному показателю эффективного импульса $I_{ef}(3)$ уступает ему 1.4 с.

Ранее было показано, что в составах на основе некоторых высокоэнтальпийных окислителей с показателем $\alpha \approx 1$ использование смешанного связующего "УС + АС" может давать синергический эффект [4, 27]. Такой синергизм для соединения I демонстрирует рис. 3. Оптимизированная композиция "87.75% I + 8% AC + 4.25% УС" при соотношении AC : УС = ~1.9 : 1 имеет показатель $I_{ef}(3) = 268.5$ с. Это отличный результат, особенно с учетом температуры в камере сгорания ($T_c =$ = 3756 K) в пределах допустимых значений (не выше 3800 K).

У соединения II $\Delta H_f^{\circ} = 2010 \text{ кДж/кг}, \alpha = 0.62 \text{ и}$ $\rho = 1.82 \text{ г/см}^3$. Эти значения ниже, чем у соединения I, поэтому и энергетические характеристики композиций на основе II оказались хуже. Из-за невысокого показателя α соединение II целесообразно компоновать только с активным связующим. Бинарная композиция "84.8% II + 15.2% AC" имеет величину эффективного импульса на третьей ступени $I_{ef}(3) = 256.9$ с и приемлемую $T_c = 3586$ К (табл. 2). Использование смесевого связующего

Оки	ислитель		Связующее					
N⁰	доля окислителя в СТТ, %	тип	мас.%	об.%	р, г/см ³	<i>T_c</i> , K	<i>I_{sp}</i> , c	<i>I_{ef}</i> (3), c
Ι	85.5	AC	14.5	18.0	1.851	3756	261.4	265.1
II	84.8	AC	15.2	18.0	1.761	3586	255.4	256.9
III	84.4	AC	15.6	18.0	1.720	3237	244.2	244.7
IV	84.6	AC	15.4	18.0	1.744	3483	254.5	255.6
V	83.9	AC	16.1	18.0	1.670	3728	253.1	252.3
HMX	85.3	AC	14.7	18.0	1.826	3178	251.1	254.3
Ι	90.5	УС	9.5	18.0	1.748	3672	262.5	263.7
Ι	87.75	AC + YC	12.25	18.0	1.803	3785	265.9	268.5
		1.88 : 1						
АДНА	90.0	УС	10	18.0	1.658	3119	250.9	249.8

Таблица 2. Состав и энергетические характеристики бинарных композиций СТТ на основе соединений I–V с AC, на основе соединения I с VC и композиции на основе соединения I со смесью AC и VC при объемном содержании связующего 18 об.%

(AC + УС) не дало повышения величины импульса $I_{ef}(3)$.

Соединение III имеет высокую энтальпию образования $\Delta H_f^{\circ} = 3770 \text{ кДж/кг}$, но низкий показатель $\alpha = 0.31$ и не очень высокую плотность $\rho = 1.77 \text{ г/см}^3$. Поэтому энергетические показатели бинарного состава с АС оказались ожидаемо низкими (табл. 2).

У соединения **IV** $\Delta H_f^{\circ} = 3310$ кДж/кг, $\rho = 1.8$ г/см³, $\alpha = 0.44$, что позволяет компоновать **IV** с AC, но ожидать при этом выдающихся результатов не приходится. Тем не менее, оптими-

Рис. 3. Зависимость величины эффективного импульса $I_{ef}(3)$ составов "I + AC + УС" от доли УС в смешанном связующем "УС + АС" при объемном содержании связующего 18%.

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 12 2022

зированная бинарная композиция "84.6% IV + + 15.4% AC" имеет эффективный импульс на третьей ступени $I_{ef}(3) = 255.6$ с при $T_c = 3483$ К и превосходит эталонные бинарные составы на основе октогена (HMX) и АДНА (табл. 2).

В отличие от соединений **I**–**IV** в составе соединения **V** нет кислорода. У него очень высокая энтальпия образования $\Delta H_f^{\circ} = 6557 \text{ кДж/кг}$, но плотность **V** составляет всего 1.71 г/см³. Бинарный состав "**V** + AC" имеет не очень высокий энергетический потенциал ($I_{ef}(3) = 252.3 \text{ c}$), так как композиция явно нуждается в окислителе. Этот состав уступает композиции на основе октогена с AC, но превосходит состав на основе АДНА с УС (табл. 2).

С учетом вышесказанного можно отметить, что бинарные композиции на основе соединений I, II и IV с AC превосходят эталонный состав с HMX по показателю $I_{ef}(3)$ на 10.8, 2.6 и 1.3 с соответственно, а оптимизированный состав "I + AC + + УС" – на 14.2 с. По сравнению с другим эталонным составом "AДHA + УС" превосходство композиций "I + УС" и "I + AC + УС" по величине $I_{ef}(3)$ составляет 13.9 и 18.7 с соответственно (табл. 2).

2. Композиции СТТ: "исследуемое соединение + + AC + Al" и "исследуемое соединение + УС + Al"

Добавление алюминия за счет основного наполнителя в композиции "основной наполнитель + + AC" и "основной наполнитель + УС" может повысить значения удельного импульса даже с учетом двухфазных потерь $I_{ef}^*(3)$. Зависимость величины $I_{ef}^*(3)$ от количества Al в композициях на основе соединений **I**–**V** демонстрирует рис. 4.

Рис. 4. Зависимость величины эффективного импульса $I_{ef}^*(3)$ от количества Al в композициях на основе соединений I с УС и соединений I–V или HMX с AC при объемном содержании связующего 18%.

Из рис. 4 видно, что в случае составов соединений I, III и V с AC добавка Al оказалась неэффективной. Добавление Al в бинарные композиции соединений II и IV с активным связующим немного повысило значения $I_{ef}^*(3)$ оптимизированных составов (оба – на 1.6 с) до 258.5 и 257.2 с соответственно. Однако эти показатели не превышают $I_{ef}^*(3) = 258.5$ с оптимизированного состава "HMX + AC + Al". Кроме того, добавка 3% Al чуть-чуть (на 0.7 с) повысила величину $I_{ef}^*(3)$ состава соединения I с УС до 264.4 с (на 0.7 с), но это ниже $I_{ef}(3)$ составов без Al "I + AC" и "I + AC + УС" на 0.7 и 4.1 с соответственно.

Резкое падение величины $I_{ef}^{*}(3)$ при введении алюминия в композиции с соединением III и особенно с V, есть следствие очень низкой (даже нулевой у соединения V) величины α . Замена части основного наполнителя на Al еще сильнее снижает величину α всей композиции, тем самым снижая импульс. Тот факт, что только в композиции с октогеном введение Al заметно повышает $I_{ef}^{*}(3)$ есть следствие того, что у октогена ΔH_{f}° намного ниже, чем у соединений I–V. Ранее в работе [28] было показано, что энергетическая эффективность введения Al в композицию СТТ по мере роста ее интегральной ΔH_{f}° становится все менее заметной и при определенном уровне ΔH_{f}° сводится к нулю.

3. Композиции СТТ: "исследуемое соединение + + дополнительный окислитель ПХА или АДНА"

Замена части основного наполнителя І дополнительными окислителями ПХА и АДНА положительного эффекта не дает. Соединения III, IV и V явно нуждаются в дополнительных окислителях, так как их показатель α меньше 0.5 (0.31, 0.44 и 0 соответственно). Действительно, композиции на основе соединений III, IV и V с ПХА показали рост величины импульса $I_{ef}(3)$ по сравнению с бинарными составами на 7.8, 1.4 и 7.4 с соответственно (табл. 3, рис. 5). Отдельного внимания заслуживают композиции на основе соединений IV и V, которые обогнали аналогичный состав на основе октогена "НМХ + АС + ПХА" на 1.5 и 4.2 с соответственно (табл. 3). Здесь следует отметить, что топлива с ПХА загрязняют атмосферу. На это необходимо обращать особое внимание, так как уменьшение вредного воздействия продуктов сгорания СТТ является одной из современных приоритетных задач.

Композиции на основе II–V с AC при добавлении АДНА продемонстрировали рост величины $I_{ef}(3)$ на 0.9, 12.1. 3.7 и 9.5 с соответственно. Температуры в камере сгорания для всех этих композиций не превышают технологически допустимое значение 3800 К (табл. 4, рис. 6).

Из рис. 5, 6 видно, что замена части основного наполнителя дополнительными окислителями ПХА и АДНА наиболее эффективна для соединения V (табл. 3, 4), что вполне естественно, т.к. в соединении V вообще нет кислорода. Состав

		•		-		· · •		
Основной наполнитель	Доля основного наполнителя в СТТ, %	AC, %	ПХА, %	ρ, г/см ³	<i>T_c</i> , K	<i>I_{sp}</i> , c	<i>I_{ef}</i> (3), c	$I_{e\!f}^*(3), c$
III	45	15.0	40	1.786	3355	250.4	252.5	252.5
IV	68.8	15.2	16	1.766	3478	255.3	257.0	257.0
\mathbf{V}	64.3	15.7	20	1.712	3617	259.4	259.7	259.7
HMX	65.4	14.6	20	1.836	3242	252.1	255.5	255.5

Таблица 3. Состав и энергетические характеристики оптимизированных композиций СТТ на основе соединений III–V и HMX: "исследуемое соединение + AC + ПХА" при объемном содержании AC 18%

Таблица 4. Состав и энергетические характеристики оптимизированных композиций СТТ на основе соединений III–V и АДНА: "исследуемое соединение + АС + АДНА" при объемном содержании АС 18%

Основной наполнитель	Доля основного наполнителя в СТТ, %	AC, %	АДНА, %	ρ, г/см ³	<i>T_c</i> , K	<i>I_{sp}</i> , c	<i>I_{ef}</i> (3), c	$I_{e\!f}^*(3), c$
II	64.8	15.2	20	1.761	3480	256.3	257.8	257.8
III	34.6	15.4	50	1.743	3313	255.8	256.8	256.8
IV	49.7	15.3	35	1.751	3405	258.0	259.3	259.3
V	44.3	15.7	40	1.712	3483	261.5	261.8	261.8
HMX	55.15	14.85	30	1.803	3237	255.0	257.6	257.6

"V + AC + АДНА" ($I_{ef}(3) = 261.8$ с, табл. 4) существенно превосходит оптимизированный состав "80.35% АДНА + 9.65% УС + 10% Аl" ($I_{ef}^*(3) = 253.8$ с). Соединение V в композиции играет роль энергетического компонента, т.е. практически ту же, что и алюминий. Кроме того, при сгорании V нет конденсированных продуктов сгорания, что весьма важно для некоторых специальных видов СТТ. Поскольку соединение V имеет не очень высокую чувствительность к механиче-

Рис. 5. Зависимость величины эффективного импульса $I_{ef}(3)$ состава "соединения I–V или HMX + ПХА" от доли ПХА в смешанном наполнителе при объемном содержании активного связующего 18%.

Рис. 6. Зависимость величины эффективного импульса $I_{ef}^*(3)$ состава "соединения I–V или HMX + АДНА" от доли АДНА в смешанном наполнителе при объемном содержании активного связующего 18%.

ским воздействиям и приемлемую термостабильность (см. табл. 1), оно могло бы быть использовано как энергетический компонент и в некоторых других типах энергетических композиций. Лучшие композиции на основе соединений I-V сведены для сравнения в табл. 5. Температуры в камере сгорания всех рассмотренных составов не превышают технологически допустимое значе-

	соединении і		песью пе	· • • •, · · ·,	түцплан	ing a second		держании	сыязующег	0 10/0
	Основной на	полнитель								
N⁰	брутто- формула	доля в составе СТТ, %	УС, %	AC, %	Al, %	АДНА, %	ПХА, %	ρ, г/см ³	<i>Т</i> _с , К	$I_{ef}^{*}(3), c$
Ι	$C_4N_{12}O_8$	85.5	_	14.5	-	_	-	1.851	3756	265.1
		90.5	9.5	—	—	—	—	1.748	3672	263.7
		87.75	4.25	8	_	_	_	1.803	3785	268.5
II	$C_{6}H_{2}N_{10}O_{8}$	84.8		15.2				1.764	3586	256.9
		79.05		14.95	6			1.796	3783	258.5
		64.8		15.2		20		1.761	3480	257.8
III	$\mathrm{C_6H_2N_{14}O_4}$	84.4		5.6				1.720	3237	244.7
		34.6		15.4		50		1.743	3313	256.8
		45		15			40	1.786	3355	252.5
IV	$C_4H_2N_{10}O_4$	84.6		15.4				1.744	3483	255.6
		49.7		15.3		35		1.751	3405	259.3
		81.8		15.2	3			1.762	3469	257.2
		68.8		15.2			16	1.766	3478	257.0
V	$C_4 N_{20}$	83.9		16.1				1.670	3728	252.3
		44.3		15.7		40		1.712	3483	261.8
		64.3		15.7			20	1.712	3617	259.7

Таблица 5. Сравнительные характеристики оптимизированных по I_{ef}^* (3) композиций СТТ на основе соединений I–V с AC, УС, смесью AC + УС, AI, АДНА и ПХА при объемном содержании связующего 18%

Рис. 7. Максимальные величины эффективного импульса $I_{ef}(3)$ композиций без конденсированных продуктов сгорания "энергоемкий наполнитель + связующее" в зависимости от природы энергоемкого наполнителя при условии, что доля связующего 18 об.%, а T_c не выше 3800 К.

ние (3800 K), поэтому не понадобилось снижать T_c составов СТТ на базе компонентов **I**—V способами, подробно рассмотренными в работе [3].

Наилучший состав "I + AC + УС" в табл. 5 выделен курсивом. Он не дает конденсированных продуктов сгорания. Поэтому состав "I + AC + + УС" в табл. 6 сравнивается с аналогичными составами без металла на основе наиболее распространенных компонентов и некоторых перспективных соединений из наших более ранних работ (по максимально достигаемым величинам $I_{ef}(3)$ композиций с тем же условием — объемная доля связующего 18% и $T_c < 3800$ K).

На рис. 7 показатели $I_{ef}(3)$ из табл. 6 для наглядности представлены в виде гистограммы и дополнены максимальными значениями $I_{ef}(3)$ составов без металла на базе соединений **II**–**V** из табл. 5.

ЗАКЛЮЧЕНИЕ

Из пяти N,N-азоазолов, рассмотренных в качестве потенциальных компонентов СТТ, наилучшие показатели продемонстрировал 1,2бис(3,5-динитро-1*H*-1,2,4-триазол-1-ил)диазен (I), который в составе со смесью активного и углеводородного связующего без алюминия обеспечивает эффективный импульс на третьей ступени, равный 268.5 с. По этому показателю в классе составов СТТ без конденсированных продуктов сгорания соединение I существенно превосходит множество известных компонентов, что объясняется сочетанием нулевого кислородного баланса с положительной энтальпией образования и высокой плотностью этого соединения. Кроме того, соединение I имеет относительно низкую чувствительность к удару (IS = 10 Дж, т.е. ниже, чем у октогена). Все это может повысить интерес к этому соединению как потенциальному компоненту энергетических композиций.

Можно также отметить соединение (*E*)-1,2бис(3,5-диазидо-1*H*-1,2,4-триазол-1-ил)диазен (**V**), чувствительность к удару которого (IS = 6 Дж) не очень большая для соединения с 85% азота в составе. В соединении **V** нет кислорода. Поэтому, несмотря на очень высокую энтальпию образования (6557 кДж/кг), для оптимизации элементного состава в композициях на основе **V** нужен дополнительный окислитель. Оптимизированная композиция "**V** + AC + ПХА" имеет $I_{ef}(3) = 259.7$ с и превосходит аналогичный состав "HMX + AC + + ПХА" на 4.2 с. Композиция "**V** + AC + АДНА" имеет еще более высокое значение эффективного импульса $I_{ef}(3) = 261.8$ с и превосходит состав "HMX + AC + АДНА" на те же 4.2 с.

Лучший из модельных составов на основе соединения V существенно уступает лучшему составу на основе соединения I. Т.е. замена всех нитрогрупп в молекуле I на азидные группы, дающая молекулу V, хотя и приводит к росту энтальпии образования соединения V по сравнению с I, но это не компенсирует в полной мере отсутствие кислорода и снижение плотности.

	<i>Таблица 6</i> . Максимально дости "наполни	ігаемые величины <i>І_{е́}</i> гель + связующее" п	(3) составов без ри объемной до.	конденсироі те связующеї	занных продук о 18%	гов сгоран	ви
Компонент	Формула	Связующее ^а (+ добавка)	$I_{ef}(3), c$	T_c , K	IS ⁶ , Дж	Лите- ратура	Примечание
ПХА	$\rm NH_4ClO_4$	УС	241.7	3000	20 [29]	в	малочувствителен к меха- ническим воздействиям
АДНА	$\rm NH_4N_3O_4$	yC	249.5	3019	3-5 [29]	В	низкая температура плав- ления (93°С)
Октоген	$\begin{array}{ccc} O_2^{\mathbf{N}} & & \\ & & & \\ & & & \\ & & & \\ & & & &$	AC	254.3	3178	6.4 [30]	ß	средне чувствителен
CL-20 ^r	0_2^{N-N} N^{-NO_2} 0_2^{N-N} N^{-NO_2} 0_2^{N} N^{-NO_2} N^{-NO_2}	AC	261.9	3457	4.2 [30]	я	очень чувствителен
	$(O_2N)_3 C O_2N$ N - N NO2	yC	259.6	3593			
тЛIX	O_2N $NO_2 C(NO_2)_3$	yC + AC	259.9	3599	6	[33]	недостаточно стабилен
XV°	(O ₂ N) ₃ C NO ₂ N N N O ₂ N C(NO ₂) ₃	yC	262.7	3640	٢	[33]	средне чувствителен
*IVX	$\overset{N-N}{\overset{N-N}{\overset{N}{\overset{N}}}}_{\overset{N}{\overset{N}{\overset{N}{\overset{N}}}}}_{\overset{N}{\overset{N}$	AC	262.4	3219	15	[5]	малочувствителен

ЗЮЗИН и др.

46

	Примечание	средне чувствителен	чрезвычайно чувствите- лен	чрезвычайно чувствите- лен и недостаточно ста- билен	чрезвычайно чувствите-	лен и недостагочно ста- билен	чрезвычайно чувствите-	лен (оценка) и неустои- чив к воздействию влаги
	Лите- ратура	В	[3]	[4]	[1]	[10]	[[[[IC]
	ІЅ ⁶ , Дж	01	1.5	1>	9 I	0.1		I
	T_c, \mathbf{K}	3785	3800	3792	3770	3770	3760	3800
	$I_{ef}(3), c$	268.5	269.7	270.3	269.6	271.0	275.0	274.0
16. Окончание	Связующее ^а (+ добавка)	YC + AC	АС (+ ПХА)	YC + AC	yC	AC	УС	AC
Таблица	Формула	$ \begin{array}{c} 0_2N \\ \searrow \\ N \\ N$	O [*] N [*] N ³ N ³ N ^{N*} O	O ₂ N N O-N N N N NO ₂ O NO ₂	0+Z Z		0+Z 0+Z	
	Компонент	-	\$NII ³	ХИШи	ХСЦЦА	ФIДО.		

АС – активное связующее, УС – углеводородное связующее.

⁶Чувствительность к удару (экспериментальная). ^вВ настоящей работе.

^тСL-20 – 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазаизовюрцитан, $\Delta H_f^\circ = 377.4$ кДж/моль, $\rho = 2.044$ г/см³ [32].

^дXIV -4,4',5,5'-тетранитро-2,2'-бис(тринитрометил)-2H,2'H-3,3'-бипиразол.

 $^{\mathrm{eXV}}$ – 3,6-динитро-1,4-бис(тринитрометил)-1,4-дигидропиразоло[4,3-с]пиразол.

^{*}XVI – дигидроксиламмониевая соль 5,5'-азотетразол-1,1'-диола.

³XVII — 3,6-диазидо-1,2,4,5-тетразин 1,4-диоксид.

иXVIII — 4,4'-динитро-3,3'-азофуроксан.

кфТДО – фуразано[3,4-е][1,2,3,4]гетразин 4,6-диоксид.

^пТТТО – [1,2,3,4]тетразино[5,6-е][1,2,3,4]тетразин 1,3,6,8-тетраоксид.

Работа выполнена по теме госзадания (регистрационный номер АААА-А19-119101690058-9).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б.* // Хим. физика. 2020. Т. 39. № 3. С. 53; https://doi.org/10.31857/S0207401X20030061
- 2. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2020. Т. 39. № 9. С. 52; https://doi.org/10.31857/S0207401X20090149
- 3. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 7. С. 24; https://doi.org/10.31857/S0207401X2107013X
- 4. Зюзин И.Н., Волохов В.М., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 9. С. 18; https://doi.org/10.31857/S0207401X21090107
- 5. *Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б.* // Хим. физика. 2022. Т. 41. № 1. С. 34; https://doi.org/10.31857/S0207401X2201006X
- Li Y., Wang B., Chang P. et al. // RSC Adv. 2018. V. 8. № 25. P. 13755;
- https://doi.org/10.1039/C8RA02491J 7. Yin P., Parrish D.A., Shreeve J.M. // Chem. Eur. J. 2014.
- V. 20. № 22. P. 6707; https://doi.org/10.1002/chem.201402762
- Wozniak D.R., Salfer B., Zeller M., Byrd E.F.C., Piercey D.G. // Org. Lett. 2020. V. 22. № 22. P. 9114; https://doi.org/10.1021/acs.orglett.0c03510
- Bottaro J.C., Schmitt R.J., Penwell P.E. N,N'-azobis-nitroazoles and analogs thereof as igniter compounds for use in energetic compositions: Патент США 5889161. 1999.
- Neunhoeffer H., Clausen M., Vötter H.-D. et al. // Liebigs Ann. Chem. 1985. V. 1985. № 9. P. 1732; https://doi.org/10.1002/jlac.198519850903
- Li Y.-C., Qi C., Li S.-H. et al. // J. Amer. Chem. Soc. 2010. V. 132. № 35. P. 12172; https://doi.org/10.1021/ja103525v
- Qi C., Li S.-H., Li Y.-C. et al. // J. Mater. Chem. 2011. V. 21. № 9. P. 3221; https://doi.org/10.1039/C0JM02970J
- Klapötke T.M., Piercey D.G. // Inorg. Chem. 2011. V. 50. № 7. P. 2732; https://doi.org/10.1021/ic200071q
- Klapötke T.M., Piercey D.G., Stierstorfer J. // Dalton Trans. 2012. V. 41. № 31. P. 9451; https://doi.org/10.1039/C2DT30684K
- Qi C., Li S.-H., Li Y.-C. et al. // Chem. Eur. J. 2012.
 V. 18. № 51. P. 16562; https://doi.org/10.1002/chem.201202428
- 16. *Tang Y., Gao H., Parrish D.A., Shreeve J.M.* // Chem. Eur. J. 2015. V. 21. № 32. P. 1140; https://doi.org/10.1002/chem.201501612

- 17. *Li Y.-N., Shu Y.-J., Wang Y.-L. et al.* // Cent. Eur. J. Energetic Mater. 2017. V. 14. № 2. P. 321; https://doi.org/10.22211/cejem/70373
- *Zhu J., Jin S., Yu Y. et al.* // Z. Naturforsch., B: Chem. Sci. 2016. V. 71. № 3. P. 197; https://doi.org/10.1515/znb-2015-0121
- Yin P., Zhang Q., Shreeve J.M. // Acc. Chem. Res. 2016.
 V. 49 № 1. P. 4; https://doi.org/10.1021/acs.accounts.5b00477
- 20. Huynh M.-H.V., Hiskey M.A., Hartline E.L., Montoya D.P., Gilardi R. // Angew. Chem. Intern. Ed. 2004. V. 43. № 37. P. 4924; https://doi.org/10.1002/anie.200460366
- Lempert D.B. // Chin. J. Explos. Propel. 2015. V. 38. № 4. P. 1; https://doi.org/10.14077/j.issn.1007-7812.2015.04.001
- 22. *Нечипоренко Г.Н., Лемперт Д.Б. //* Хим. физика. 1998. Т. 17. № 10. С. 93.
- Трусов Б.Г. // Тез. докл. XIV Междунар. конф. по химической термодинамике. СПб.: НИИ химии СПбГУ, 2002. С. 483.
- 24. Лемперт Д.Б., Шереметев А.Б. // Химия гетероцикл. соединений. 2016. Т. 52. № 12. С. 1070; https://doi.org/10.1007/s.10593-017-2008-х
- 25. Алдошин С.М., Лемперт Д.Б., Гончаров Т.К. и др. // Изв. РАН. Сер. хим. 2016. № 8. С. 2018; https://doi.org/10.1007/s11172-016-1546-1
- Павловец Г.Я., Цуцуран В.Н. Физико-химические свойства порохов и ракетных топлив. М.: Изд-во Министерства обороны, 2009.
- 27. Дорофеенко Е.М., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 3. С. 48; https://doi.org/10.31857/S0207401X21030043
- 28. Lempert D.B., Nechiporenko G.N., Manelis G.B. // Cent. Eur. J. Energetic Mater. 2006. V. 3. № 4. P. 73.
- 29. Dalinger I.L., Suponitsky K.Yu., Shkineva T.K., Lempert D.B. et al. // J. Mater. Chem. A. 2018. V. 6. № 30. P. 14780; https://doi.org/10.1039/C8TA05179H
- Elbeih A., Zeman S., Jungova M., Vávra P., Akstein Z. // Propellants Explos. Pyrotech. 2012. V. 37. № 6. P. 676; https://doi.org/10.1002/prep.201200018
- Лемперт Д.Б., Дорофеенко Е.М., Согласнова С.И. // Омский научн. вестн. Сер. Авиационно-ракетное и энерг. машиностроение. 2018. Т. 2. № 3. С. 58; https://doi.org/10.25206/2588-0373-2018-2-3-58-62
- 32. Simpson R.L., Urtiew P.A., Ornellas D.L. et al. // Propellants Explos. Pyrotech. 1997. V. 22. № 5. P. 249; https://doi.org/10.1002/prep.19970220502
- Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2022. Т. 41. № 9. С. 45; https://doi.org/10.31857/S0207401X2209014X