ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 669.2+536.4+504.062

ПОЛУЧЕНИЕ ЭНЕРГИИ И ВЫДЕЛЕНИЕ РЕДКИХ МЕТАЛЛОВ ИЗ ЗОЛЬНОГО ОСТАТКА ПРИ ФИЛЬТРАЦИОННОМ ГОРЕНИИ УГЛЕЙ

© 2022 г. Е. А. Салганский¹, В. М. Кислов¹, М. В. Цветков^{1*}, А. Ю. Зайченко¹, Д. Н. Подлесный¹, М. В. Салганская¹, Х. М. Кадиев², М. Я. Висалиев², Л. А. Зекель²

¹Институт проблем химической физики Российской академии наук, Черноголовка, Россия ²Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук, Москва, Россия

> **E-mail: tsvetkov@icp.ac.ru* Поступила в редакцию 29.06.2021; после доработки 14.07.2021; принята в печать 20.07.2021

Приведены результаты исследований выделения соединений ванадия, никеля и кобальта из зольного остатка, полученного в процессе фильтрационного горения древесного и бурого углей с последующим гидрометаллургическим извлечением металлов из зольных остатков. Для исследований использовали угли с предварительно нанесенными на них солями металлов. Изучены закономерности газификации исследуемых углей (температуры и скорости горения) и показано, что теплота сгорания газообразных продуктов для обоих видов углей составляет 4.3–4.5 МДж/м³. С помощью рентгенофазового анализа определены кристаллические структуры соединений металлов в зольных остатках. Проведено выщелачивание соединений металлов из зольного остатка водой, кислотами, перекисью водорода и их смесями. Установлено, что соединения ванадия практически полностью переходят в раствор при выщелачивании растворами кислот. Тогда как максимальные степени извлечения никеля и кобальта из зольных остатков газификации не превышали соответственно 59 и 61% для древесного угля и 40 и 28% для бурого угля. Это связано с тем, что в зольных остатках присутствуют соединения никеля и кобальта, стойкие к действию водных растворов кислот и других окислителей.

Ключевые слова: редкие металлы, фильтрационное горение углей, зольный остаток, степень извлечения, выщелачивание, ванадий, никель, кобальт. **DOI:** 10.31857/S0207401X22030104

введение

Благодаря специфическим физико-химическим свойствам редкоземельные элементы широко используются во многих высокотехнологичных приложениях (энергетика, электроника, космос и др.) [1]. Основной трудностью в получении редкоземельных элементов является отсутствие их концентрированных месторождений. К основным источникам получения редкоземельных элементов можно отнести минеральные руды [2], отработанную электронику [3] и т.д. В настоящее время все больше внимания обращают на угли и нефти, зола которых также содержит многие редкоземельные элементы, в особенности металлы [4]. Для селективного выделения редкоземельных элементов разрабатываются различные методы: экстракционные [5], сорбционные [6, 7], металлургические [8, 9], биологические [10, 11] и др.

Угли и нефтекоксы широко используются в энергетике. Газификация является эффективным методом получения энергии из твердых топлив. Газификация топлив может проводиться как в автотермическом [12-14], так и в аллотермическом режимах [15, 16]. Ранее исследование характеристик горения и массопереноса металлсодержащих продуктов в режиме фильтрационного горения было проведено в работах [17, 18]. При газификации твердых топлив в режиме фильтрационного горения наблюдается так называемый "сверхадиабатический эффект", обусловленный теплообменом между реагентами и продуктами [19, 20]. Преимуществами сверхадиабатического метода газификации твердых топлив по сравнению с известными техническими решениями являются: высокий энергетический КПД процесса, позволяющий перерабатывать низкокалорийные смеси, низкое содержание токсичных веществ в газообразных продуктах сгорания [21-23].

Для извлечения V, Ni и Co из зольного остатка предложен ряд технологических процессов, которые можно разделить на пирометаллургические и гидрометаллургические. Пирометаллургические методы переработки золы включают хлорирование либо восстановительную плавку с получением сплавов соединений V и других металлов [24, 25]. Для осуществления хлорирования зольных продуктов, собранных после газификации углей или других видов твердых топлив, в их составе должен присутствовать углерод. В промышленных образцах зольных продуктов углеродные частицы всегда содержатся в виде недожога. Указывается [26], что первоначально проводится гранулирование золошлаковых отходов (ЗШО). Хлорирование гранул рекомендуется осуществлять при температурах 500–700 °C в расплаве солей КСІ и NaCl. Например, хлорирование соединений V (600–700 °C) описывается уравнением

$$V_2O_5 + 6Cl_2 = 4VOCl_3 + 3O_2$$
.

После охлаждения продуктов хлорирования можно провести либо дробную конденсацию отдельных хлорсодержащих соединений V, Ni и Co, различающихся температурами конденсации, либо получение их смесей, из которой посредством ректификации выделяются чистые соединения металлов. Процесс хлорирования различных видов сырья используется в промышленном масштабе во многих странах, в том числе в России.

Другим способом переработки зольных продуктов является выплавка сплавов рассматриваемых металлов с соединениями железа с получением ферросплавов, содержащих ванадий, ферроникель, кобальт [27, 28]. Наиболее перспективными представляются способы гидрометаллургической переработки, позволяющие использовать золу с низким содержанием соединений рассматриваемых металлов. Извлечение V, Ni и Co из золы угля гидрометаллургическими способами может быть проведено путем кислотного [29], шелочного или водного выщелачивания [30-33]. Гидрометаллургический метод извлечения был использован в России в промышленном масштабе на заводе "Тулачермет" для получения V₂O₅ из собранных ЗШО после сжигания мазутов. Наиболее полно гидрометаллургические способы изучены в работах В.И. Букина с сотр. [34].

В патенте [35] предлагается способ переработки, полученных после сжигания мазутов ЗШО, заключающийся в смешивании их с карбонатом натрия и водой. Далее полученную смесь выдерживают при постоянной температуре в интервале 100–150 °C (в печи) в течение 2 ч с получением спека. Из высушенного "саморассыпающегося" спека степень извлечения V посредством водного выщелачивания при температуре 95–100 °C составляет 73–74%.

Способ выщелачивания V и Ni из зольного остатка соляной кислотой был запатентован в США [36]. Согласно этому способу зольный остаток смешивали с соляной кислотой, суспензию фильтровали, фильтрат обрабатывали гидроксидом натрия, калия или кальция, повышая pH раствора до 5.5–6.5. При этом выпадал осадок, содержащий соединения V, который отфильтровывали и затем дополнительно выщелачивали при pH = 8.5-9.5, выделяя в осадок гидроксид никеля. Осадок, содержащий соединения ванадия, сушили, смешивали с гидроксидом натрия, калия или кальция, а затем смесь прокаливали на воздухе при 500–1000°С. В результате получался твердый продукт, содержащий пятивалентный ванадий, который выщелачивали водой и фильтровали. Фильтрат подкисляли соляной кислотой и осаждали V₂O₅.

В работе [37] предложен электрохимический метод выщелачивания соединения ванадия из зольного остатка с использованием в качестве электролита водных растворов хлоридов и карбонатов щелочных металлов. Метод не представляется приемлемым, поскольку электролиты, содержащие хлорид-ионы, вызывают коррозию аппаратуры, а использование карбонатов связано с трудностью регенерации отработанного электролита.

Выбор реагента и условия проведения гидрометаллургической переработки зольных остатков с целью извлечения соединений металлов зависят от вещественного состава остатков, условий проведения газификации и элементного состава исходного угля. Термодинамическая оценка распределения между фазами соединений рассматриваемых металлов (кобальта, никеля, ванадия) показала, что данные металлы в условиях волны фильтрационного горения должны оставаться в твердой фазе в виде оксидных форм.

Цели работы — исследование возможности повышения степени полезного использования твердого топлива (угля) путем комплексной переработки ресурсов и получения тепла при газификации углей с последующим выделением редких металлов из зольного остатка.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Аналитические методы исследования

Элементный анализ органической массы угля проводили методом сжигания в потоке кислорода на элементном CHNS/O-анализаторе "Vario MICRO cube" фирмы "Elementar Analysensystem GmbH" (Germany) с динамическим диапазоном регистрации элементов от 0.01 до 100%. Содержание влаги в углях определяли по ГОСТ Р 52911-2013 "Топливо твердое минеральное. Определение общей влаги", содержание золы – по ГОСТ Р 55661-2013 "Топливо твердое минеральное. Определение зольности". Анализ газообразных продуктов фильтрационного горения углей осуществляли с помощью газового хроматографа Хроматэк Кристалл-5000.2 производства ЗАО СКБ "Хроматэк" (Россия).

Определение содержаний соединений V, Ni и Со в модельных образцах углей, зольных остатках после выщелачивания золы и фильтратах проводили на рентгенофлуоресцентном спектрометре ARL PERFORM'X Sequential XRF компании TERMO FISHER SCIENTIFIC (USA) и эмиссионном спектрометре с индуктивно-связанной плазмой ICPE-9000 компании SHIMADZU (Japan). Исследование фазового состава зольных остатков проводили на рентгенофазовом дифрактометре Rotaflex RU-200 производства компании Rigaku (Japan), работающем при следующих параметрах источника: 50 кВ, 160 мА. Длина волны монохроматизированного излучения составляла 1.542 Å. Для монохроматизации использовался графитовый кристалл-монохроматор на отраженном от образца пучке. Источник оснащен горизонтальным гониометром Rigaku D/Max RC, θ -2 θ -сканирование проводили по схеме Брэгга-Брентано в угловом диапазоне $2\theta = 10^{\circ} - 70^{\circ}$. Измерение велось в режиме непрерывного сканирования со скоростью 2°/мин и шагом 0.04°. Обработку экспериментальных дифрактограмм проводили с помощью специализированной программы MDI Jade 6.5. Для идентификации фаз использовали международную электронную базу дифракционных данных ICDD PDF-2.

Методика приготовления образцов углей

В качестве модельных образцов угля были выбраны древесный уголь (ГОСТ 7657-84) и сернистый уголь Подмосковного бассейна Кимовского разреза (бурый уголь). Размер частиц древесного угля составлял 3–5 мм, бурого угля – 3–7 мм. Исходный уголь высушивали до абсолютно сухого состояния, после чего взвешивали на лабораторных электронных весах ВСТ-600/10.

Угли пропитывали следующими солями кобальта, никеля и ванадия:

1) кобальт(II) азотнокислый шестиводный $(Co(NO_3)_2 \cdot 6H_2O, \Gamma OCT 4528-78, чистота – не менее 99%).$

2) никель(II) азотнокислый шестиводный $(Ni(NO_3)_2 \cdot 6H_2O, \Gamma OCT 4055-78, чистота – не ме$ нее 98%).

 метаванадат аммония (NH₄VO₃, ГОСТ 9336-75, чистота – не менее 99%).

Количество добавки солей металлов рассчитывали таким образом, чтобы содержание металла в угле составляло 0.1 мас.%. Навески солей металлов взвешивали на аналитических весах с наименьшим пределом взвешивания, составлявшим 0.0001 г.

Соли металлов растворяли в дистиллированной воде, выбирая объем воды таким образом, чтобы уголь был полностью погружен в раствор. Легкорастворимые в воде соли кобальта и никеля растворяли в холодной воде, а метаванадат аммония — в горячей воде.

Сухой уголь засыпали в широкую кювету и заливали приготовленным раствором. После того как часть раствора поглощалась углем, остаток раствора сливали в стеклянный стакан, а влажный уголь ставили в сушильный шкаф. Высушенный уголь вновь пропитывали остатком раствора, перемешивали и снова сушили, повторяя данную процедуру до полного впитывания всего раствора. Завершающими стадиями были: смывание небольшим количеством воды осевшего при испарении раствора растворенного вещества на стенках кюветы, пропитка им угля и сушка угля до абсолютно сухого состояния в сушильном шкафу при температуре 105°С. Перед сжиганием из общей массы пропитанного угля выбирали представительную пробу, которую растирали в ступке и анализировали на содержание металлов.

Методика выщелачивания зольного остатка

Перел провелением анализов, а также экспериментального изучения возможности извлечения соединений V, Ni и Co из золы углей в раствор зольные продукты подвергались механическому измельчению до аналитической крупности в фарфоровой ступке. Выщелачивание проводили в плоскодонной колбе объемом 300 мл, помещенной на магнитную мешалку с подогревом. Навеску золы массой 2 г загружали в колбу, далее добавляли выщелачивающий реагент при разном массовом соотношении золы (Т) и выщелачивающего раствора (Ж): от 1/10 до 1/30. Обработку проводили при температуре 60°С в течение 2 ч. Далее полученную суспензию отфильтровывали на воронке Бюхнера. Фильтр с отфильтрованным материалом промывали водой, сушили, а затем взвешивали и определяли массу для составления баланса. Далее от твердого остатка в фильтре брали пробу и определяли содержание V, Ni и Co и по полученным данным их содержаний в исходной золе и остатке на фильтре определяли степень их извлечения.

В качестве реагентов для выщелачивания использовали следующие вещества:

– Н₂О дистиллированная;

- 25% NH₄OH (ГОСТ 3760-79) + 5% (NH₄)₂CO₃ и 25% NH₄OH + 10% (NH₄)₂CO₃;

- H₂O₂ с концентрацией 37% (ГОСТ 177-88);

- $\rm H_2SO_4\,c$ концентрацией 95% (ГОСТ 4204-77) и 20%;

- HNO₃ с концентрацией 65% (ГОСТ 4461-77);

- смесевой раствор, содержащий 650 г/л $\rm H_2SO_4$ и 250 г/л HNO3;

- HCl с концентрацией 35-38% (ГОСТ 3118-77);

- раствор NaOH с концентрацией 20%.

Рис. 1. Схема экспериментальной установки: *1* – ПК, *2* – аналого-цифровой преобразователь, *3* – кварцевый реактор, *4* – теплоотражающий экран, *5* – электронный расходомер, ТП1–ТП6 – термопары.

МЕТОДИКА ЭКСПЕРИМЕНТА

Экспериментальные исследования по фильтрационному горению металлсодержащих углей проводили на лабораторной установке периодического действия, схема которой представлена на рис. 1. Основная часть экспериментальной установки — вертикально расположенный цилиндрический реактор *3*, выполненный из кварцевого стекла, с внутренним диаметром 66 мм, толщиной стенки 3 мм и длинной 500 мм. Для снижения боковых радиационных теплопотерь внешняя стенка реактора экранировалась теплоотражающим экраном *4*.

Исследуемые образцы углей загружали в реактор через верхний торец. Воздух подавали через штуцер в нижнем торце реактора. Расход воздуха контролировали с помощью электронного расходомера "Mass-view" 5 (рис. 1) компании Bronkhorst High-Tech (Netherlands). Продукт-газ выводился через верхний торец реактора.

Перед началом эксперимента в реактор загружали слой инертного материала до уровня первой термопары (ТП1). В качестве инертного материала использовали керамические корундовые шарики диаметром 5–7 мм. Поверх слоя керамических шариков засыпали инициирующий состав, представляющий собой нагретую в муфельной печи до ~800°С смесь древесного угля (10 г) с инертным материалом (30 г). После чего начинали подачу окислителя (воздуха) в реактор. При этом начиналось горение инициирующего состава. Расход воздуха во всех экспериментах поддерживали постоянным и равным $800 \text{ м}^3/\text{м}^2 \cdot \text{ч} (0.76 \text{ л/c}).$

Далее проводили загрузку исследуемой смеси небольшими порциями (~50 г). Спустя 5–7 мин формировался стационарный фронт горения, который характеризовался постоянными скоростью и температурой горения. Распространение фронта волны фильтрационного горения по реактору регистрировали по показаниям шести хромель-алюмелевых термопар (ТП1–ТП6), расположенных по длине реактора на расстоянии 65 мм друг от друга. Спай термопар располагался по центру реактора. Показания термопар передавались через АЦП 2 на регистрирующий компьютер *I* (рис. 1) и отображались на экране монитора в режиме реального времени.

Массовую скорость горения определяли по регистрируемому с помощью термопар продвижению фронта горения и по убыли массы топлива в ходе эксперимента. Во всех экспериментах периодически проводили отбор проб газообразных продуктов в стеклянную ампулу-ловушку. После эксперимента из реактора выгружали твердые продукты сгорания, отделяли золу, растирали ее в ступке и анализировали согласно вышеописанной методике.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Элементный состав исходных углей приведен в табл. 1. В отличие от древесного угля бурый

ПОЛУЧЕНИЕ ЭНЕРГИИ И ВЫДЕЛЕНИЕ РЕДКИХ МЕТАЛЛОВ

Параметр	C, %	Н, %	0, %	N, %	S, %	Зола, %	Q, МДж/кг
Древесный уголь	91.20	3.65	3.64	0.01	_	1.5	34.1
Бурый уголь	42.57	3.82	23.13	0.78	2.70	27.0	13.0

Таблица 1. Характеристики используемых углей

Цанианования проби	Содержание, %			
Паименование прооб	V	Ni	Со	
Древесный уголь, пропитанный NH ₄ VO ₃	0.10	_	_	
Бурый уголь, пропитанный NH ₄ VO ₃	0.10	—	—	
Древесный уголь, пропитанный Ni(NO ₃) ₂ · 6H ₂ O	—	0.09	—	
Бурый уголь, пропитанный Ni(NO ₃) ₂ · 6H ₂ O	—	0.11	—	
Древесный уголь, пропитанный Co(NO ₃) ₂ · 6H ₂ O	—	—	0.76	
Бурый уголь, пропитанный Co(NO ₃) ₂ · 6H ₂ O	—	—	0.96	
Древесный уголь, пропитанный смесью солей V, Ni, Co	0.17	0.10	0.09	
Зола древесного угля, пропитанного NH ₄ VO ₃	11.34	_	—	
Зола бурого угля, пропитанного NH ₄ VO ₃	1.19	—	—	
Зола древесного угля, пропитанного $Ni(NO_3)_2 \cdot 6H_2O$	—	2.96	—	
Зола бурого угля, пропитанного $Ni(NO_3)_2 \cdot 6H_2O$	—	1.06	—	
Зола древесного угля, пропитанного $Co(NO_3)_2 \cdot 6H_2O$	—	—	7.05	
Зола бурого угля, пропитанного $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$	—	—	1.35	
Зола древесного угля, пропитанного смесью солей V, Ni и Co	2.12	1.12	1.00	
Зола бурого угля, пропитанного смесью солей V, Ni и Co	1.19	1.40	1.09	

Таблица 2. Содержание металлов V, Ni, Co в углях и золе

Таблица 3. Содержание в углях прочих химических элементов						
Вид угля	Al, %	Si, %	Fe, %	Ca, %	Na, %	Mg, %
Древесный уголь	до 0.04	0.06-0.39	0.01-0.02	0.10-0.19	до 0.20	до 0.04
Бурый уголь	2.40-3.37	1.66-2.40	0.53-0.81	0.16-0.20	до 0.70	до 0.04

уголь характеризуется высокой зольностью и низкой теплотворной способностью.

Анализ содержания металлов в подготовленных образцах углей и их золе представлен в табл. 2. Зольные остатки газификации бурого и древесного углей, пропитанные солями ванадия, никеля и кобальта, могут быть использованы для изучения процессов их извлечения. Содержание всех трех металлов по отдельности в золе древесного угля выше, чем их содержание в золе бурого угля из-за значительной разности в зольности углей. В ряде случаев наблюдали пониженное содержание металлов в золе углей вследствие их малой концентрации в исходных образцах и потерь при разгрузке из реактора зольного остатка.

Помимо внесенных нами металлов, в пропитанных углях также присутствуют некоторые химические элементы, которые содержались в исходных углях (табл. 3). Эти элементы согласно рентгенофазовому анализу не образуют кристаллических фаз с рассматриваемыми металлами.

При воздушной газификации древесного угля температура горения составляла ~1200°С, массовая скорость горения – 0.14 г/с, а теплотворная способность газообразных продуктов – 4.5 МДж/м³ (табл. 4). В случае бурого угля температура и скорость горения были выше, чем у древесного угля. Это обусловлено более высоким содержанием золы, в результате чего реализовалась переходная структура волны горения, характеризующаяся более высокими значениями температур и скоростей горения. Однако теплота сгорания газообразных продуктов несколько ниже, чем у древесного угля и составляет ~4.3 МДж/м³. Однако в отличие от древесного угля продукты газификации бурого угля, кроме газообразных продуктов, содержат го-

Вид угля Вид металла		<i>T</i> , °C	<i>V</i> _{гор} , г/с	<i>Q</i> , МДж/м ³
	V	1178	0.13	4.15
Праваания	Со	1155	0.14	4.68
древесный	Ni	1165	0.15	—
	V + Co + Ni	—	0.15	4.49
	V	1319	_	4.27
F.m	Со	1293	0.57	4.26
Бурыи	Ni	1257	0.53	4.24
	V + Co + Ni	—	0.54	—

Таблица 4. Характеристики газификации углей

Примечания: *Т* – максимальная температура горения, *V*_{гор} – скорость горения, *Q* – калорийность газов.

рючие органические продукты термического разложения (пиролиза) угля — смолы (элементный состав, мас.%: С — 74.8%, Н — 7.6%, О — 13.0%, N — 1.1%, S — 3.5%). Выход продуктов пиролиза в значительной мере определяется температурным режимом проведения процесса [38, 39]. В наших экспериментах выход пиролизных смол составил ~8% от исходной массы бурого угля. Теплота сгорания последних составляет ~32 МДж/кг. Согласно данным рентгенофазового анализа золы древесного (рис. 2) и бурого (рис. 3) углей, пропитанных солями V, Ni и Co, в образцах присутствуют как индивидуальные оксидные формы указанных металлов, так и их сложные соединения. В образце золы древесного угля, пропитанного солями V, Ni и Co, основными идентифицированными фазами являются VO₂, NiO, NiTiO₃, CoO, CaO, Ca₂SiO₄, CaSO₄, SiO₂, а в образце золы

Рис. 2. Рентгенограмма золы, полученной после газификации древесного угля, пропитанного солями V, Ni и Co: 1 - CaO, 2 - CoO, 3 - NiO, $4 - Ca_2SiO_4$, $5 - SiO_2$, $6 - NiTiO_3$, $7 - VO_2$, $8 - CaSO_4$.

Рис. 3. Рентгенограмма золы, полученной после газификации бурого угля, пропитанного солями V, Ni и Co: $1 - \text{Fe}_2\text{O}_3$, $2 - \text{Al}_6\text{Si}_2\text{O}_{13}$, $3 - \text{TiO}_2$, $4 - \text{CaCO}_3$, $5 - \text{Co}_3\text{O}_4$, 6 - NiO, $7 - \text{NiS}_2$, $8 - \text{NiCo}_2\text{O}_4$, $9 - \text{Co}_2\text{C}$, $10 - \text{VO}_2$.

Рис. 4. Зола бурого угля до (*a*) и после измельчения (б).

бурого угля, пропитанного такими же солями такими фазами являются VO₂, NiO, NiS₂, NiCo₂O₄, Co₃O₄, Co₂C, CaCO₃, TiO₂, Al₆Si₂O₁₃, Fe₂O₃.

Зольные остатки, полученные после газификации углей, пропитанных соединениями V, Ni и Со, характеризуются высоким содержанием ука-

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 3 2022

Реагент		Т/Ж	Степень извлечения, % (по анализу остатка)			
			V	Ni	Со	
		Объект исследован	ий: зола бурого угля	1	I	
H ₂ O		1/20	40.2	33.4	20.8	
$25\% \text{ NH}_4\text{OH} + 10$	0% (NH ₄) ₂ CO ₃	1/10	53.4	33.0	21.9	
раствор NaOH (2	0%)	1/10	38.2	33.5	19.1	
H ₂ SO ₄ (концентр	ация – 95%)	1/30	77.1	37.2	22.4	
$H_2SO_4 (95\%) + H_2$	₂ O ₂ (37%)	1/10	72.5	30.2	25.1	
H ₂ O ₂ (37%)		1/10	44.4	36.7	21.9	
H ₂ SO ₄ (95%)	1-я стадия	1/10	73.6	29.7	22.6	
	2-я стадия	1/10	15.9	3.6	0	
	3-я стадия	1/10	1.8	0	0	
H ₂ SO ₄ (20%)	4-я стадия	1/10	1.6	0	0	
ИТ	ого:	_	92.9	33.3	22.6	
HNO ₃ (65%)	1-я стадия	1/10	75.9	8.0	16.9	
	2-я стадия	1/10	13.2	3.5	9.7	
	3-я стадия	1/10	10.5	0	0	
H ₂ SO ₄ (20%)	4-я стадия	1/10	0.3	0	0	
ИТОГО:		_	99.9	11.5	26.6	
650 г/л H ₂ SO ₄ /350 г/л HNO ₃		1/10	77.1	33.5	23.8	
HCl	1-я стадия	1/10	77.2	28.0	17.8	
H ₂ SO ₄ (93%)	2-я стадия	1/10	21.4	9.2	4.8	
ИТ	ОГО:	-	98.6	37.2	22.6	
HCl	1-я стадия	1/10	77.2	28.0	17.8	
HNO ₃ (65%)	2-я стадия	1/10	19.1	11.2	10.3	
ИТ	ОГО:	-	96.3	39.2	28.1	
HCl	1-я стадия	1/10	77.2	28.0	17.8	
NH ₄ OH (25%)	2-я стадия	1/10	16.7	10.4	3.5	
ИТ	ΌΓΟ:	—	93.9	38.4	21.3	
HNO ₃ /HCl (1/3)	1-я стадия	1/10	79.2	29.7	17.7	
H ₂ SO ₄ (93%)	2-я стадия	1/10	17.0	5.2	5.3	
ИТ	ОГО:	_	96.2	34.9	24.0	
HNO ₃ /HCl (1/3)	1-я стадия	1/10	79.2	29.7	17.7	
HNO ₃ (65%)	2-я стадия	1/10	12.7	3.8	0.7	
ИТОГО:			91.9	33.5	18.4	
HNO ₃ /HCl (1/3)	1-я стадия	1/10	79.2	29.7	17.7	
NH ₄ OH (25%)	2-я стадия	1/10	14.7	2.6	7.6	
ИТОГО:		_	93.9	32.3	25.3	

Таблица 5. Степень извлечения в раствор соединений ванадия, никеля и кобальта из золы сжигания углей

Реагент		Т/Ж	Степень извлечения, % (по анализу остатка)			
			V	Ni	Со	
		Объект исследований	і: зола древесного уг	гля		
H ₂ O		1/20	41.8	48.1	27.6	
раствор NaOH (20%)		1/10	41.0	50.0	26.0	
H ₂ SO ₄ (95%)	1-я стадия	1/10	92.5	57.4	60.0	
	2-я стадия	1/10	2.3	1.4	0.7	
	3-я стадия	1/10	1.2	0	0	
ИТОГО:		_	96.0	58.8	60.7	
HNO ₃ (65%)	1-я стадия	1/10	93.6	55.1	60.0	
	2-я стадия	1/10	2.5	3.8	1.2	
	3-я стадия	1/10	0.9	0	0	
ИТОГО:		_	97.0	58.9	61.2	
650 г/л H ₂ SO ₄ /250 г/л HNO ₃		1/10	93.5	55.5	59.8	

Таблица 5. Окончание

занных металлов, а вещественный состав (рис. 2 и 3) показывает, что в образцах присутствуют трудноизвлекаемые соединения некоторых рассматриваемых металлов (NiTiO₃, NiS₂, NiCo₂O₄, Co₂C). Полученные зольные остатки газификации древесного и бурого углей, пропитанные солями V, Ni и Со, представляли собой неоднородные продукты. Фотографии золы бурого угля до и после измельчения приведены на рис. 4 и 5.

Выбранные реагенты имеют разное влияние на степень извлечения соединений ванадия. никеля и кобальта (табл. 5). Так, например, при действии 20%-ного раствора NaOH, дистиллированной воды, смеси NH_4OH и $(NH_4)_2CO_3$ на золу бурого угля степени извлечения V. Ni и Co не превышают 54, 34 и 22% соответственно. При действии сильных кислот (H₂SO₄, HNO₃, HCl и их смеси) уже на первой стадии обработки повышается степень извлечения V до 73-76%, при этом снижается извлечение Ni до 29-30%, а степень извлечение соединений Со практически не изменяется. При проведении дополнительных стадий выщелачивания (двух-трех стадий) достигается практически полное извлечение в раствор соединений ванадия, а также повышается степень извлечения соединений никеля и кобальта. Наиболее высокое значение степени извлечения соединений никеля (35%) и кобальта (25.5%) достигается при двухстадийном выщелачивании при использовании в качестве реагента HCl и смеси HCl с H_2SO_4 и HNO₃.

Влияние состава растворов на степень извлечения металлов при выщелачивании золы древесного угля согласуется с результатами, полученными при выщелачивании золы бурого угля, однако во всех экспериментах степень извлечения соединений Ni и Co существенно выше, что связанно, по-видимому, с разницей вещественных составов полученных зольных остатков. В получаемый раствор после четырехстадийной обработки также переходят соединения некоторых элементов (Na, Ca, K и др.), содержащихся в исходном сырье.

По-видимому, невысокая степень извлечения Ni и Co из исследованных образцов зольных остатков связана с образованием при газификации соединений (NiTiO₃, NiS₂, NiCo₂O₄, Co₂C), без проведения дополнительной термохимической обработки которых (спекании, хлорировании и т.д.) практически невозможно увеличить степень извлечения соединений указанных металлов.

выводы

Выполненные исследования показали, что скорость и температура фильтрационного горения бурого угля Подмосковного бассейна выше, чем древесного угля. В результате фильтрационного горения обоих типов углей получается газ с теплотой сгорания 4.3—4.5 МДж/м³. При фильтрационном горении бурого угля также образуется смола с теплотой сгорания, составляющей ≈32 МДж/кг, выход которой составляет примерно 8% от массы исходного угля.

Определены кристаллической структуры соединений металлов в зольных остатках углей. Выполнены эксперименты по выщелачиванию соединений металлов водой, кислотами, перекисью водорода и их смесями. Установлено, что соединения ванадия практически полностью (97–98%) переходят в раствор при двух-трехстадийном выщелачивании растворами кислот. В зольных остатках присутствуют соединения никеля и кобальта, стойкие к действию водных растворов кислот и окислителей. Вследствие этого максимальные степени извлечения никеля и кобальта из зольных остатков не превышали 59–61%.

Часть анализов проводилась на оборудовании АЦКП ИПХФ РАН и ИНХС РАН.

Исследование выполнено при финансовой поддержке Российским фондом фундаментальных исследований в рамках научного проекта № 18-29-24029-мк и госзадания № 0089-2019-0018 (регистрационный номер АААА-А19-119-022690098-3).

СПИСОК ЛИТЕРАТУРЫ

- Chakhmouradian A.R., Wall F. // Elements. 2012. V. 8. P. 333;
 - https://doi.org/10.2113/gselements.8.5.333
- Demol J., Ho E., Soldenhoff K. et al. // Hydrometallurgy. 2019. V. 188. P. 123; https://doi.org/10.1016/j.hydromet.2019.05.015
- Jowitt S.M., Werner T.T., Weng Z. et al. // Curr. Opin. Green Sustain. Chem. 2018. V. 13. P. 1; https://doi.org/10.1016/j.cogsc.2018.02.008
- Салганский Е.А., Цветков М.В., Кадиев Х.М. и др. // ЖПХ. 2019. Т. 92. № 12. С. 1514; https://doi.org/10.1134/S0044461819120028
- 5. Исаева Ю.И., Елохов А.М., Денисова С.А. и др. // ЖПХ. 2020. Т. 94. № 7. С. 1006.
- 6. Громов В.Ф., Иким М.И., Герасимов Г.Н. и др. // Хим. физика. 2021. Т. 40. № 1. С. 55; https://doi.org/10.31857/S0207401X21010039
- Touré M., Chamieh J., Arrachart G. et al. // Sep. Purif. Technol. 2020. V. 251. P. 117330; https://doi.org/10.1016/j.seppur.2020.117330
- Tan Q., Li J., Zeng X. // Crit. Rev. Environ. Sci. Technol. 2015. V. 45. № 7. P. 749; https://doi.org/10.1080/10643389.2014.900240
- Lu Y., Xu Z. // Resour. Conserv. Recycl. 2016. V. 113. P. 28; https://doi.org/10.1016/j.resconrec.2016.05.007
- Hennebel T., Boon N., Maes S. et al. // New Biotechnol. 2015. V. 32. № 1. P. 121; https://doi.org/10.1016/j.nbt.2013.08.004
- Lee J.C., Pandey B.D. // Waste Manag. 2012. V. 32. № 1. P. 3; https://doi.org/10.1016/j.wasman.2011.08.010
- Ripoll N., Salgansky E., Toledo M. // Intern. J. Heat Mass Transfer. 2021. V. 177. 121472; https://doi.org/10.1016/j.ijheatmasstransfer.2021.121472
- Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А. и др. // Хим. физика. 2021. Т. 40. № 3. С. 23; https://doi.org/10.31857/S0207401X21030109

- Fierro M., Requena P., Salgansky E. et al. // Chem. Eng. J. 2021. V. 425. P. 130178; https://doi.org/10.1016/j.cej.2021.130178
- Antonov D.V., Valiullin T.R., Iegorov R.I. et al. // Energy. 2017. V. 119. P. 1152; https://doi.org/10.1016/j.energy.2016.11.074
- Solomatin Ya., Shlegel N.E., Strizhak P.A. // Fuel. 2019. V. 255. P. 115751; https://doi.org/10.1016/j.fuel.2019.115751
- 17. Заславский Г.Е., Лемперт Д.Б., Манелис Г.Б. // Хим. физика. 2014. Т. 33. № 1. С. 14; https://doi.org/10.7868/S0207401X14010142
- Lutsenko N.A., Salgansky E.A. // Intern. J. Multiphas. Flow. 2021. V. 140. P. 103670; https://doi.org/10.1016/j.jjmultiphaseflow.2021.103670
- Evseev N., Ziatdinov M., Romandin V. et al. // Processes. 2020. V. 8. № 9. P. 1056; https://doi.org/10.3390/pr8091056
- 20. Salgansky E.A., Zaichenko A.Y., Podlesniy D.N. et al. // Intern. J. Hydrogen Energy. 2020. V. 45. № 35. P. 17270; https://doi.org/10.1016/j.ijhydene.2020.04.177
- 21. Костин С.В., Кришеник П.М., Рогачев С.А. // Хим. физика. 2021. Т. 40. № 1. С. 24; https://doi.org/10.31857/S0207401X21010076
- Lutsenko N.A. // Combust. Theory Modell. 2018. V. 22. № 2. P. 359; https://doi.org/10.1080/13647830.2017.1406617
- Podlesniy D., Zaichenko A., Tsvetkov M. et al. // Fuel. 2021. V. 298 P. 120862; https://doi.org/10.1016/j.fuel.2021.120862
- 24. Шпирт М.Я., Рашевский В.В. Микроэлементы горючих ископаемых. М.: Кучково поле, 2010.
- 25. Сирина Т.П., Красненко Т.И., Соловьев Г.В. и др. // Вестн. ЮУрГУ. Химия. 2013. Т. 5. № 1. С. 4.
- 26. Хаджиев С.Н., Шпирт М.Я. Микроэлементы в нефтях и продуктах их переработки. М.: Наука, 2012.
- 27. Шаповалов А.С., Полищук А.В., Черных Д.П. и др. Способ получения феррованадия: Пат. 2677197 РФ// Официальный Бюллетень Федеральной службы по интеллектуальной собственности "Изобретения. Полезные модели". 2019. № 2.
- Голубев А.А., Гудим Ю.А. Способ выплавки ферроникеля из окисленных никелевых руд и продуктов их обогащения и агрегат для его осуществления: Пат. 2336355 РФ // Б.И. 2008. № 29.
- 29. *Кадиев Х.М., Висалиев М.Я., Зекель Л.А. и др. //* XTT. 2018. № 6. С. 51; https://doi.org/10.1134/S0023117718060063
- 30. Висалиев М.Я. Комплексная переработка тяжелых нефтяных остатков с получением концентрата металлов Дис. ... канд. хим. наук. М.: ИНХС РАН, 2014.
- 31. *Chmielewski A.G., Urbanski T.S., Migdal W.* // Hydrometallurgy. 1997. V. 45. № 3. P. 333; https://doi.org/10.1016/S0304-386X(96)00090-4
- 32. Висалиев М.Я., Шпирт М.Я., Кадиев Х.М. и др. // ХТТ. 2012. № 2. С. 32.

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 3 2022

- Tsuboi I., Kasai S., Kunugita E. et al. // J. Chem. Eng. Jpn. 1991. V. 24. P. 15; https://doi.org/10.1252/jcej.24.15
- 34. *Цыганкова М.В., Букин В.И., Лысакова Е.И. и др.* // Цв. металлы. 2011. № 1. С. 21.
- 35. Лукомская Г.А., Шакиров К.З., Петрова Л.И. и др. Способы извлечения ванадия из отходов сжигания сернистых мазутов: Пат. 2334800 РФ // Б.И. 2008. № 27.
- 36. *Schemel R., Rodriguez D., Salazar R.* Method for leaching and recovering vanadium from vanadium bearing by-product materials: Pat. US № 4539186. USA, 1985.
- 37. Михайлов Ю.Л. Физико-химические исследования процессов выщелачивания микрокомпонентов золы от сжигания углей Экибастузского бассейна Дис. ... канд. хим. наук. Омск: ОмГУ, 2001.
- Tereza A.M., Medvedev S.P., Smirnov V.N. // Acta Astronaut. 2020. V. 176. P. 653; https://doi.org/10.1016/j.actaastro.2020.03.045
- 39. *Тереза А.М., Агафонов Г.Л., Бетев А.С. и др.* // Хим. физика. 2020. Т. 39. № 12. С. 29; https://doi.org/10.31857/S0207401X20120158