УДК 544.43:544.723.2:543.51

МОДЕЛИРОВАНИЕ ВРЕМЯЗАВИСИМОГО ЗАХВАТА О₃ НА ПОКРЫТИИ ИЗ МЕТАНОВОЙ САЖИ В УСЛОВИЯХ КОНКУРЕНТНОЙ АДСОРБЦИИ О₃/NO₂ И О₃/N₂O₅

© 2023 г. В. В. Зеленов^{1*}, Е. В. Апарина¹

¹Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук,

Москва, Россия *E-mail: v.zelenov48@gmail.com Поступила в редакцию 15.02.2022; после доработки 14.03.2022; принята в печать 21.03.2022

Исследован захват O_3 ($1 \cdot 10^{12} - 5 \cdot 10^{13}$ см⁻³) на покрытии из метановой сажи, предварительно обработанном N_2O_5 , с использованием проточного реактора с подвижной вставкой. Исходя из зависимости коэффициента захвата озона от времени экспозиции и от концентрации [O₃], установлен механизм захвата и получен ряд элементарных параметров, описывающих процесс захвата при произвольных концентрациях O_3 . На базе ленгмюровского представления адсорбции предложено модельное описание захвата на покрытии из сажи в условиях конкурентной адсорбции O_3/NO_x , где $NO_x = NO_2$ и N_2O_5 , с учетом многостадийности процесса захвата. На основании разработанной модели и элементарных параметров, описывающих захват O_3 , NO_2 и N_2O_5 на свежем сажевом покрытии, а также захват озона на поверхности, предварительно обработанной NO_2 и N_2O_5 , проведены численные оценки дополнительных каналов захвата озона для двух реальных сценариев соотношения концентрация O_3/NO_2 и O_3/N_2O_5 . Для промышленно развитого региона в зимнее время, когда концентрация озона минимальна (10 ppb O_3 , 17 ppb NO_2 и 4 ppb N_2O_5), дополнительный интегральный вклад в захват O_3 на продуктах реакции NO_2 с сажей составляет 68%, а в случае $N_2O_5 - 3.6\%$. Для того же региона летом при максимальной концентрации озона (36 ppb O_3 , 17 ppb NO_2 и 4 ppb N_2O_5) аналогичные вклады будут составлять 20% и 1% соответственно. Причины такого различия обсуждаются.

Ключевые слова: химия тропосферы, озон O₃, окислы азота, NO₂, N₂O₅, метановая сажа, коэффициент захвата, конкурентная адсорбция, коэффициент Ленгмюра. **DOI:** 10.31857/S0207401X23010144, **EDN:** HREHOS

введение

Окислы азота NO, NO₂, N₂O₅ наряду с озоном О₃ играют важную роль в окислительной способности земной атмосферы. Один из таких компонентов – N_2O_5 как активный ночной реагент образуется по реакциям $NO_2 + O_3 \rightarrow NO_3 + O_2$, $NO_3 + NO_2 + M \leftrightarrow N_2O_5$ [1] и участвует в разветвленной схеме разрушения озона в верхних слоях атмосферы [2]. В то же время гетерогенный захват N₂O₅ на частицах атмосферного аэрозоля за счет такой убыли N2O5 ведет к увеличению концентрации озона [3]. В целом расход N_2O_5 определяется как убылью реагентов NO₂ и O₃, так и гетерогенными реакциями на капельках облаков и частицах аэрозолей различной природы [1, 4, 5]. Исходя из натурных измерений в тропосфере, относительные концентрации N2O5 составляют 50-100 ppt над Арктикой в зимний период и до 3.8 ppb над загрязненными регионами [4]. Измеряемые концентрации О₃ в тропосфере дают значения порядка 35–40 ррв [5, 6]. В приземной тропосфере озон образуется в циклах фотохимических реакций с участием OH, NO_x и различных органических компаундов [6, 7]: дополнительный вклад вносят грозы и частично интрузия из стратосферы. При натурных измерениях относительных концентраций O₃, NO₂ и отдельно NO_x в течение года в приземной тропосфере промышленно развитого региона установлено. что содержание озона максимально летом (40 ppb) и минимально зимой (10 ppb) с локальным минимумом в 0.3 ppb. При этом максимуму [O₃] соответствует минимум $[NO_x]$ (17 ppb), а минимуму $[O_3]$ – максимум $[NO_{x}]$ (30 ppb). Содержание NO₂ на протяжении года слабо изменяется и остается на уровне 15-20 ppb [8].

Средняя масса аэрозоля в тропосфере составляет 4.6 мкг · м⁻³. При этом на долю органической фракции приходится около 27%, большей частью которой является углерод [9–11]. Углеродсодер-

жащий аэрозоль образуются в результате горения топлив и биомасс, а также лесных пожаров. Глобальная эмиссия основного компонента сажи – углерода оценивается в 6.6–11.6 Тг в год, а концентрация субмикронных частиц углерода в воздухе составляет ~0.6 мкг · м⁻³ [12–14].

Захват О₃ на покрытии из сажи горения углеводородов исследован в большом числе работ с применением различных методик и способов регистрации как газофазных реагентов и продуктов. так и продуктов конденсированной фазы [15]. Наблюдалась зависимость коэффициента захвата у от времени экспозиции к газу-реагенту и от его концентрации. Коэффициенты захвата озона на покрытиях из сажи различных углеводородов, измеренные и рассчитанные на истинную ВЕТ-поверхность (Brunnauer-Emmett-Teller), составляют $\gamma_{ini} \sim 10^{-3}$ – начальная величина и $\gamma_{ss} \sim 10^{-4} - 10^{-5}$ – усредненное значение за большой промежуток времени. Во многих работах отмечается сложный многостадийный характер захвата. Исходя из температурной зависимости коэффициента захвата, в ряде работ оценены коэффициент Ленгмюра K_L , теплота адсорбции Q_{ad} и энергия активации E_a элементарных реакций захвата O_3 на сажевом покрытии [16-18].

Данные по временному поведению коэффициента захвата $\gamma(t)$ озона, его зависимости от концентрации О₃, по содержанию образующихся продуктов и кинетическим параметрам элементарных реакций необходимы для корректного описания процесса такого взаимодействия и в конечном итоге для моделирования глобальных химических процессов, протекающих в атмосфере. Захват озона на частицах аэрозоля в тропосфере происходит в условиях конкурентной адсорбции. С одной стороны, вследствие малости концентраций конкурирующих газов-реагентов захваты каждого из них должны происходить независимо и практически не должны влиять друг на друга. С другой стороны, в результате захвата конкурирующего агента может образовываться новый химически активный твердый продукт, на котором возможен дополнительно захват озона. В частности, установлено, что в результате захвата NO_2 на свежем сажевом покрытии образуются поверхностные центры, способные к такому захвату [19].

Газ-реагент N_2O_5 является важным промежуточным звеном в атмосферной химии окислов азота, а его концентрация термодинамически связана с концентрациями NO_2 и NO_3 . Лабораторные исследования взаимодействия N_2O_5 с сажей некоторых углеводородов немногочисленны и содержат большой разброс значений коэффициентов захвата γ : от 0.33 до $4 \cdot 10^{-5}$ в зависимости от концентрации газа-реагента, учета геометрической или удельной поверхности сажи и времен-

но́го фактора процесса, когда ү_{ілі} начального захвата на порядок больше у квазистационарного захвата [15, 20]. Установлено, что захват N₂O₅ на таких субстратах происходит в результате совместного действия физсорбции и окислительновосстановительной реакции с образованием газофазного продукта NO либо NO2 и следового количества HNO₃. Наблюдается начальный быстрый захват с коэффициентом захвата $\gamma_{ini} \approx 0.1$ (в расчете на геометрическую поверхность сажи) и последующее уменьшение коэффициента захвата до значений $\gamma_{ss} \approx 5 \cdot 10^{-3}$. С учетом реальной (BET) поверхности сажи γ_{ss} оценивается как 3 · 10⁻⁸ [21]. Исходя из зависимости у от концентрации реагента, авторы предполагают сложный механизм взаимодействия N_2O_5 с сажей: $N_2O_5 + \{C\} \rightarrow$ \rightarrow N₂O₃(ads) + Продукт, N₂O₃(ads) \rightarrow NO + NO₂. Такой процесс является некаталитическим, т.е. углеродные центры расходуются в этих процессах захвата, что приводит к модификации поверхности субстрата и образованию новых функциональных групп.

Цель данной работы — установление дополнительных каналов стока озона на поверхностных центрах, образующихся в результате захвата конкурирующего газа-реагента. В качестве такого конкурирующего агента рассматриваются N_2O_5 и исследованный нами ранее NO_2 . На базе лэнгмюровского представления конкурентной адсорбции предложено модельное описание процесса захвата озона на свежем сажевом покрытии в присутствии этих газов-реагентов. Получены количественные оценки дополнительного канала захвата озона для ряда его характерных тропосферных концентраций.

ЭКСПЕРИМЕНТ

Химический реактор. Захват O_3 и N_2O_5 исследовали в проточном реакторе с подвижной вставкой и нанесенным на нее пленочным сажевым покрытием [18]. Реактор сопряжен с масс-спектрометром высокого разрешения с электронной ионизацией. Диапазон энергии ионизирующих электронов можно варьировать от 50 до нескольких эВ при разбросе в 0.1 эВ.

При исследовании захвата N_2O_5 основной поток гелия (особой чистоты) протекает через термостатированную ампулу, заполненную кусочками тефлоновых капилляров и намороженной на них N_2O_5 , а затем через цилиндрический стеклянный реактор с внутренним диаметром $d_R = 1.3$ см с линейной скоростью u = 100-250 см \cdot с⁻¹ при суммарном давлении в реакторе p = 1-3 Торр. Тонкий центральный стержень из нержавеющей стали с сажевым покрытием диаметром $d_r = 0.2$ см и максимальной длиной L = 50 см можно переме-

щать с помощью внешнего магнита вдоль оси трубки реактора из компенсирующего объема в зону контакта с газом-реагентом. Через компенсирующий объем подается дополнительный поток гелия во избежание неконтролируемого диффузного потока газа-реагента из зоны реакции в этот объем. Отбор пробы в масс-спектрометр проводится в виде молекулярного пучка через отверстие диаметром 0.35 мм в вершине напускного конуса, расположенного соосно с внешней трубкой реактора.

При исследовании захвата озона к основному потоку гелия через боковой ввод подавался дополнительный поток смеси O₃/He с заданной концентрацией озона. Эта смесь приготавливалась заранее в бачке из нержавеющей стали. Бачок и все трубки подачи смеси в реактор были пропассивированы заранее молекулярным фтором.

Реагент N_2O_5 приготавливали заранее в статических условиях по реакции $O_3 + NO_2 \rightarrow NO_3 + O_2$, $NO_3 + NO_2 \rightarrow N_2O_5$, затем перемораживали в ампулу криостата при медленной прокачке потоком гелия и хранили при температуре ампулы, равной 178 К. Основным побочным реагентом была двуокись азота, вклад потока которой в поток N_2O_5 составлял около 5%.

В качестве источника сажи использовали лабораторную горелку, присоединенную к газовой магистрали. Металлический стержень располагали на расстоянии 15—17 см от основания пламени при постоянном вращении стержня вручную. Удельную поверхность сажи определяли экспериментально по методу ВЕТ. При диффузионном горении метана и при наших условиях нанесения удельная поверхность сажи составляет $S_{spec} =$ = $(40 \pm 10) \text{ м}^2 \cdot \text{г}^{-1}$.

Процедура измерения. Экспериментальные зависимости коэффициента захвата О₃ на сажевом покрытии от времени его экспозиции определяли по относительному изменению концентрации озона на масс-спектральной линии I_{48} (m/z = 48) при введении стержня с покрытием в зону его контакта с озоном и последующем выведении из этой зоны. Измерение интенсивности ионного тока проводили в режиме механической модуляции молекулярного пучка и синхронного счета ионов. В отсутствие стержня с покрытием измеряли исходную концентрацию озона. Вводили в зону контакта участок стержня (обычно на 5–10 см), одновременно включая режим многократного измерения в течение нескольких сот секунд. Убирали стержень и повторно измеряли уровень концентрации озона. Вновь вводили стержень и повторяли многократный режим измерения до полного прекращения захвата озона. Изменяли исходную концентрацию озона и повторяли всю процедуру

ХИМИЧЕСКАЯ ФИЗИКА том 42 № 1 2023

измерения при введении следующего участка стержня с покрытием.

При наших скоростях потока и давления в реакторе кинетика расхода озона при его захвате на сажевом покрытии описывается уравнением первого порядка:

$$-d\left[O_{3}(t_{c},t)\right]/dt_{c} = k_{w}(t)\left[O_{3}(t_{c},t)\right],$$
(1)

где $[O_3]$ – концентрация озона; $t_c = [0, \Delta L/u]$ – время контакта озона с покрытием на стержне, введенном в реактор в зону контакта на длину ΔL ; *и* – средняя скорость потока газа-носителя гелия; *t* — время экспозиции покрытия к потоку газа-реагента. Константа скорости гетерогенной реакции $k_w(t)$ выражается через кинетический, $k_w^k(t) =$ = [$\gamma(t)c_{O_3}/4$](S_{ef}/V_R), и диффузионный, $k_w^d \approx 4D_{O_3}/d_R^2$, пределы: $1/k_w(t) = 1/k_w^k(t) + 1/k_w^d$. Здесь $c_{0_3} = 3.61 \cdot 10^4$ см с⁻¹ – средняя молекулярная скорость O_3 при температуре T = 295 K; $pD_{O_2} =$ = 394 Торр см² · с⁻¹ [22] – коэффициент диффузии молекул О₃ в гелии; S_{ef} – эффективная площадь покрытия в зоне реакции при введении стержня на длину ΔL ; V_R – объем реактора, соответствующий этой же длине. В нашем случае даже в начальной стадии быстрого захвата выполнялось условие $k_w^d \ge k_w^k$, и можно было считать, что $k_w \approx k_w^k$.

При $(d_r/d_R) \ll 1$ для сажевого покрытия, поверхность которого определяется эффективной площадью S_{ef} , выраженной через массу навески ρ_m на единичную поверхность и удельную поверхность сажи S_{spec} , величина $k_w^k(t)$ определяется уравнением

$$k_w^k(t) \approx (\gamma(t) c_{O_3} S_{spec} \rho_m / d_R) (d_r / d_R).$$
⁽²⁾

Характерное время контакта t_c составляет не более 0.1 с, что существенно меньше минимального времени (t = 5 с) интегрирования интенсивности сигнала масс-спектрального пика. На этом основании возможно интегрирование уравнения (1) по t_c , и с учетом (2) зависимость коэффициента захвата γ в уравнении (1) от времени экспозиции tпри захвате на сажевом покрытии с учетом BETповерхности есть

$$\gamma(t) = \frac{\ln\left(I_{48}^0/I_{48}(t)\right)}{t_c} \frac{d_R^2}{c_{O_3}S_{spec}\rho_m d_r},$$
 (3)

где $I_{48}^0(t)$ и $I_{48}(t)$ – интенсивности ионных токов озона без введения стержня с покрытием и с введенным стержнем соответственно.

Времязависимый захват N_2O_5 и O_3 на сажевом покрытии, предварительно экспонированном к конкурентному газу-реагенту. На рис. 1 приведен

Рис. 1. Изменение концентрации реагента N_2O_5 в реакторе при введении в него подвижного стержня с покрытием из метановой сажи, предварительно экспонированном к озону. Условия захвата N_2O_5 : $[N_2O_5] = 2.9 \cdot 10^{12}$ см⁻³, T = 295 K, давление p = 2.3 Topp, $\Delta L = 10$ см, средняя скорость потока гелия u = 147 см \cdot с⁻¹, масса навески сажи на единичную поверхность стержня $\rho_m = 130$ мкг \cdot см⁻². Полые символы – измеряемая концентрация N_2O_5 при периодическом удалении стержня с покрытием из зоны контакта; сплошные символы – концентрация N_2O_5 при введении стержня в зону реакции.

временной профиль концентрации N2O5 при введении в реакционную зону стержня с сажевым покрытием, которое было предварительно экспонировано к озону. При периодическом введении стержня наблюдается воспроизводимый захват молекул N₂O₅ и воспроизводимая десорбция этих молекул после вывода стержня из зоны реакции. Воспроизводимость захвата при повторном введении стержня свидетельствует о механизме захвата через распад молекул на поверхностных центрах без изменения химической активности этих центров. В противном случае повторный захват на химически инертном покрытии был бы менее эффективен. Кроме того, временной профиль $[N_2O_5]$ не может быть объяснен только адсорбцией, поскольку последняя происходит за характерное время достижения динамического равновесия в реакции

$$N_{2}O_{5}(\Gamma) + z(TB) \xleftarrow{k_{a}}{\underset{k_{d}}{\longrightarrow}} N_{2}O_{5}...z \xrightarrow{k_{r}}{} (R1)$$
$$\longrightarrow z(TB) + M(\Gamma).$$

Это время определяется соотношением $\tau = [z]/k_a = 4[z]/c_{N_2O_5}[N_2O_5]$ и в наших условиях при $[N_2O_5] = 3 \cdot 10^{12} \text{ см}^{-3}$, $c_{N_2O_5} = 2.4 \cdot 10^4 \text{ см} \cdot \text{c}^{-1}$, $[z] = 2 \cdot 10^{14} \text{ см}^{-2}$ [18] составляет всего 10 мс.

На сажевом покрытии, предварительно экспонированном к N_2O_5 , наблюдается захват озона. В отличие от предыдущего случая захват происходит необратимо. На рис. 2 приведен пример временно́го профиля концентрации озона при периодическом введении в его поток экспонированного сажевого покрытия. Соответствующая временна́я зависимость коэффициента захвата $\gamma(t)$ приведена на рис. 3. Для сравнения на этом же рисунке на вставке приведена аналогичная зависимость коэффициента захвата озона в этих же условиях на свежем сажевом покрытии. Формы временны́х профилей коэффициентов захвата подобны. На основании подобия профилей мы сделали вывод о подобии механизмов захвата и возможности аппроксимации временны́х зависимостей аналитической формулой:

$$\gamma(t) = \gamma_r \exp(-a_r t) + \gamma_s \exp(-a_s t) [1 - \exp(-a_r t)].$$
(4)

Эта формула следует из описания захвата газа-реагента по двухстадийному механизму реакции с адсорбированной молекулой на поверхности [18]. Здесь слагаемые в правой части формулы (4) представляют собой вклады в коэффициент захвата его быстрой ("rapid") и медленной ("slow") стадий. Параметры γ_r и γ_s определяют зависимость коэффициента захвата от концентрации газа-реагента, а параметры a_r и a_s характеризуют их временную зависимость.

Зависимости коэффициента захвата озона на сажевом покрытии от времени экспозиции, по-

Рис. 2. Изменение концентрации озона в реакторе при ведении в него подвижного стержня с покрытием из метановой сажи, предварительно экспонированном к реагенту N₂O₅. Условия захвата O₃: [O₃] = 2.6 · $\cdot 10^{12}$ см⁻³, T = 295 К, давление p = 1.4 Торр, $\Delta L = 10$ см, средняя скорость потока гелия u = 200 см · c^{-1} , масса навески сажи на единичную поверхность стержня $\rho_m = 130$ мкг · см⁻². Полые символы – измеряемая концентрация O₃ в отсутствие стержня с покрытием; сплошные символы – концентрация O₃ при введенном стержне в поток O₃.

добные приведенным на рис. 3, были получены в диапазоне концентраций $1 \cdot 10^{12} - 5 \cdot 10^{13}$ см⁻³. Результаты аппроксимации этих зависимостей по

формуле (4) приведены в табл. 1, а зависимости соответствующих параметров от концентрации озона — на рис. 4 и 5.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Зависимости параметров γ_r и γ_s , а также a_r и a_s от концентрации озона, приведенных на рис. 4 и 5, аналогичны по форме подобным зависимостям для захвата озона на свежем сажевом покрытии [18]. Такая форма зависимости соответствует механизму захвата посредством реакции на поверхности с адсорбированной частицей [23, 24]. Параметры, определяющие эту зависимость, представляют собой комбинацию элементарных констант, описывающих процесс захвата:

$$\begin{aligned} \gamma_r &= \gamma_{r,max} / (1 + K_{L,r} [\mathbf{O}_3]), \\ \gamma_s &= \gamma_{s,max} / (1 + K_{L,s} [\mathbf{O}_3]), \end{aligned}$$
 (5)

$$a_r = k_r \theta, \ a_s = k_s \theta, \tag{6}$$

$$\theta = K_L[\mathbf{O}_3]/(1 + K_L[\mathbf{O}_3]), \tag{7}$$

где $\gamma_{r, max}$, $\gamma_{s, max}$ — амплитудные величины коэффициента захвата; k_r и k_s — константы скорости мономолекулярного распада комплексов, образующихся на первой и второй стадиях захвата; K_L — константа Ленгмюра, определяющая долю поверхности θ , занятую адсорбированными молекулами.

Результаты аппроксимации зависимостей на рис. 4 и 5 по формулам (5)—(7) приведены в табл. 2. Здесь же приведены результаты аппроксимации данных, полученных ранее по захвату O_3 , N_2O_5 и

Рис. 3. Временная зависимость коэффициента захвата O₃ (полые символы), рассчитанная из данных рис. 2 по формуле (3); сплошная кривая – аппроксимация по формуле (4) с параметрами из табл. 1; штриховые кривые – вклады первой быстрой и последующей медленной стадий захвата. На вставке для сравнения – временная зависимость коэффициента захвата O₃ на свежем покрытии из метановой сажи в аналогичных условиях [18].

Таблица 1. Параметры аппроксимации по формуле (4) коэффициента захвата $\gamma(t)$ озона при T = 295 К на покрытии из метановой сажи, предварительно экспонированной к реагенту N_2O_5

			2 3		
[O ₃], 10 ¹² см ⁻³	γ_r , 10^{-4}	a_r, c^{-1}	$\gamma_s, 10^{-5}$	$a_s, 10^{-2} \mathrm{c}^{-1}$	
1.1	1.32 ± 0.5	0.1 ± 0.05	3 ± 1.1	0.9 ± 0.5	
2.6	1.4 ± 0.15	0.15 ± 0.02	2.9 ± 0.2	0.5 ± 0.1	
3.4	1.2 ± 0.14	0.12 ± 0.02	2.3 ± 0.4	1.2 ± 0.3	
5.7	0.94 ± 0.1	0.12 ± 0.02	1.7 ± 0.2	1 ± 0.2	
6.9	1.05 ± 0.1	0.13 ± 0.02	2.6 ± 0.2	0.6 ± 0.2	
9.2	0.63 ± 0.3	0.15 ± 0.05	2 ± 0.6	0.4 ± 0.2	
11	0.81 ± 0.1	0.09 ± 0.02	1.5 ± 0.3	0.7 ± 0.3	
11	0.71 ± 0.07	0.13 ± 0.02	1.4 ± 0.1	0.5 ± 0.1	
12	0.84 ± 0.1	0.16 ± 0.03	1.6 ± 0.3	1.8 ± 0.3	
12	0.9 ± 0.15	0.18 ± 0.04	2 ± 0.3	1.4 ± 0.2	
14	0.65 ± 0.08	0.15 ± 0.03	2.2 ± 0.4	0.2 ± 0.1	
20	0.64 ± 0.09	0.17 ± 0.02	1.3 ± 0.2	0.8 ± 0.2	
22	0.52 ± 0.06	0.12 ± 0.02	1 ± 0.1	0.8 ± 0.2	
24	0.5 ± 0.08	0.14 ± 0.03	1.5 ± 0.6	1 ± 0.3	
27	0.56 ± 0.17	0.23 ± 0.07	1.1 ± 0.1	1.3 ± 0.4	
40	0.35 ± 0.07	0.23 ± 0.1	0.9 ± 0.2	—	
49	0.33 ± 0.08	0.24 ± 0.04	0.87 ± 0.2	_	

 NO_2 на свежей сажевой поверхности, а также по захвату O_3 на поверхности, предварительно экспонированной к NO_2 . На основании совокупности этих параметров возможно промоделировать процесс захвата озона в условиях конкурентной адсорбции O_3/N_2O_5 и O_3/NO_2 с учетом дополнительного канала стока озона на продуктах захвата N_2O_5 и NO_2 . Расход озона в условиях конкурентной адсорбции O₃/NO_x с учетом двухстадийности процесса захвата будет определяться совокупностью реакций:

$$O_{3}(\Gamma) + z_{r}(TB) \rightleftharpoons O_{3}...z_{r}(TB) \xrightarrow{k_{r,O_{3}}} (R2)$$
$$\longrightarrow z_{s,O_{3}}(TB) + O_{2}(\Gamma),$$

$$NO_{x}(\Gamma) + z_{r}(TB) \rightleftharpoons NO_{x} \dots z_{r}(TB) \xrightarrow{k_{r,NO_{x}}} (R3)$$
$$\longrightarrow z_{s,NO_{x}}^{mod}(TB) + \Pi pogykt1(\Gamma),$$

$$O_{3}(\Gamma) + Z_{s,O_{3}}(TB) \rightleftharpoons O_{3} \dots Z_{s,O_{3}}(TB) \xrightarrow{k_{s,O_{3}}} (R4)$$
$$\longrightarrow Z_{fin,O_{3}}(TB) + O_{2}(\Gamma), \qquad (R4)$$

$$O_{3}(\Gamma) + Z_{s,O_{3}}^{mod}(TB) \rightleftharpoons O_{3} \dots Z_{s,NO_{x}}^{mod}(TB) \xrightarrow{k_{r,O_{3}}^{mod}} (R5)$$
$$\longrightarrow Z_{s,O_{3}}^{mod}(TB) + O_{2}(\Gamma),$$

$$O_{3}(\Gamma) + z_{s,O_{3}}^{mod}(TB) \rightleftharpoons O_{3} \dots z_{s,O_{3}}^{mod}(TB) \xrightarrow{k_{s,O_{3}}^{mod}} (R6)$$

$$\longrightarrow z_{fin,O_{3}}^{mod}(TB) + O_{2}(\Gamma), \qquad (R6)$$

$$\implies O_{x}(\Gamma) + z_{s,NO_{x}}^{mod}(TB) \rightleftharpoons$$

$$\implies NO_{x} \dots z_{s,NO_{x}}^{mod}(TB) \xrightarrow{k_{s,NO_{x}}} (R7)$$

$$\longrightarrow z_{fin,NO_{x}}^{mod} + \Pi \text{родукт } 2(\Gamma), \qquad (R7)$$

$$O_{3}(\Gamma) + z_{fin,NO_{x}}^{mod}(TB) \rightleftharpoons$$

$$\implies O_{3} \dots z_{fin,NO_{x}}^{mod}(TB) \xrightarrow{k_{r,O_{3}}^{mod}} (R8)$$

$$\longrightarrow z_{s,O_{3},NO_{x}}^{mod}(TB) + O_{2}(\Gamma), \qquad (R8)$$

$$O_{3}(\Gamma) + z_{s,O_{3},NO_{x}}^{mod}(TB) \rightleftharpoons$$

$$\rightleftharpoons O_{3} \dots z_{s,O_{3},NO_{x}}^{mod}(TB) \xrightarrow{k_{s,O_{3}}^{mod}} (R9)$$

$$\longrightarrow z_{fin,O_{3},NO_{x}}^{mod}(TB) + O_{2}(\Gamma).$$

Здесь подстрочные символы "r" и "s" обозначают быструю и медленную стадию захвата соответственно. Подстрочные символы " O_3 " и " NO_x " у

Таблица 2. Элементарные параметры, определяющие по формулам (5), (6) времязависимый коэффициент захвата O₃, N₂O₅ и NO₂ на покрытии из метановой сажи

A 2000 500 /0 2000 5000	Первая, быстрая стадия			Вторая, медленная стадия		
Адсороат/адсороент	$K_{L, r}, 10^{-14} \mathrm{cm}^3$	k_r, c^{-1}	$\gamma_{r, max}, 10^{-4}$	$K_{L, s}, 10^{-14} \mathrm{cm}^3$	k_s , $10^{-2} \mathrm{c}^{-1}$	$\gamma_{s, max}$, 10^{-5}
О ₃ /свежая сажа [18]	7 ± 1	0.39 ± 0.05	6.6 ± 0.4	11 ± 2	2.8 ± 0.1	13 ± 2
N ₂ O ₅ /свежая сажа [20]	0.66 ± 0.15	0.84 ± 0.05	0.55 ± 0.1	0.7 ± 0.4	10 ± 0.6	1.4 ± 0.1
NO ₂ /свежая сажа [19]	5.7 ± 0.7	0.22 ± 0.02	1.6 ± 0.2	6.3 ± 1.7	2.6 ± 0.3	2.1 ± 0.3
O_3 /сажа после обработки $\mathrm{N}_2\mathrm{O}_5$	6.9 ± 1	0.3 ± 0.02	1.4 ± 0.2	4.7 ± 1	2.5 ± 0.4	2.7 ± 0.3
O_3 /сажа после обработки NO_2 [19]	3.5 ± 1	0.2 ± 0.06	1.5 ± 0.2	3.0 ± 0.8	2.0 ± 0.5	2.2 ± 0.5

Рис. 4. Зависимость параметров γ_r и γ_s коэффициента времязависимого захвата O₃ на покрытии из метановой сажи, предварительно экспонированном к N₂O₅, от [O₃]: сплошные символы – γ_r , быстрая стадия захвата (масштаб 1 : 1); полые символы – γ_s , последующая медленная стадия (масштаб по вертикали 1 : 10). Сплошные прямые – аппроксимация по формуле (5) с параметрами γ_r , max, K_L , r, γ_s , max, K_L , s из табл. 2.

символа z обозначают поверхностную плотность центров z, занятую адсорбированными молекулами O_3 либо NO_x . Подстрочные символы " O_3 " и " NO_x " у параметра k обозначают константу скорости мономолекулярного распада соответствующего поверхностного центра z, содержащего адсорбированную молекулу O_3 либо NO_x . Надстрочный символ "*mod*" обозначает процесс, происходящий на модифицированной поверхности в результате обработки конкурирующим реагентом. Реакция (R1) не включена в приведенную выше схему, поскольку она протекает без изменения химической активности центров адсорбции и не влияет на дополнительный захват озона.

Расход озона из газовой фазы определяется его захватом на поверхности:

$$-V_R \frac{d}{dt} [O_3] = \frac{\gamma(t)c_{O_3}}{4} [O_3]S_{ef}$$

с коэффициентом захвата $\gamma(t)$, выраженным через реакционные потоки,

$$\gamma_{O_3}(t) = 4[J_{R2}(t) + J_{R4}(t) + J_{R5}(t) + J_{R6}(t) + J_{R6}(t) + J_{R8}(t) + J_{R9}(t)]/c_{O_2}[O_3].$$
(8)

Реакционные потоки $J_{R2}(t)$ и $J_{R4}(t)$ представляют собой сток озона в реакциях (R2) и (R4) по механизму мономолекулярного распада соответствующего поверхностного комплекса:

$$J_{R2}(t) = k_{r,O_3} \theta_{r,O_3} [z_r(t)],$$

$$J_{R4}(t) = k_{s,O_3} \theta_{s,O_3} [z_{s,O_3}(t)],$$
(9)

с учетом доли поверхности, занятой адсорбированными молекулами озона в условиях конку-

Рис. 5. Зависимость параметров a_r и a_s коэффициента времязависимого захвата O₃ на покрытии из метановой сажи, предварительно экспонированном к N₂O₅, от [O₃]: сплошные символы – a_r , быстрая стадия захвата; полые символы – a_s , последующая медленная стадия. Сплошные кривые – аппроксимация по формуле (6) с параметрами k_r , k_s , $K_{L, r}$ и $K_{L, s}$ из табл. 2.

рентной адсорбции. Расширенное представление этих долей поверхности вынесено в *Приложение*.

Реакционные потоки $J_{R5}(t)$, $J_{R6}(t)$, $J_{R8}(t)$, $J_{R9}(t)$ ответственны за дополнительный сток озона в соответствующих реакциях на гетерогенных продуктах захвата конкурирующего газа-реагента. При этом канал стока по реакциям (R5) и (R8) представляет собой быструю стадию захвата, а канал стока по реакциям (R6) и (R9) — повторную медленную стадию захвата озона на тех же центрах адсорбции:

$$J_{R5}(t) = k_{r,O_3}^{mod} \theta_{r,O_3}^{mod} \left[z_{s,NO_x}^{mod}(t) \right],$$

$$J_{R6}(t) = k_{s,O_3}^{mod} \theta_{s,O_3}^{mod} \left[z_{s,O_3}^{mod}(t) \right],$$

$$J_{R8}(t) = k_{r,O_3}^{mod} \theta_{r,O_3}^{mod} \left[z_{fin,NOx}^{mod}(t) \right],$$

$$J_{R9}(t) = k_{s,O_3}^{mod} \theta_{s,O_3}^{mod} \left[z_{s,O_3,NO_x}^{mod}(t) \right].$$
(10)

Реакционные потоки зависят от поверхностной плотности $[z_i(t)]$ этих центров. Поверхностная плотность последних определяется из решения системы дифференциальных уравнений, описывающих их временну́ю эволюцию:

$$\begin{aligned} -\frac{d}{dt}[z_{r}] &= \left(k_{r,O_{3}}\theta_{r,O_{3}} + k_{r,NO_{x}}\theta_{r,NO_{x}}\right)[z_{r}], \\ -\frac{d}{dt}[z_{s,O_{3}}] &= k_{s,O_{3}}\theta_{s,O_{3}}[z_{s,O_{3}}] - k_{r,O_{3}}\theta_{r,O_{3}}[z_{r}], \\ -\frac{d}{dt}[z_{s,NO_{x}}] &= \left(k_{r,O_{3}}^{mod}\theta_{r,O_{3}}^{mod} + k_{s,NO_{x}}\theta_{s,NO_{x}}^{mod}\right)[z_{s,NO_{x}}^{mod}] - \\ -k_{r,NO_{x}}\theta_{r,NO_{x}}[z_{r}], \\ -\frac{d}{dt}[z_{s,O_{3}}^{mod}] &= k_{s,O_{3}}^{mod}\theta_{s,O_{3}}^{mod}[z_{s,O_{3}}^{mod}] - k_{r,O_{3}}^{mod}\theta_{r,O_{3}}^{mod}[z_{s,NO_{x}}^{mod}], \\ -\frac{d}{dt}[z_{s,O_{3}}^{mod}] &= k_{s,O_{3}}^{mod}\theta_{s,O_{3}}^{mod}[z_{s,O_{3}}^{mod}] - k_{s,NO_{x}}\theta_{r,O_{3}}^{mod}[z_{s,NO_{x}}^{mod}], \\ -\frac{d}{dt}[z_{fin,NO_{x}}^{mod}] &= \\ &= k_{r,O_{3}}^{mod}\theta_{r,O_{3}}^{mod}[z_{fin,NO_{x}}^{mod}] - k_{s,NO_{x}}\theta_{s,NO_{x}}^{mod}[z_{s,NO_{x}}^{mod}], \\ -\frac{d}{dt}[z_{s,O_{3},NO_{x}}^{mod}] &= \\ &= k_{s,O_{3}}^{mod}\theta_{s,O_{3}}^{mod}[z_{s,O_{3},NO_{x}}^{mod}] - k_{r,O_{3}}^{mod}\theta_{r,O_{3}}^{mod}[z_{fin,NO_{x}}^{mod}], \end{aligned}$$

с начальными условиями

 $[z_{r}(t=0)] = [z_{0}], [z_{s,O_{3}}(t=0)] = [z_{s,NO_{x}}^{mod}(t=0)] = [z_{s,O_{3}}^{mod}(t=0)] = [z_{fin,NO_{x}}^{mod}(t=0)] = [z_{s,O_{3},NO_{x}}^{mod}(t=0)] = 0.$

Здесь [z₀] — максимальная поверхностная плотность активных центров для данного типа поверхности.

После решения этой системы уравнений и подстановки полученных значений $[z_i(t)]$ в выражение (8) мы получаем явный вид коэффициента захвата озона для всей совокупности центров адсорбции. Коэффициент захвата $\gamma(t)$ озона без учета его захвата на гетерогенных продуктах реакции конкурирующего реагента выражается формулой (4) с параметрами

$$\begin{split} \gamma_{r} &= \frac{\gamma_{r,max}}{1 + K_{L,r,O_{3}}[O_{3}] + K_{L,r,NO_{x}}[NO_{x}]}, \\ \gamma_{s} &= \frac{\gamma_{s,max}}{1 + K_{L,s,O_{3}}[O_{3}] + K_{L,s,NO_{x}}[NO_{x}]} \times \\ &\times \frac{k_{r,O_{3}}\theta_{r,O_{3}}}{k_{r,O_{3}}\theta_{r,O_{3}} + k_{r,NO_{x}}\theta_{r,NO_{x}}}, \\ a_{r} &= k_{r,O_{3}}\theta_{r,O_{3}} + k_{r,NO_{x}}\theta_{r,NO_{x}}, \quad a_{s} &= k_{s,O_{3}}\theta_{s,O_{3}}. \end{split}$$

Аналитические выражения для вкладов в коэффициент захвата с учетом реакций (R5), (R6), (R8) и (R9) достаточно громоздки и вынесены в *Приложение*.

Пример моделирования величины времязависимого коэффициента захвата озона в условиях конкурентной адсорбции O₃/NO₂ приведен на рис. 6. Зависимость соответствует соотношению среднемесячных концентраций этих газов-реагентов, измеренных в нижней тропосфере промышленно развитого региона в зимнее время, когда концентрация озона минимальна [8]. Как видно из рис. 6, учет дополнительного канала стока озона увеличивает время переработки сажевого субстрата. Интегральный вклад этого канала для условий, указанных в подписи к рис. 6, составляет 68% от основного канала стока по реакциям (R2) и (R4). При типичных летних среднемесячных концентрациях, 36 ppb O₃ и 17 ppb NO₂, измеренных в том же регионе, вклад дополнительных каналов стока озона будет составлять около 20%.

При среднемесячной концентрации NO₂ 17 ppb равновесие $NO_3 + NO_2 \leftrightarrow N_2O_5$ смещается вправо. При этом $[N_2O_5]/[NO_3] \approx 20$, т.е. концентрация N₂O₅ по сравнению с NO₃ максимальна и составляет ~4 ppb [4]. Даже при этой максимальной концентрации N₂O₅ и минимальном среднемесячном значении в 10 ppb [O₃] дополнительный канал стока озона в условиях конкурентной адсорбции [O₃]/[N₂O₅] оказывается равным всего 3.6%. Основной причиной такого малого влияния реагента N₂O₅ является малая доля поверхности, занятая его адсорбированными молекулами. При малых концентрациях N_2O_5 эта доля, $\theta_{N_2O_5}$, просто равна $K_{L,N_2O_5}[N_2O_5]$, исходя из ее определения по формуле (П.1). Из табл. 2 видно, что K_{L,N_2O_5} на порядок меньше аналогичных параметров для других газов-реагентов.

Рис. 6. Временна́я зависимость коэффициента захват O_3 на покрытии из метановой сажи, смоделированная для условий конкурентной адсорбции O_3 и NO₂ при их типичных концентрациях в тропосфере: $[O_3] = 10$ ppb, $[NO_2] = 17$ ppb. Сплошная кривая – суммарный коэффициент захвата $\gamma(t)$ с учетом конкурентной адсорбции; штриховая кривая – вклад, обусловленный захватом O_3 только на центрах z_{s,NO_2} , образующихся в ходе захвата конкурирующего агента NO₂; точечные кривые – вклады в последний из первичной и вторичной стадий захвата O_3 на этих центрах. На вставке – временная зависимость коэффициента захвата O_3 без учета его захвата на центрах z_{s,NO_2} .

ЗАКЛЮЧЕНИЕ

Захват химически активного газа на поверхности обусловлен химической реакцией с участием его адсорбированных молекул. Доля поверхности, занятая адсорбированными молекулами, в условиях конкурентной адсорбции в ленгмюровском представлении определяется ниже формулами (П.1). В условиях тропосферы при малых концентрациях O₃ и NO_x, т.е. при K_{L,O_3} [O₃] \ll 1 и K_{L,NO_x} [NO_x] \ll 1, эта доля равна K_{L,O_3} [O₃] и не зависит от присутствия конкурирующего газа-реагента.

В действительности оказывается, что в результате захвата конкурирующего газа-реагента образуется химически активная поверхность, на которой также возможен захват озона. Таким образом, существует дополнительный канал его стока, который ранее не учитывался. С целью количественной оценки вклада этого канала был исследован захват озона на поверхности сажи, предварительно обработанной реагентом N_2O_5 до полного прекращения захвата последнего. Установлен механизм захвата и получен ряд элементарных параметров, позволяющих моделировать величину коэффициент захвата при произвольных концентрациях озона.

На базе ленгмюровского представления адсорбции предложено модельное описание захвата на сажевом покрытии в условиях конкурентной адсорбции O_3/NO_x , $NO_x = NO_2$ и N_2O_5 , с учетом многостадийности процесса захвата. На основании разработанной модели и элементарных параметров, описывающих захват O_3 , NO_2 и N_2O_5 на свежем сажевом покрытии, а также захват озона на поверхности, предварительно обработанной NO₂ или N₂O₅, проведены численные оценки дополнительных каналов захвата озона для двух реальных тропосферных сценариев соотношения концентраций O₃/NO₂ и O₃/N₂O₅. В нижней тропосфере промышленно развитого региона в зимнее время, когда концентрация озона минимальна (10 ppb O₃, 17 ppb NO₂ и 4 ppb N₂O₅), дополнительный интегральный вклад в захват О3 на продуктах реакции NO₂ составляет 68%, а в случае $N_2O_5 - 3.6\%$. Для того же региона летом при максимальной концентрации озона (36 ppb O₃, 17 ppb NO₂ и 4 ppb N₂O₅) аналогичные вклады будут составлять 20% и 1% соответственно. Полученные оценки показывают, что для ряда сценариев дополнительный канал стока, который ранее не учитывался, может быть существенным.

ПРИЛОЖЕНИЕ 1

Доли поверхности, занятые адсорбированными молекулами озона и NO_x, в условиях их конкурентной адсорбции выражаются формулами

$$\begin{split} \theta_{r,O_3} &= \\ &= K_{L,r,O_3}[O_3] / (1 + K_{L,r,O_3}[O_3] + K_{L,r,NO_x}[NO_x]), \\ &= \\ \theta_{s,O_3} &= \\ &= K_{L,s,O_3}[O_3] / (1 + K_{L,s,O_3}[O_3] + K_{L,s,NO_x}[NO_x]), \\ &= \\ &= K_{L,r,O_3}^{mod}[O_3] / (1 + K_{L,r,O_3}^{mod}[O_3] + K_{L,s,NO_x}[NO_x]), \\ &= \\ &= K_{L,s,O_3}^{mod}[O_3] / (1 + K_{L,s,O_3}^{mod}[O_3] + K_{L,s,NO_x}[NO_x]), \\ &= K_{L,s,O_3}^{mod}[O_3] / (1 + K_{L,s,O_3}^{mod}[O_3] + K_{L,s,NO_x}[NO_x]), \\ &= K_{L,s,O_3}^{mod}[O_3] / (1 + K_{L,s,O_3}^{mod}[O_3] + K_{L,s,NO_x}[NO_x]), \\ &= K_{L,r,NO_x}^{mod}[NO_x] / (1 + K_{L,r,O_3}^{mod}[O_3] + K_{L,s,NO_x}[NO_x]). \end{split}$$

Здесь коэффициенты Ленгмюра K_L с подстрочными символам "r" и "s" для соответствующего газа-реагента: " O_3 " или " NO_x ", и с надстрочным символом "*mod*" взяты из табл. 2.

ПРИЛОЖЕНИЕ 2

Явный вид вкладов в коэффициент захвата озона на сажевом покрытии в условиях конкурентной адсорбции O₃/NO_x на продуктах реакции конкурирующего газа-реагента определяется выражениями

$$\begin{split} \gamma_{\text{R5}}(t) &= \frac{\gamma_{r,max}^{mod}}{1 + K_{L,r,\text{O}_3}^{mod}[\text{O}_3] + K_{L,s,\text{NO}_x}[\text{NO}_x]} \begin{bmatrix} z_{s,\text{NO}_x}^{mod}(t) \end{bmatrix},\\ \gamma_{\text{R6}}(t) &= \frac{\gamma_{s,max}^{mod}}{1 + K_{L,s,\text{O}_3}^{mod}[\text{O}_3] + K_{L,s,\text{NO}_x}[\text{NO}_x]} \begin{bmatrix} z_{s,\text{O}_3}^{mod}(t) \end{bmatrix},\\ \gamma_{\text{R8}}(t) &= \frac{\gamma_{r,max}^{mod}}{1 + K_{L,r,\text{O}_3}^{mod}[\text{O}_3] + K_{L,s,\text{NO}_x}[\text{NO}_x]} \begin{bmatrix} z_{fin,\text{NO}_x}^{mod}(t) \end{bmatrix},\\ \gamma_{\text{R9}}(t) &= \frac{\gamma_{s,max}^{mod}}{1 + K_{L,s,\text{O}_3}^{mod}[\text{O}_3] + K_{L,s,\text{NO}_x}[\text{NO}_x]} \begin{bmatrix} z_{0}^{mod}(t) \end{bmatrix},\\ z_{0} \end{bmatrix}. \end{split}$$

Здесь $\gamma_{r,max}^{mod}$ и $\gamma_{s,max}^{mod}$ – начальные величины коэффициента захвата озона из табл. 2 для быстрой (индекс "*r*") и медленной (индекс "*s*") стадии захвата на модифицированной поверхности. Поверхностные плотности [*z_i*(*t*)] подставляются либо из аналитического решения системы дифференциальных уравнений, приведенных выше, либо из его численного решения в среде Mathcad при заданных концентрациях конкурирующих газов-реагентов. Работа выполнена в рамках госзадания FFZE-2022-0008 (регистрационный номер 1021051302551-2-1.3.1;1.4.7;1.6.19).

СПИСОК ЛИТЕРАТУРЫ

- McDuffie E.E., Fibiger D.L., Dubé W.P. et al. // J. Geophys. Res. Atmos. 2018. V. 123. P. 4345; https://doi.org/10.1002/2018JD028336
- 2. Ларин И.К. // Хим. физика. 2019. Т. 38. № 5. С. 81; https://doi.org/10.1134/S0207401X1905008X
- Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
- Chang W.L., Bhave P.V., Brown S.S. et al. // Aerosol Sci. Technol. 2011. V. 45. P. 665; https://doi.org/10.1080/02786826.2010.551672
- Jaeglé L., Shah V., Thornton J.A. et al. // J. Geophys. Res. Atmos. 2018. V. 123. P. 12368; https://doi.org/10.1029/2018JD029133
- Washenfelder R.A., Wagner N.L., Dubé W.P, Brown S.S. // Environ. Sci. Technol. 2011. V. 45. P. 2938; https://doi.org/10.1021/es10334u
- Liu Z., Doherty R.M., Wild O. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 1209; https://doi.org/10.5194/acp-22-1209-2022
- 8. *Roberts-Semple D., Song F., Gao Yu.* // Atmos. Pollut. Res. 2012. V. 3. P. 247; www.atmospolres.com
- Wagner N.L., Riedel T.P., Young C.J. et al. // J. Geophys. Res. 2013. V. 118D. P. 9331; https://doi.org/10.1002/jgrd.50653
- Berner A., Sidla S., Galambos Z. et al. // J. Geophys. Res. Atmosph. 1996. V. 101. P. 19559; https://doi.org/10.1029/95JD03425
- Pohl K., Cantwell M., Herckes P., Lohmann R. // Atmos. Chem. Phys. 2014. V. 14. P. 7431; https://doi.org/10.5194/acp-14-7431-2014,2014
- Bond T.C., Streets D.G., Yarber K.F. et al. // J. Geophys. Res. 2004. V. 109. D14203; https://doi.org/10.1029/2003JD003697
- Wang R., Tao S., Shen H. et al. // Environ. Sci. Technol. 2014. V. 48. P. 6780; https://doi.org/10.1021/es5021422
- Klimont Z., Kupiainen K., Heyes C. et al. // Atmos. Chem. Phys. 2017. V. 17. P. 8681; https://doi.org/10.5194/acp-8681-2017
- Burkholder J.B., Sander S.P., Abbatt J.P.D. et al. "Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No 19". NASA JPL Publication 19-5. Pasadena, 2019; http://jpldataeval.jpl.nasa.gov
- 16. *Kamm S., Möhler O., Naumann K-H. et al.* // Atmos. Environ. 1999. V. 33 P. 4651.

83

- Chughtai A.R., Kim J.M., Smith D.M. // J. Atmos. Chem. 2003. V. 45. P. 231; https://doi.org/10.1023/A:1024250505886
- Зеленов В.В., Апарина Е.В. // Хим. физика 2021. Т. 40. № 5. С. 55; https://doi.org/10.31857/S0207401X21050149
- Зеленов В.В., Апарина Е.В. // Хим. физика 2021. Т. 40. № 10. С. 76; https://doi.org/10.31857/S0207401X21100137
- 20. Зеленов В.В., Апарина Е.В. // Хим. физика 2022. Т. 41. № 12. С. 81; https://doi.org/10.31857/S0207401X22120111
- Karagulian F., Rossi M.J. // J. Phys. Chem. A. 2007. V. 111. P. 1914; https://doi.org/10.1021/jp0670891
- Moise T., Rudich Y. // J. Geophys. Res. 2000. V. 105D. P. 14667; doi: 0148-0227/00/2000JD900071
- 23. *Ammann M., Pöschl U., Rudich Y. //* Phys. Chem. Chem. Phys. 2003. V. 5. P. 351; https://doi.org/10.1039/b208708a
- 24. Pöschl U., Rudich Y., Ammann M. // Atmos. Chem. Phys. 2007. V. 7. P. 5989; www.atmos-chemphys.net/7/5989/2007/