УДК 544.41

ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ СМЕСИ ГУДРОНА С ПЕРВИЧНОЙ КАМЕННОУГОЛЬНОЙ СМОЛОЙ С ДОБАВКАМИ СОЕДИНЕНИЙ ЖЕЛЕЗА

© 2019 г. М. И. Байкенов^{1,**}, Е. В. Кочегина^{1,*}, З. С. Халикова^{1,*}, З. Б. Абсат^{1,*}, А. Б. Каримова^{1,*}, Н. Ж. Рахимжанова^{1,*}, А. Тусипхан^{1,*}, Г. Г. Байкенова^{2,3,**}

¹ Карагандинский государственный университет имени академика Е.А. Букетова, 100028 Караганда, Республика Казахстан

² Карагандинский экономический университет Казпотребсоюза, 100009 Караганда, Республика Казахстан ³ Южно-Уральский государственный университет, 454080 Челябинск, Россия

> *e-mail: kochegina 79@mail.ru **e-mail: murzabek_b@mail.ru Поступила в редакцию 27.02.2018 г. После доработки 18.04.2018 г. Принята к публикации 24.10.2018 г.

Приведены исследования термической деструкции смеси вакуумного остатка (гудрона) и первичной каменноугольной смолы (ПКС) без и в присутствии каталитических добавок Fe₃O₄ и β-FeOOH методами термогравиметрии и дифференциальной сканирующей калориметрии в инертной среде при скорости нагрева 10°С/мин. На основе результатов термогравиметрического анализа и кинетических параметров процесса рассчитаны энергии активации, которые могут быть использованы при разработке методов технологического расчета реакторов и выбора конструкционных материалов для его изготовления.

Ключевые слова: *первичная каменноугольная смола, гудрон, деструкция, нанокаталитическая добавка* **DOI:** 10.1134/S0023117719020038

Для подготовки высокоэффективных процессов коксования, каталитического крекинга, висбрекинга твердого и тяжелого углеводородного сырья необходимы разработка надежных методов технологического расчета реакторов, создание новых видов оборудования и выбор конструкционных материалов, а также значения констант скоростей основных реакций, энергии активации и других параметров, определяющих макрокинетику процесса. Применение новых одноразовых, более дешевых катализаторов в различных процессах перспективно и актуально, так как данные нанокатализаторы расходуются в значительно меньшей концентрации.

Для оптимизации процесса используют неизотермические методы исследования, в частности термогравиметрический и дифференциальный термический анализы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для определения кинетических параметров процесса термической деструкции был проведен термогравиметрический и дифференциальный

анализы смеси гудрона (вакуумный остаток) и ПКС без и в присутствии каталитических добавок на основе железа: β-FeOOH и Fe₃O₄.

Для исследования использовали гудрон (вакуумный остаток) Павлодарского нефтеперерабатывающего завода и первичную каменноугольную смолу, а также каталитические добавки на основе железа. Количество добавляемой ПКС составило 20%, гудрона – 80%. Дисперсные составы каталитических добавок – 20 нм. Использование такого количества ПКС объясняется тем, что добавки полиароматических соединений (антрацен, фенантрен и др.) способны предотвращать реакции рекомбинации до момента насышения vгольных ассоциатов водородом [1−3]. При этом происходит стабилизация нефтяных и угольных радикалов и генерация атомарного водорода. Полиароматические углеводороды, входящие в состав ПКС, играют роль активаторов и переносчиков водорода в условиях термохимической переработки гудрона. В данном случае ПКС выполняет роль ингибирующей добавки к гудрону для предотвращения вторичных реакций кон-

БАЙКЕНОВ и др.

Показатель	Показатель Гудрон Показатель		Первичная каменно- угольная смола
Плотность при 20°С, кг/м ³	967.0	Объемная доля воды, %	10.4
Температура застывания, °С	25	Плотность при 20°С, кг/м ³ :	1042
Вязкость при 70°С, Па · с	1.7	до 180°С	3
Коксуемость, %	11.3	180–230°C	7.2
Содержание, %:			
асфальтенов	9.8	230–270°C	15.1
смолы	12.5	270–300°C	17.1
масел	78.2	_	_
Элементный состав, мас. %:		Температура конца кипения, °С:	
С	84.10	в парах	315
Н	10.82	в жидкости	390
S	3.15	Выход пека, %	50
Ν	0.71	Массовая доля веществ, не раствори- мых в толуоле, %	3.8
0	1.22	Массовая доля веществ, не раствори- мых в хинолине, %	Отсутствует
Выкипание до 520°C, %	12.3	Зольность, %	0,1
Содержание металлов, г/т:		Содержание фенолов, %	>20
ванадия	210.0	нафталина, %	Следы
никеля	74.0		

Таблица 1. Физико-химические свойства гудрона и технические свойства ПКС

денсации и первичных продуктов деструкции смеси.

Физико-химические свойства гудрона (ТОО "Павлодарский нефтехимический завод") и техническая характеристика первичной каменноугольной смолы (ТОО "Сары-Арка Спецкокс") представлены в табл. 1.

При изучении процесса термического разложения смеси гудрона с ПКС с каталитическими добавками было установлено, что он представляет собой совокупность физико-химических превращений и химических реакций, протекающих в определенных температурных диапазонах. Большое количество одновременных взаимодействий последовательно-параллельного типа и разнообразие неидентифицированных веществ, участвующих в них, делают невозможным изучение таких процессов классическими методами химической кинетики [4–6].

Термогравиметрические исследования по определению влияния катализатора на кинетические параметры процесса термической деструкции смеси гудрона и ПКС в присутствии каталитических добавок и без них выполнены с помощью прибора *Labsys Evo Setaram* (Франция) [7]. Прибор состоит из термогравиметрических весов *TG*, которые соединяются с преобразователями *ATD* и *DSC*, металло-резисторной печи, многозадачного программного обеспечения и управляет различными модулями [8, 9].

Для проведения термического анализа использовали два одинаковых тигля из Al₂O₃ объемом 100 мл, конструкция которых обеспечивает замер температуры непосредственно в навеске вещества. В первый тигель загружали предварительно подготовленную навеску (гудрон, ПКС, без и в присутствии каталитической добавки в количестве: 0.5: 1: 1.5%): а второй – оставляли пустым в качестве образца сравнения. Измерения ТГ/ДСК проводили с постоянной скоростью нагрева 10°С/мин, фиксируя изменение массы. Подготовленные тигли помещали в электропечь и нагревали при температуре от 32 до 458°C с постоянной скоростью нагрева 10°С/мин, фиксируя изменение массы. В качестве инертной атмосферы использовали азот.

Процессы проводили в сопоставимых условиях, так как величина навески и гранулометрический состав вещества влияют на результаты анализа. Вид дериватограмм зависит и от условий газовыделения — если скорость образования газообразных веществ выше скорости их удаления, то внутри пробы накапливаются газообразные продукты, влияющие на ход термодеструкции. Для избежания накопления газов в дериватографе предусмотрен их отсос.

Рис. 1. Результаты исследований термической деструкции смеси гудрона в присутствии ПКС с использованием ДТА: *I* – TГ, *2* – ДТГ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате термогравиметрического исследования получены кривые ТГ, ДТГ, ДТА, которые показывают снижение скорости уменьшения потери массы образцов в зависимости от температуры, а также тепловые эффекты протекающих процессов. На рис. 1–3 представлены термогравиметрические кривые термической деструкции смеси гудрона и ПКС без и в присутствии каталитических добавок (С – 1%): β-FeOOH и Fe₃O₄.

При изучении динамики процесса термической деструкции смеси гудрона и ПКС без и в присутствии каталитических добавок β -FeOOH и Fe₃O₄ определены температуры, при которых происходят изменения скорости потери массы, и максимальные ее значения по кривой ДТГ.

Результаты обработки кривых термической деструкции смеси гудрона и ПКС представлены в табл. 2.

Подбор параметров $a_i = \ln k_{0i}$ и $b_i = E_i/R$ осуществляли путем линеаризации уравнения. На основании данных табл. 2 построили зависимость $-\ln[r_i/(m_{imax} - m_i)]$ от $10^3/T$ для образца, приведенного на рис. 4, и провели обработку полученных кривых с помощью МНК. Обработка кривых, представленных на рис. 5а–5в, с помощью МНК показала следующие результаты, гудрон + ПКС, %: I стадия: $\ln k_0 = -4.2574$; $k = -4.2574 \cdot 10^{-3}$ мин⁻¹;

 $E_1 = 38.5595$ кДж/моль (процесс проходит в диффузионной области) и II стадия: $\ln k_0 = -5.4591$; $k = -5.4591 \cdot 10^{-3}$ мин⁻¹; $E_2 = 110.16$ кДж/моль.

Результаты обработки кривых термической деструкции, смеси гудрона и ПКС в присутствии каталитической добавки β-FeOOH представлены в табл. 3–5.

Подбор параметров $a_i = \ln k_{0i}$ и $b_i = E_i/R$ осуществляли путем линеаризации уравнения скорости [5]. На основании данных, приведенных в табл. 3–5, построили зависимость $-\ln[r_i/(m_{imax} - m_i)]$ от $10^3/T$ для каждого образца (рис. 5а–5в) и провели обработку полученных кривых с помощью МНК. Результаты обработки кривых термической деструкции, смеси гудрона и ПКС в присутствии каталитической добавки Fe₃O₄ представлены в табл. 6–8.

Подбор параметров $a_i = \ln k_{\partial i}$ и $b_i = E_i/R$ осуществляли путем линеаризации уравнения скорости на основании данных, приведенных в табл. 6-8, построили зависимость $-\ln[r_i/(m_{imax} - m_i)]$ от $10^3/T$ для каждого образца (рис. 6а–6в) и провели обработку полученных кривых с помощью МНК.

В табл. 9 приведены сопоставительные данные, из которых видно, что по мере увеличения содержания каталитической добавки β-FeOOH с 0.5 до 1% энергия активации увеличивается с

Рис. 2. Результаты исследований термической деструкции смеси гудрона и ПКС в присутствии каталитической добавки β-FeOOH (1%) с использованием ДТА: *1* – ΤΓ, *2* – ДТГ.

78.610 до 93.201 кДж/моль, а с увеличением концентрации каталитической добавки FeOOH с 1 до 1.5% энергия активации уменьшается с 93.201 до 65.641 кДж/моль. Аналогичные данные приведены для катализатора Fe_3O_4 : по мере увеличения содержания катализатора Fe_3O_4 с 0.5 до 1% энергия активации уменьшается с 95.941 до 93.281 кДж/моль, а с уве-

Таблица 2	. Результаты	обработки	кривых	термической	й деструкции	смеси гудрона и ПКС
-----------	--------------	-----------	--------	-------------	--------------	---------------------

N⁰	τ, мин	<i>т</i> _i , мг	$m_i - m_{\max}$, мг	<i>r_i</i> , мг/мин	$r_i/m_{imax}-m_i$, мг	$-\ln(r_i/m_{i\max}-m_i)$	t, °C	$10^3/T$, K ⁻¹
1	14.2		—	-	—	—	161	2.30
2	17.3	2.995	1.324	0.467	0.353	1.042	196	2.13
3	20.5	3.015	1.305	0.014	0.011	4.538	230	1.99
4	23.7	3.088	1.232	0.025	0.021	3.881	265	1.86
5	27.0	3.170	1.150	0.028	0.024	3.709	299	1.75
6	30.2	3.253	1.067	0.027	0.026	3.665	334	1.65
7	33.5	3.345	0.975	0.029	0.030	3.499	368	1.56
8	36.8	3.467	0.853	0.051	0.060	2.808	403	1.48
9	40.1	3.675	0.644	0.010	0.016	4.144	437	1.41
10	43.4	4.142	0.178	0.099	0.558	0.584	472	1.34
11	46.7	4.320	_	_	_	_	506	1.28

Рис. 3. Результаты исследований термической деструкции смеси гудрона и ПКС в присутствии каталитической добавки Fe₃O₄ (1%) с использованием ДТА: *1* – TГ, *2* – ДТГ.

личением концентрации каталитической добавки Fe_3O_4 с 1.0 до 1.5% энергия активации увеличивается с 93.281 до 109.301 кДж/моль (рис. 4).

По данным, приведенным в табл. 8, построили графики зависимости энергии активации от концентрации каталитической добавки (рис. 7, 8), из которых следует, что наименьшее значение энергии активации наблюдается при добавлении 1% катализаторов.

Это говорит о том, что применение новых, одноразовых, относительно дешевых каталитических добавок, которые раннее не исследовались в процессах термической деструкции, является более эффективным, так как при использовании 1%-ной концентрации вместо обычной 5%-ной значительно снижается энергия активации.

Результаты проведенного термогравиметрического анализа могут быть использованы при исследовании процесса гидрогенизации, для осуществления которой необходима разработка надежных методов технологического расчета реактора, а также значения констант скоростей основных реакций, энергии активации и других параметров, определяющих макрокинетику процесса термической деструкции. Для анализа сложных реакций могут применяться так называемые кинетические модели с распределенными параметрами, например кинетическая модель с распределенными значениями энергии активации [2], достаточно точно отражающая процесс термолиза углей и нефтяных остатков с образованием летучих веществ. Термодеструкция тяжелых нефтянных остатков с образованием летучих продуктов является результатом протекания неопределенного числа параллельных реакций первого

Рис. 4. Зависимость константы скорости от обратной температуры для смеси гудрона с ПКС.

Рис. 5. Зависимость константы скорости от обратной температуры для смесей: гудрон + ПКС + β -FeOOH (0.5%) – а; гудрон + ПКС + β -FeOOH (1%) – б; гудрон + ПКС + β -FeOOH (1.5%) – в.

порядка, поэтому задачей кинетического анализа была оценка параметров k_0 и энергии активации (*E*) для процесса термокрекинга нефтяных остатков различных месторождений. Результаты, приведенные в статье, совпадают с результатами работ [2, 6].

Рис. 6. Зависимость константы скорости от обратной температуры для смесей: гудрон + ΠKC + Fe_3O_4 (0.5%) – а; гудрон + ΠKC + Fe_3O_4 (1%) – 6; гудрон + ΠKC + Fe_3O_4 (1.5%) – в.

Таким образом, по данным термогравиметрического анализа рассчитаны кинетические параметры процессов термической деструкции смеси гудрона и ПКС без и в присутствии каталитической добавки в виде порошков Fe_3O_4 и β-FeOOH (в количестве 0.1; 0.5; 1%) в интервале температур

ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ СМЕСИ ГУДРОНА

N⁰	τ, мин	<i>т</i> _i , мг	$m_i - m_{\max}$, мг	<i>r</i> _{<i>i</i>} , мг/мин	$r_i/m_{\rm max}-m_i$, мг	$-\ln(r_i/m_{i\max}-m_i)$	t, °C	$10^3/T$, K ⁻¹
1	11.8	_	_	_	_	_	135	2.45
2	16.1	0.056	3.552	0.019	0.005	5.229	183	2.19
3	20.5	0.180	3.428	0.031	0.009	4.699	230	1.99
4	25.0	0.328	3.280	0.038	0.012	4.457	277	1.82
5	29.4	0.500	3.108	0.049	0.016	4.140	324	1.67
6	33.9	0.778	2.830	0.106	0.038	3.283	371	1.55
7	38.5	1.472	2.136	0.247	0.115	2.159	419	1.45
8	43.0	3.024	0.584	0.228	0.391	0.940	466	1.35
9	47.7	3.523	0.085	0.059	0.699	0.358	513	1.27
10	52.3	3.577	0.031	0.011	0.335	1.094	560	1.20
11	56.9	3.608	_	_	_	—	607	1.14

Таблица 3. Результаты обработки кривых термической деструкции смеси гудрона, ПКС и β-FeOOH (0.5%)

Таблица 4. Результаты обработки кривых термической деструкции смеси гудрона, ПКС и β-FeOOH (1%)

N⁰	τ, мин	<i>т</i> _i , мг	$m_i - m_{\max}$, мг	<i>r</i> _{<i>i</i>} , мг/мин	$r_i/m_{imax}-m_i$, MF $-\ln(r_i/m_{imax}-m_i)$		t, °C	$10^3/T$, K ⁻¹
1	4.2	—	—	_	_	_	55	3.05
<u>2</u>	9.5	0.184	0.184	4.828	0.029	0.006	110	2.61
<u>3</u>	14.6	0.316	0.316	4.697	0.034	0.007	165	2.28
<u>4</u>	19.7	0.532	0.532	4.480	0.044	0.010	220	2.02
<u>5</u>	24.8	0.781	0.781	4.232	0.052	0.012	275	1.82
<u>6</u>	30.0	1.087	1.087	3.925	0.068	0.017	331	1.66
<u>7</u>	35.3	1.519	1.519	3.493	0.164	0.047	386	1.52
<u>8</u>	40.6	2.828	2.828	2.185	0.310	0.142	441	1.40
<u>9</u>	45.9	4.808	4.808	0.204	0.201	0.982	496	1.30
<u>10</u>	51.3	4.936	4.936	0.077	0.016	0.214	551	1.21
<u>11</u>	56.8	5.013	5.013	—	_	_	606	1.14

Таблица 5. Результаты обработки кривых термической деструкции смеси гудрона, ПКС β-FeOOH (1.5%)

N⁰	τ, мин	<i>т</i> _i , мг	<i>m_{i-}m_{max}</i> , мг	<i>r</i> _{<i>i</i>} , мг/мин	$r_i/m_{i\max}-m_i$, мг	$-\ln(r_i/m_{imax}-m_i)$	t, °C	$10^3/T$, K ⁻¹
1	12.0	_	_	_	—	—	138	2.43
2	16.3	0.037	4.780	0.020	0.004	5.501	185	2.18
3	20.6	0.176	4.641	0.040	0.009	4.762	232	1.98
4	25.0	0.372	4.445	0.051	0.012	4.465	278	1.81
5	29.4	0.612	4.205	0.076	0.018	4.014	325	1.67
6	33.9	1.063	3.754	0.175	0.046	3.069	372	1.55
7	38.4	2.165	2.652	0.339	0.128	2.057	419	1.45
8	42.9	4.105	0.712	0.276	0.388	0.947	466	1.35
9	47.5	4.649	0.168	0.071	0.425	0.856	512	1.27
10	52.0	4.747	0.070	0.018	0.255	1.367	559	1.20
11	56.6	4.817	_	—	—	—	606	1.14

БАЙКЕНОВ и др.

	-	-	_	-				
N⁰	τ, мин	<i>т</i> _i , мг	$m_i - m_{\max}$, мг	<i>r_i</i> , мг/мин	$r_i/m_{i\max}-m_i$, мг	$-\ln(r_i/m_{imax}-m_i)$	<i>t</i> , °C	$10^3/T$, K ⁻¹
1	12.6	_	_	-	_	_	144	2.40
2	15.9	0.009	3.794	0.088	0.023	3.762	180	2.21
3	19.2	0.058	3.745	0.024	0.006	5.051	216	2.05
4	22.6	0.168	3.635	0.030	0.008	4.807	252	1.91
5	25.9	0.263	3.540	0.030	0.008	4.779	288	1.78
6	29.4	0.386	3.417	0.037	0.011	4.528	324	1.68
7	32.8	0.524	3.279	0.069	0.021	3.860	359	1.58
8	36.2	0.849	2.954	0.150	0.051	2.983	395	1.50
9	39.7	1.583	2.220	0.330	0.149	1.906	431	1.42
10	43.2	3.152	0.651	0.317	0.487	0.719	467	1.35
11	46.6	3.803	_	-	_	_	503	1.29

Таблица 6. Результаты обработки кривых термической деструкции смеси гудрона, ПКС и Fe₃O₄ (0.5%)

Таблица 7. Результаты обработки кривых термической деструкции смеси гудрона, ПКС и Fe₃O₄ (1%)

N⁰	τ, мин	<i>т</i> _i , мг	$m_i - m_{\max}$, мг	<i>r</i> _{<i>i</i>} , мг/мин	$r_i/m_{i\max}-m_i$, мг	$-\ln(r_i/m_{imax}-m_i)$	t, °C	$10^3/T$, K ⁻¹
1	12.0	_	—	_	—	—	138	2.43
2	15.4	0.047	3.709	0.022	0.006	5.105	175	2.23
3	18.9	0.145	3.612	0.032	0.009	4.729	213	2.06
4	22.4	0.281	3.475	0.041	0.012	4.448	250	1.91
5	25.9	0.432	3.325	0.041	0.012	4.396	287	1.79
6	29.4	0.586	3.170	0.049	0.015	4.175	325	1.67
7	33.0	0.788	2.968	0.076	0.026	3.659	362	1.58
8	36.6	1.132	2.624	0.162	0.062	2.782	399	1.49
9	40.2	1.945	1.811	0.306	0.169	1.779	436	1.41
10	43.8	3.356	0.400	0.249	0.623	0.473	474	1.34
11	47.4	3.756	_	_	_	_	511	1.28

Таблица 8. Результаты обработки кривых термической деструкции смеси гудрона, ПКС и Fe₃O₄ (1.5%)

N⁰	τ, мин	<i>т</i> _i , мг	$m_i - m_{\max}$, мг	<i>r_i</i> , мг/мин	$r_i/m_{i\max}-m_i$, мг	$-\ln(r_i/m_{i\max}-m_i)$	t, °C	$10^3/T$, K ⁻¹
1	13.1	_	—	_	—	—	150	2.36
2	16.6	0.031	3.882	0.017	0.004	5.421	187	2.17
3	20.0	0.123	3.789	0.033	0.009	4.728	224	2.01
4	23.5	0.255	3.657	0.042	0.012	4.457	262	1.87
5	27.0	0.405	3.507	0.047	0.013	4.310	299	1.75
6	30.5	0.587	3.325	0.064	0.019	3.951	336	1.64
7	34.1	0.848	3.064	0.103	0.034	3.389	373	1.55
8	37.7	1.306	2.606	0.226	0.087	2.444	410	1.46
9	41.3	2.453	1.459	0.337	0.231	1.467	448	1.39
10	44.9	3.760	0.152	0.197	1.292	0.256	485	1.32
11	48.5	3.912	_	—	—	—	522	1.26

N⁰	β-FeOOH, %	<i>Е</i> ₁ , кДж/моль	Fe ₃ O ₄ , %	<i>Е</i> ₂ , кДж/моль
1	_	110.161	_	110.161
2	0.5	78.610	0.5	95.943
3	1.0	93.201	1.0	93.281
4	1.5	65.640	1.5	109.301

Таблица 9. Рассчитанные энергии активации термической деструкции смеси гудрона и ПКС без и в присутствии каталитических добавок β-FeOOH и Fe₃O₄

32-458°С. Установлено, что процессы термической деструкции смеси гудрона и ПКС без и в присутствии каталитических добавок в данном

Рис. 7. Зависимость энергии активации (E_a , кДж/моль) от количества каталитической добавки β -FeOOH (%).

Рис. 8. Зависимость энергии активации (E_a , кДж/моль) от количества каталитической добавки Fe₃O₄ (%).

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2019

температурном интервале протекают в две стадии. Определены константы скорости и энергии активации процессов термической деструкции.

Аналогично для каталитической добавки Fe_3O_4 , по мере увеличения содержания Fe_3O_4 с 0.5 до 1% энергия активации уменьшается с 95.941 до 93.281 кДж/моль и с увеличением концентрации каталитической добавки Fe_3O_4 с 1 до 1.5% энергия активации увеличивается с 93.281 до 109.301 кДж/моль.

Показано, что метод термогравиметрии позволяет успешно изучать влияние различных факторов на термохимическую переработку гудрона в присутствии каталитических добавок.

СПИСОК ЛИТЕРАТУРЫ

- Малолетнев А.С., Кричко А.А., Гаркуша А.А. // Получение синтетического жидкого топлива гидрогенизацией углей. М.: Нудра, 1992. С. 50.
- 2. Юсевич А.И., Тимошкина М.А., Грушова Е.И. // БГТУ. Химические технологии, биотехнология, геология. 2009. Т. 1. № 4. С. 46.
- Кричко А.А., Озеренко А.А., Озеренко Е.А., Фросин С.Б., Зекель Л.А., Малолетнев А.С., Шпирт М.Я., Заманов В.В. // Катализ в промышленности. 2007. № 3. С. 23.
- 4. Иванов С.В., Воробьев С.И., Торховский В.Н., Герзелиев И.М. // Вест. МИТХТ. 2013. Т. 8. № 3. С. 67.
- 5. Воробьев С.И., Торховский В.Н., Туторский И., Казмалы К.А. // Вест. МИТХТ. 2008. Т. 3. № 3. С. 77.
- Юсевич А.И., Тимошкина М.А., Грушова Е.И. // БГТУ. Химические технологии, биотехнология, геология. 2009. Т. 1. № 4. С. 50.
- Байкенов М.И., Иванникова А.В., Байкенова Г.Г., Халикова З.С., Кочегина Е.В., Рахимжанова Н.Ж. // ХТТ. 2016. № 5. С. 27.
- Гудун К.А., Байкенов М.И., Тусилхан А., Ма Ф.Ю. // Aktualne problemy nowoczesnych nauk – 2012: Mater. VIII międzynarodowej naukowi-praktycznej konferencji. N. 44. Fizyka, Chemia a chemiczne technologie. Przemyśl: Nauka i studia, 2012. P. 87.
- 9. Омашева А.В., Севостьянова К.А., Байкенов М.И., Тажбаев Е.М. // XTT. 2016. № 6. С. 45.