УДК 662.742.2

ИССЛЕДОВАНИЕ ПРОДУКТОВ СВЕРХКРИТИЧЕСКОЙ ЭКСТРАКЦИИ КАМЕННЫХ УГЛЕЙ ЧАДАНСКОГО МЕСТОРОЖДЕНИЯ МЕТОДАМИ ТЕРМОГРАВИМЕТРИИ И ИК-СПЕКТРОСКОПИИ¹

© 2019 г. С. А. Ондар^{1,2,*}, Ш. Н. Солдуп^{1,**}, М. А. Михайленко^{2,***}, Л. Х. Тас-оол^{1,****}

¹ ФГБУН Тувинский институт комплексного освоения природных ресурсов СО РАН, 667007 Кызыл, Россия ² ФГБУН Институт химии твердого тела и механохимии СО РАН, 630128 Новосибирск, Россия

> *e-mail: ondarsa@tikopr.sbras.ru **e-mail: sholkaka85@mail.ru ***e-mail: mikhailenko@solid.nsc.ru ****e-mail: tasool51@mail.ru Поступила в редакцию 09.07.2018 г. После доработки 10.08.2018 г. Принята к публикации 24.10.2018 г.

Изучены термические свойства твердых продуктов сверхкритической экстракции каменного угля Чаданского месторождения в среде бензола и состав битумов, выделенных в разных температурных интервалах (до 120, 120–200, 200–285, 285–400°С). Термическая деструкция нерастворимого твердого угольного остатка от экстракции в отличие от исходного угля начинается при более высокой температуре и сопровождается меньшим выходом летучих. Сравнительный анализ характеристических параметров ИК-спектров и хроматограмм показывает изменение состава битумов от температуры экстракции: при низких температурах из угля экстрагируются масляные компоненты, а по мере ее повышения в экстрактах увеличивается содержание смол и асфальтенов.

Ключевые слова: сверхкритическая экстракция каменного угля, СКФЭ, каменный уголь, неэкстрагируемый твердый остаток, угольный битум, термический анализ, ИК-спектры

DOI: 10.1134/S0023117719020099

ВВЕДЕНИЕ

Один из перспективных методов переработки твердых горючих ископаемых — это сверхкритическая флюидная экстракция (СКФЭ), позволяющая превратить нерастворимые в стандартных условиях органические компоненты исходного сырья в растворимые жидкие и газообразные продукты [1, 2]. При этом за счет более высокой растворимости углеводородов при сверхкритических условиях удается значительно повысить конверсию углей.

Технология СКФЭ имеет апробацию на углях различного генезиса: низкосортных гумитах (особенно буроугольной стадии), липтобиолитах, сапропелитах [3, 4]. Термическое растворение каменных углей при сверхкритических условиях рассмотрено в [5, 6]. Применение метода СКФЭ на примере углей России, Канады, Бразилии, Китая и ряда других стран свидетельствует об актуальности исследований в данном направлении.

Чаданское месторождение каменного угля находится в Дзун-Хемчикском районе Республики Тыва. Общая мощность пласта Чаданский варьирует от 3.20 до 16.15 м и в среднем составляет 7.92 м. Балансовые запасы угля оцениваются в 10.1 млн т. Угли характеризуются высоким выходом летучих веществ (35%), низким содержанием серы (0.34%), малой зольностью (6.9%), высоким содержанием витринита, что позволяет их считать перспективным источником энергетического и химического сырья [7].

Цель данной работы — исследование влияния сверхкритической флюидной экстракции каменного угля Чаданского месторождения в среде бензола на физико-химические характеристики продуктов термического растворения органической массы угля.

¹ Работа выполнена в рамках государственного задания ТувИКОПР СО РАН № АААА-А17-117072710020-4 и государственного задания ИХТТМ СО РАН № АААА-А17-117030310280-6.

Фракция	Температура отбора фракции, °С	Давление, МПа	Продолжительность экстракции, мин
1	24-120	12	240
2	120-200	12	400
3	200-285	12	210
4	285-400	12	220

Таблица 1. Параметры экстракции и отбора фракций битумоида

Таблица 2. Характеристика исходного образца угля и НТО в сухом беззольном состоянии

Образен	Элементный состав, % на daf					Атомное отношение	
Образец	С	Н	N	S	0	H/C	O/C
Исходный уголь	80.67	5.07	1.37	1.52	11.38	0.75	0.11
НТО	63.73	3.12	1.00	1.09	31.07	0.59	0.37

МЕТОДЫ ИССЛЕДОВАНИЯ

Объектом исследования был рядовой каменный уголь Чаданского месторождения марки 1ГЖ, высушенный при 105°С.

Термическое растворение каменного угля выполнено на высокотемпературной лабораторной полупроточной установке для сверхкритической флюидной экстракции на базе ТувИКОПР СО РАН [8]. В реактор установки, выполненный из нержавеющей стали, загружали пробу угля с размерами частиц менее 0.2 мм и массой около 15 г. Параметры эксперимента приведены в табл. 1.

Нагрев реактора проводили в термопрограммируемых условиях – с комнатной температуры до 400°С со скоростью 2.5°С/мин, рабочее давление в реакторе 12 МПа. В качестве экстрагирующего растворителя использовали бензол марки ЧДА (критические характеристики: 288.9°С; 4.83 МПа), расход растворителя в процессе экстракции в полупроточной установке составлял 1.5-2 мл/мин. Выделяли неэкстрагируемый твердый остаток (HTO) угля и четыре фракции экстракта: 1, 2, 3 и 4. Отбор фракций проводился в температурных интервалах от комнатной до 120, 120-200, 200-285, 285-400°С соответственно. Продолжительность экстракции в каждом температурном интервале варьировалась в пределах 210-400 мин и контролировалась изменением цвета экстракта с фиксацией времени завершения выхода продуктов экстракции и начала отгонки бесцветного растворителя.

Элементный состав органической массы образца исходного угля и НТО исследован методом сжигания. Термический анализ исходного угля и НТО проведен на дифференциальном термоанализаторе *Netzsch STA 409* при следующих условиях: скорость потока азота (2 мл/мин), тигель платиново-родиевый, нагрев до 1000°С со скоростью 10°/мин. ИК-спектры сняты на Инфралюм ΦT -801 в интервале 4000—400 см⁻¹, разрешение 4 см⁻¹. Образцы фракций битума прессовали в таблетки КВг (1:300). Жидкостная хроматография фракций экстракта выполнена на хроматографе Мили-хром-A02, система растворителей — вода—ацетонитрил.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Суммарный выход пиролизата (масляные и смолисто-асфальтеновые фракции, отходящие газы) из чаданского угля при сверхкритической экстракции в среде бензола составил 17.6%, НТО – 82.4%. Конверсия органической массы угля при СКФЭ практически в 2 раза выше максимального выхода первичной смолы (9.52%) в процессе полукоксования при 510°С; в последней, согласно [9], определены асфальтены (28%), фенолы (3.40%) и основания (1.60%).

Изменение элементного состава органической массы исходного образца угля после СКФЭ характеризуется уменьшением содержания углерода, водорода, азота и серы и сопровождается увеличением доли кислорода в органической массе угля (табл. 2).

Термический анализ угля и его неэкстрагируемого твердого остатка. На кривых потери массы исследуемых образцов (рис. 1) можно выделить четыре участка для исходного угля — до 420, 420— 520, 520—740 и выше 740°С, и три участка для образца НТО — до 460, 460—740 и выше 740°С.

Наблюдаемый на калориметрической кривой угля в интервале 20–420°С слабый эндотермический эффект связан с выделением сорбированной и химически связанной воды (1.5%). В случае НТО начальная стадия потери массы образца (3.5%) характеризуется плавным снижением кривой в более широком интервале температур в области 20–460°С и обусловлена удалением остатков интеркалированного растворителя. Деструкция органического вещества НТО начинается при 460°С, исходного угля – при 420°С. Потери массы в интервале 420(460)–740°С для исходного и экстрагированного образцов составляли 21 и 11% соответственно. НТО теряет массу с максимальной скоростью в интервале температур 460– 740°С. Скорость потери массы у образца угля максимальна при нагреве в области 420–520°С, при дальнейшем росте температуры до 740°С она снижается до величины, близкой к скорости потери массы НТО.

В интервале 740–1000°С скорости деструкции органического вещества и угля и НТО замедляются одинаково и потери их масс составляют 4.5–5.0%. На основании представленных результатов можно сделать вывод, что не подвергающиеся экстракции фрагменты ОВ угля начинают разрушаться при температурах выше 740°С.

Сравнительный анализ термограмм в инертной среде показывает, что деструкция экстрагированного угля в отличие от исходного начинается при более высокой температуре (460°С против 420°С) и сопровождается меньшим выходом летучих компонентов. В соответствии с [10] в окислительной среде (атмосферный воздух) органическое вещество угля начинает разрушаться при еще более низких температурах (400–420°С). Таким образом, неэкстрагируемый твердый остаток угля можно использовать в качестве экологичного топлива в населенных пунктах и/или урбанизированных территориях, где существует проблема загрязнения атмосферы дымовыми выбросами недожога угля (сажа).

ИК-спектральный анализ битумов. По данным ИК-спектров проведен сопоставительный анализ характеристических частот функциональных групп в четырех выделенных фракциях битума (рис. 2). В ИК-спектрах изученных фракций видны характеристические полосы поглощения при 2923, 2854 см⁻¹ и 1450, 1376 см⁻¹, обусловленные соответственно валентными и деформационными колебаниями СН₃-, СН₂-групп в насыщенных алифатических соединениях. При росте температуры экстракции в докритическом интервале температур (120-285°С) у фракций 1, 2, 3 наблюдается уменьшение интенсивностей валентных колебаний С–Н-связей при 2923, 2854 см⁻¹, а интенсивности линий деформационных колебаний при 1450 см⁻¹, наоборот, увеличиваются, что вероятно обусловлено ростом вклада спиртовых групп (деформационные колебания фрагментов -СН₂-СО-группы при 1440 см⁻¹, а также С-О-Н-группы при 1050 см⁻¹). Анализ спектров позволяет утверждать, что сверхкритическая экстракция угля в среде бензола (фракция 4) обеспечивает наибольший выход углеводородов,

Рис. 1. Термогравиметрические кривые чаданского угля (*1*) и неэкстрагируемого бензолом твердого остатка (*2*).

содержащих алифатические фрагменты, в том числе со спиртовыми группами. Вероятно, в битуме сверхкритической фракции алифатические цепи являются сшивающими звеньями высокомолекулярных компонентов циклической и гетероциклической структуры высокой степени конденсации.

О наличии ароматических структур свидетельствует присутствие в спектрах полос поглощения в области валентных колебаний C_{ap} —H-групп (3030 см⁻¹), валентных колебаний ароматических колец (в области 1600 см⁻¹), внеплоскостных деформационных колебаний С—H в низкочастотной области 700—900 см⁻¹.

Известно, что по мере увеличения степени конденсированности ароматических колец увеличивается частота их деформационных колебаний: если колебания четырех соседних Сар-Нгрупп идентифицируются при 745–760 см⁻¹, трех соседних – при 775–800 см⁻¹, двух соседних – при 815-830 см⁻¹, изолированной группы С_{ар}-Н при 850-890 см-1. На представленных ИК-спектрах от первой к четвертой фракции наблюдается последовательный рост интенсивности полос поглощения, приписываемых деформационным колебаниям конденсированных (n = 4) ароматических колец (745-760 см⁻¹), наряду с этим заметно 8-9-кратное увеличение интенсивности валентных колебаний ароматических колец при 1600 см⁻¹. Следовательно, по мере увеличения температуры экстракции повышается как отно-

Рис. 2. ИК-спектры фракций 1-4, отобранных при сверхкритической экстракции угля.

Рис. 3. Хроматограммы фракций 1-4, отобранных при сверхкритической экстракции угля.

сительное содержание ароматических соединений в отобранных фракциях, так и степень конденсированности извлекаемых ароматических систем.

Во всех фракциях битума идентифицируются полосы поглощения, приписываемые кислородсодержащим ароматическим структурам: фенолы (широкая полоса валентных колебаний О–Н с максимумом при 3300 см⁻¹, широкая полоса деформационных колебаний в области 1300–1100 см⁻¹), ароматические кислоты и/или ароматические сложные эфиры (валентные колебания карбонильной группы С=О при 1730 см⁻¹ как плечо при 1600 см⁻¹, С–О–С при 1250 см⁻¹ как плечо широкой полосы деформационных колебаний фенолов). Возрастание интенсивностей перечисленных полос поглощений свидетельствует об увеличении во фракциях экстрактов содержания фенолов, ароматических кислот и их сложных эфиров по мере роста температуры сверхкритической экстракции.

Хроматограммы битумов. По хроматограммам четырех выделенных в разных температурных интервалах фракций битума видно (рис. 3), что состав низкотемпературной фракции 1 заметно отличается от остальных. При температурах до 120°С из угля экстрагируются хорошо разделяемые на хроматографической колонке масляные компоненты. С ростом температуры экстракции извлекаются смолы и асфальтены. Наибольший выход слабо разделенных смоляных компонентов отмечается во фракции 2 при температурах экстракции 120–200°С. При дальнейшем повышении температуры экстракции угля до 200–285°С (фракция 3) наблюдается снижение содержания смол, а в условиях сверхкритической экстракции, 285–400°С (фракция 4), выход смоляных компонентов вновь возрастает.

В составе асфальтенов различных ископаемых топлив присутствуют металлы, основная доля которых включена в металлоорганические комплексы типа порфиринов и других менее изученных металлоорганических соединений [11]. В гумитах выявлены Ga-, Fe-, Мп-порфирины, в сапропелитах VO-, Ni-порфирины [12, 13].

Перечисленные металлы присутствуют в золе чаданских углей. Так, согласно [9], методом спектрального полуколичественного анализа в золе углей обнаружены V, Ni (0.02–0.005%), Ga (0.001–0.003%) и другие элементы-примеси. По содержанию породообразующего оксида железа (Fe₂O₃ 6–29%) чаданские угли характеризуются как высокожелезистые.

Ванадил- и никель-порфирины являются типичными углеводородами для смолисто-асфальтеновой части нефтей. В работе [14] предложена СКФ-технология извлечения ванадия и никеля из асфальтенов путем их концентрации с использованием в качестве растворителя пропана в сверхкритическом состоянии. Так, предварительное целенаправленное извлечение смолистоасфальтеновых веществ из угля с применением технологии сверхкритической флюидной экстракции может быть рекомендовано для получения не только жидких и газообразных углеводородов, но и ценных металлов.

ЗАКЛЮЧЕНИЕ

Впервые исследованы продукты сверхкритической флюидной экстракции каменных углей Чаданского месторождения в среде бензола. Суммарный выход продуктов, извлекаемых из угля при экстракции, составил 17.6%.

Сравнительный анализ характеристических параметров ИК-спектров и хроматограмм показывает изменение состава битумов от температуры экстракции. При низких температурах экстракции из угля извлекаются масляные компоненты, а по мере повышения температуры в экстрактах увеличивается содержание смол и асфальтенов. Избирательность системы СКФЭ в зависимости от термобарических условий позволяет проводить целенаправленную экстракцию асфальтенов, из которых в перспективе можно извлекать ценные металлы. Термическая деструкция нерастворимого твердого остатка угля после экстракции начинается при более высокой температуре и сопровождается меньшим выходом летучих компонентов.

Предварительное выделение из угля содержащихся в нем ценных жидких и газообразных углеводородов и редких металлов перед его применением в энергетических целях может снизить загрязнение атмосферы дымовыми выбросами сажи и обеспечить комплексное, ресурсо- и энергосберегающее использование угольного сырья.

СПИСОК ЛИТЕРАТУРЫ

- Баринов А.В., Котельников В.И., Патраков Ю.А., Рязанова Е.А., Федянин В.Я. // Региональная экономика: технологии, экономика, экология и инфраструктура Материалы Международной НПК, посвященной 20-летию ТувИКОПР СО РАН. ТувИКОПР СО РАН. 2015. С. 247–250.
- 2. Филенко Д.Г., Дадашев М.Н., Винокуров В.А., Григорьев Е.Б. // Вести газовой науки. 2011. № 2. С. 82–92.
- 3. Лившиц С.Х., Чалая О.Н., Зуева И.Н. // СКФ-ТП. 2012. Т. 7. № 3. С. 12.
- 4. *Федорова Н.И., Патраков Ю.Ф., Павлуша Е.С. //* Вестн. Кузбас. гос. техн. ун-та. 2010. № 5. С. 132.
- Maria G.R. Vale, Luiza P. Luz, Ayrton F. Martins, Elina B. Caramao, Claudio Dariva, Jose V. de Oliveira // J. Microcolumn Separations. 1998. № 10(3). P. 259. https://doi.org/10.1002/(SICI)1520-667X(1998)10:3<259::AID-MCS4>3.0.CO;2-F
- Солдуп Ш.Н., Куликова М.П., Тас-оол Л.Х. // Углехимия и экология Кузбасса: Международный Российско-Казахстанский симпоз.: Сб. тез. докл. Кемерово. 2017. С. 49.
- Лебедев Н.И. Угли Тувы: состояние и перспективы освоения сырьевой базы. Кызыл: ТувИКОПР СО РАН, 2007. 180 с.
- 8. Солдуп Ш.Н., Котельников В.И., Кара-Сал Б.К. // Матер. и технологии XXI века: сб. статей XIV Международной НТК. Пенза. 2016. С. 222.
- 9. Гладышева К.А., Коцелко А.Н. О доразведке Чаданского каменноугольного месторождения для открытых работ за 1960 г.: Отчет. 1961. Кызыл, ТФИ по РТ, № 576.
- Лазебный И.П., Кордюмов О.К., Осипов П.В. // Теплотехника и информатика в образовании, науке и производстве (ТИМ'2016). Екатеринбург. 2016. С. 62.
- 11. *Краюшкин В.А., Гусева Э.Е., Морозова Р.М.* // Геол. журн. 2008. № 4. С. 26.
- Bonnett R., Burke Philip J., Czechowski F., Reszka A. // Org. Geochem. 1984. V. 6. P. 177. https://doi.org/ doi 10.1016/0146-6380(84)90039-1
- 13. Замирайлова А.Г., Занин Ю.Н., Фомин А.Н. // Геология и геофизика. 2000. Т. 41. № 9. С. 1341.
- Гумеров Ф.М., Сабирзянов А.Н., Гумерова Г.И., Габитов Ф. Р., Усманов С.Р., Амирханов Д.Г., Максудов Р.Н. // Бутлеровские сообщения. 2004. Т. 5. № 1. С. 9.