УДК 662.642:678.742

КАТАЛИТИЧЕСКАЯ ГИДРОГЕНИЗАЦИЯ МОДЕЛЬНОЙ СМЕСИ АНТРАЦЕНА И ФЕНАНТРЕНА

© 2019 г. Д. Е. Айтбекова^{1,*}, Ма Фэн Юн², М. Г. Мейрамов³, Г. Г. Байкенова^{4,5}, Ф. Е. Кумаков¹, А. Тусипхан¹, С. К. Мухаметжанова¹, М. И. Байкенов^{1,**}

> ¹ Карагандинский государственный университет имени академика Е.А. Букетова, 100028 Караганда, Республика Казахстан

² Синьцзянский университет, 830000 Урумчи, СУАР, Китайская Народная Республика

³ ТОО "Институт органического синтеза и углехимии", 100008 Караганда, Республика Казахстан

⁴ Карагандинский экономический университет Казпотребсоюза, 100009 Караганда, Республика Казахстан

⁵ Южно-Уральский государственный университет, 454080 Челябинск, Россия

*e-mail: darzhan91@mail.ru **e-mail: murzabek_b@mail.ru Поступила в редакцию 11.02.2019 г. После доработки 22.02.2019 г. Принята к публикации 02.04.2019 г.

Представлены результаты исследования гидрогенизации смеси антрацена и фенантрена в присутствии нанокатализаторов (Fe₃O₄, β-FeOOH) и каталитических добавок (микросферы, полученные из золы углей Республики Казахстан и нанесенные никелевые и кобальтовые добавки на микросферах). Показана эффективность использования метода "мокрого смешения" для получения никельи кобальтоксидных каталитических добавок на микросферах в процессе гидрогенизации смеси антрацена и фенантрена. Процесс гидрогенизации смеси полиароматических углеводородов представлен совокупностью реакций гидрирования и деструкции. Исследован индивидуальный химический состав продуктов гидрогенизации смеси антрацена и фенантрена. Установлены активность и селективность катализаторов и каталитических добавок в процессе гидрогенизации смеси полиароматических углеводородов.

Ключевые слова: полиароматические углеводороды, антрацен, фенантрен, каталитическая гидрогенизация

DOI: 10.1134/S0023117719040029

В связи с увеличением потребности в нефтепродуктах актуален поиск новых подходов в решении вопросов получения различных видов жидкого топлива, поэтому наравне с разработками теории и технологии гидрогенизации твердого и тяжелого углеводородного сырья и установления принципов управления этим процессом особое внимание уделяется изучению превращений индивидуальных полиароматических углеводородов и их смесей, моделирующих органическую массу, в среде водорода.

Чтобы ароматические соединения стали компонентами товарных продуктов, их подвергают разукрупнению, которое, применительно к многокольчатой ароматической структуре, складывается из частичного гидрирования и последующей деструкции гидрированных колец в присутствии катализаторов, часто определяющих не только механизм реакций, но и саму возможность их осуществления. В связи с этим трудно отделить закономерности влияния химического строения кластеров на их реакционную способность в процессах гидрогенизации и деструкции и закономерности влияния природы катализаторов [1].

Цель работы — исследование зависимости реакционной способности смеси модельных объектов (антрацен и фенантрен) в процессе деструктивной гидрогенизации в присутствии нанокатализаторов и каталитических добавок, а также оценка их селективности и активности в реакциях гидрирования и деструкции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения опытов в качестве модельных объектов использовали полициклические углеводороды антрацен (х.ч.) и фенантрен (х.ч.) в соотношении 1:1, в качестве нанокатализаторов – Fe₃O₄ [2], β-FeOOH [3] и каталитических добавок – микросферы, полученные из золы углей Респуб-

Индивидуальный	Содержание веществ, мас. %				
химический состав	микросфера	NiO/микросфера	СоО/микросфера		
SiO ₂	56.92	26.35	26.11		
Al ₂ O ₃	35.96	19.55	18.86		
Fe ₂ O ₃	2.97	2.28	4.05		
CaO	0.78	1.06	1.03		
MgO	1.25	1.93	0.48		
K ₂ O	0.83	0.42	0.48		
Na ₂ O	0.92	0.31	0.37		
P_2O_5	0.09	0.08	0.06		
MnO	0.04	0.06	0.06		
TiO ₂	1.72	0.93	0.92		
NiO	_	47.03	_		
CoO	—	_	47.58		

Таблица 1. Химический состав микросфер, солей никеля и кобальта, нанесенных на микросферы

лики Казахстан и нанесенные на поверхность микросфер солей никеля и кобальта методом "мокрого смешения".

Отмечено, что микросферы — основная часть угольной золы, характеризующаяся потенциальной добавочной стоимостью, могут использоваться во многих промышленных процессах в связи с уникальными свойствами, такими, как высокая термическая устойчивость, технологичность и прочность. Образование микросфер, их характеристики и извлечение из золы рассмотрены в [4].

Индивидуальный химический состав микросфер, использованных в качестве каталитической добавки, а также в качестве подложки для нанесения растворов солей никеля и кобальта, определяли по ГОСТу 10538-87 (табл. 1).

Применение катализаторов на носителях с равномерным распределением активной фазы по объему сорбента способствует уменьшению расхода активного компонента и повышению активности катализатора [5]. Одно из условий приготовления катализатора с постоянным химическим составом активного центра — это перенос активирующих добавок, находящихся в растворе, на поверхность трудно растворимых оксидов и их равномерное на ней распределение. Соли никеля и кобальта наносили на микросферы методом "мокрого смешения", для чего использовали 20%-ные водные растворы сульфатов никеля и кобальта (массовое соотношение солей и микросфер до обжига составляло 2:1). Смесь тщательно перемешивали, после образования густой массы высушивали в сушильном шкафу при 105°С. Полученные образцы подвергали термической обработке в муфельной печи в течение 2 ч при 500°С.

На рис. 1 приведены микрофотографии поверхностей микросфер, никелевых и кобальтовых каталитических добавок на микросферах, полученные на электронном микроскопе *MIRA3 TESCAN*. Видно, что на поверхности микросферы имеются микропоры размером 200–400 нм и неровности.

С помощью лазерного определителя размера частиц *Nano S90* и программного обеспечения *Zetasizer Nano (DTS)* определены размеры частиц микросфер, солей никеля и кобальта на микро-сферах (рис. 2).

По данным определителя размера частиц, средние диаметры частиц NiO/микросфера и CoO/микросфера составляют 2.82 и 3.67 мкм, соответственно, а средний размер частиц микро-сфер – 17.8 мкм.

Гидрогенизацию смеси антрацена и фенантрена проводили в автоклаве с внутренней мешалкой

Рис. 1. Микрофотографии поверхностей каталитических добавок: микросфера (20 мкм) – (а); микросфера (500 нм) – (а'); NiO/микросфера (б); CoO/микросфера (в).

Рис. 2. Размер и распределение частиц в растворе каталитической добавки СоО/микросфера.

(производство КНР), емкостью 0.05 л при начальном давлении водорода 3.0 МПа, температуре 420°С в течение 60 мин. Началом реакции считался момент достижения в автоклаве температуры 420°С при этом давление составило 12.0 МПа. Массовое содержание нанокатализаторов и каталитических добавок в смеси составляет 1.0% на исходную смесь (табл. 2).

Смесь предварительно перемешивали и приготовленную массу загружали в автоклав. Реактор продували водородом, подавали избыточное давление газа. Затем реактор нагревали до необходи-

№ опыта	Количество катализатора, мас. %						р МПа	7 . 1999
	Fe ₃ O ₄	β-FeOOH	микросфера	NiO/микросфера	СоО/микросфера	<i>I</i> , C	1, wiiia	т, мин
1	_	_	_	—	—	420	3.0	60
2	1	—	_	—	—	420	3.0	60
3	—	1	_	—	—	420	3.0	60
4	—	—	1	—	_	420	3.0	60
5	—	—	_	1	—	420	3.0	60
6	_	_	_	_	1	420	3.0	60

Таблица 2. Экспериментальные условия проведения процессов гидрогенизации смеси антрацена (0.5 г) и фенантрена (0.5 г)

мой температуры и выдерживали в течение заданного времени. Скорость нагрева автоклава составляла 10 °С/мин. После эксперимента его охлаждали до комнатной температуры, реакционную смесь растворяли в бензоле. Состав продуктов реакции определяли методом хроматомасс-спектрометрии на газовом хроматографе фирмы *Agilent Technologies 7890A* с масс-спектрометрическим детектором *5975C* и на хроматографе Кристаллюкс-4000М / ПИД-ТИД-ЭЗД.

На рис. 3 приведена хроматограмма продуктов гидрогенизации модельной смеси в присутствии нанокатализатора Fe₃O₄.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В [8] приведены результаты исследования процесса гидрогенизации модельных смесей: антрацен-бензотиофен [6], антрацен-бензотиофендифенил [7], и антрацен-бензотиофен-дифенил-фенантрен в присутствии различных каталитических добавок. Анализ литературных источников показал, что при гидрогенизации смесей модельных полиароматических соединений на соотношение продуктов гидрирования, гидрогенолиза и на степень конверсии влияет прежде всего их строение. Например, в случае гидрогенизации без катализатора двухкомпонентной модельной смеси антрацен-бензотиофен, содержание непрореагировавших веществ составляет 23% [6], а гидрогенизация четырехкомпонентной смеси без присутствия катализатора показывает высокую степень конверсии полиароматических углеводородов [8].

Приведенные в работах [6–8] результаты процесса гидрогенизации двух-, трех-, четырехкомпонентных смесей полиароматических углеводородов в присутствии гетерогенных и псевдогомогенных катализаторов показали, что расход катализатора составляет от 2 до 5%. Именно это оптимальное количество позволяет добиваться в процессе гидрогенизации полиароматических углеводородов увеличения выхода активного атомарного водорода, который препятствует реакциям конденсации и понижает стабильность ассоциатов, а синтезированный нанокатализатор β -FeOOH [3] по своей активности и селективности при расходе не больше 1% превосходит по активности приведенные в литературе нанокатализаторы и каталитические добавки.

Предварительно была проведена гирогенизация антрацена [9] и фенантрена по отдельности в условиях: T - 380°C, P - 3.0 МПа, $\tau - 120$ мин, количество катализатора 1.0 мас. %. Выход продуктов гидрогенизации приведен в табл. 3.

При исследовании гидрогенизации модельных объектов по отдельности видно, что конверсия антрацена больше, чем фенантрена; последнее изомеризуется в антрацен больше, чем антрацен в фенантрен и при гидрогенизации фенантрена образовался еще один продукт изомеризации – 9-метил-9Н-флуорен (0.42%).

Химический состав продуктов каталитической гидрогенизации смеси антрацена и фенантрена приведен в табл. 4.

Тот факт, что электронная структура молекулы играет важную роль в процессе гидрогенизации, вытекает из того, что изомеры с разным расположением заместителей существенно различаются по реакционной способности. Линеарная и ангулярная структуры антрацена и фенантрена, соответственно, не только характеризуют стабильность всей молекулы в целом, но и указывают на реакционноспособные положения в основном состоянии, что объясняет стабильность фе-

Рис. 3. Хроматограмма продуктов гидрогенизации смеси антрацена и фенантрена в присутствии нанокатализатора Fe₃O₄.

нантрена и его заметную реакционную способность в положениях 9, 10 (табл. 3).

При переработке смеси полиароматических углеводородов в присутствии катализаторов и каталитических добавок наряду с реакциями расщепления и гидрирования наблюдаются реакции изомеризации шестичленных колец в пятичленные. На рис. 4 приведена схема гидрогенизации смеси антрацена и фенантрена по полученным данным хромато-масс-спектрометрического анализа продуктов реакции.

Известно, что гидрогенизация антрацена и фенантрена протекает ступенчато, с образованием продуктов гидрирования (гидроантраценов и гидрофенантренов) и деструкции (дифенилы, нафталины). По данной схеме, первоначально происходит гидрирование, затем 9,10-дигидрофенантрен изомеризуется до 9-метил-9H-флуорен и, возможно, 9,10-дигидроантрацен, флуорен далее расщепляются до дифенила и его производных; тетрагидропроизводные антрацена и фенантрена расщепляются до нафталина и производных нафталина.

Сравнение результатов проведения гидрогенизации полиароматических углеводородов по отдельности (антрацен, фенантрен) позволяет предположить, что источник образования флуорена в гидрогенизате смеси — фенантрен. Незначительное количество образовавшегося 9-метил-9H-флуорена при гидрогенизации смеси в присутствии каталитической добавки СоО/микросфера — это продукт изомеризации гидропроизводных фенантрена.

		Выход продуктов гидрогенизации, мас. %			
Соединение	Структурная формула	антрацен, катализатор Ni _{cф}	фенантрен, каталитическая добавка NiO/SiO ₂ **		
Нафталин		0.58	0.14		
1-Метилнафталин		1.93	0.11		
1-Этилнафталин		2.10	_		
Флуорен		_	0.98		
9-Метил-9Н-флуорен		_	0.42		
1-Метил-4-фенилметилбензол		2.85	_		
2-Бутилнафталин		0.99	_		
2-Метил-1,1'-дифенил		2.61	_		
2-Этилдифенил		8.71	_		
9,10-Дигидроантрацен		13.20	0.41		
1,2,3,4-Тетрагидроантрацен		13.10	_		
9,10-Дигидрофенантрен		_	4.50		
Фенантрен		0.64	83.10		
Антрацен		39.90	8.80		

Таблица 3. Выход продуктов гидрогенизации антрацена и фенантрена

* Наносферический катализатор, полученный электрохимическим методом при восстановлении NiSO₄.

** Каталитическая добавка, полученная золь-гель-методом.

АЙТБЕКОВА и др.

	Соединение	Содержание, мас. %						
N⁰		 Без ката- лизатора 	2. Fe ₃ O ₄	3.β- FeOOH	4. Микро- сфера	5. NiO/микро- сфера	6. СоО/микро- сфера	
1	Нафталин	_	_	_	_	_	0.98	
2	2-Метилнафталин	_	—	—	1.80	3.53	2.63	
3	1,7-Диметилнафталин	_	—	—	_	7.67	5.96	
4	2-Этилнафталин	_	—	_	3.02	_	_	
5	2-Бутилнафталин	1.06	_	_	_	2.50	4.18	
6	1-Метил-4-фенилметил бензол	3.27	1.40	2.79	5.25	11.42	15.49	
7	Флуорен	_	—	—	1.62	3.78	4.73	
8	9-Метил-9Н-флуорен	_	_	_	_	_	2.90	
9	Дифенилметан	_	_	_	_	_	1.29	
10	2-Метил-1,1'-дифенил	_	—	—	1.65	4.01	3.07	
11	2-Этил-1,1'-дифенил	1.80	_	1.53	2.17	7.61	10.39	
12	9,10-Дигидроантрацен	14.65	23.72	18.46	13.29	22.66	32.65	
13	9,10-Дигидрофенантрен	3.10	1.73	3.39	2.64	_	_	
14	1,2,3,4-Тетрагидроантрацен	11.58	12.28	13.47	9.21	_	6.20	
15	1,2,3,4-Тетрагидрофенантрен	_	_	_	_	15.98	2.04	
16	Антрацен	12.81	18.96	12.63	10.73	3.94	1.32	
17	Фенантрен	51.31	41.92	47.74	48.60	16.81	6.15	

Таблица 4. Выход продуктов реакции в условиях гидрогенизации модельной смеси антрацена и фенантрена (номера опытов из табл. 2)

В работе [5] показана ангулярно-линеарная изомеризация 9,10-дигидрофенантрена и 1,2,3,4-тетрагидрофенантрена, соответственно, в 9,10-дигидроантрацен и 1,2,3,4-тетрагидроантрацен. Дальше дигидро- и тетрагидроантрацен дегидрируются с образованием антрацена.

В ходе гидрогенизации смеси происходят расщепление гидропроизводных и частичное дегидрирование. Гидропроизводные полиароматических углеводородов выступают как доноры водорода [10]. Так как антрацен более легко подвергается гидрированию, чем фенантрен, можно сделать вывод о том, что фенантрен хорошо гидрируется в присутствии каталитических добавок NiO/микросфера (38.6%) и CoO/микросфера (40.9%), гидропроизводные фенантрена дают продукты изомеризации – гидропроизводные антрацена. Из табл. 4 видно, что каталитические добавки NiO/микросфера и CoO/микросфера более активны и селективны в процессе гидрогенизации смеси полиароматических углеводородов, чем нанокатализаторы Fe_3O_4 , β -FeOOH и каталитическая добавка в виде микросфер. Экспериментальные результаты реакций гидрирования и гидрогенолиза смеси полиароматических углеводородов представлены на рис. 5.

В процессе гидрогенизации смеси полиароматических углеводородов без катализатора и каталитической добавки выход продуктов расщепления составил 6.5%, а продуктов гидрирования — 29.3%. При этом осталось более 64% непрореагировавшего вещества, в том числе фенантрена 51.3%, антрацена — 12.8%.

Результаты опыта гидрогенизации смеси антрацена и фенантрена с использованием в качестве нанокатализатора Fe_3O_4 показали, что в значительном количестве превалируют продукты гидрирования, при этом концентрация продуктов гидрирования составила 37.7%, тогда как кон-

Рис. 4. Схема превращений смеси антрацена и фенантрена при гидрогенизации.

Рис. 5. Выход продуктов реакции без катализатора и в присутствии различных катализаторов и каталитических добавок: *1* – продукты деструкции; *2* – продукты гидрирования; *3* – непрореагировавшие вещества (номера опытов см. в табл. 2 и 4).

центрация продуктов расщепления — всего 1.4% (рис. 5).

Из результатов анализа экспериментов гидрогенизации смеси в присутствии β -FeOOH следует, что в гидрогенизате продуктов гидрирования больше (35.3%), чем продуктов расщепления (4.3%). Добавление в систему нанокатализаторов Fe₃O₄ и β -FeOOH привело к увеличению продуктов гидрирования и уменьшению продуктов деструкции по сравнению с процессом проведения гидрогенизации смеси без катализаторов и каталитических добавок.

При добавлении в смесь микросфер в качестве каталитической добавки выход продуктов деструкции составил 11.7%, а выход продуктов гидрирования практически не изменился и составил 29% в сравнении с выходом продуктов гидрирования при гидрогенизации смеси без катализатора.

В случае никелевой каталитической добавки соотношение содержания продуктов деструкции и гидрирования в гидрогенизате соствили ближе к 1 : 1 (соответственно 40.5% и 38.6%), а в случае кобальтовой каталитической добавки продуктов расщепления больше на 10%.

Изучение влияния нанокатализаторов и каталитических добавок гидрогенизации смеси антрацена и фенантрена позволило построить ряд эффективности нанокатализаторов и нанокаталитических добавок: CoO/микросфера > > NiO/микросфера > микросфера > β-FeOOH ≈ ≈ Fe₃O₄. Следует отметить влияние никелевых и кобальтовых каталитических добавок на высокую конверсию фенантрена в смеси в продукты гидрирования и гидрогенолиза, а также на увеличение донорной способности гидропроизводных антрацена. По-видимому на активность и селективность никелевых и кобальтовых каталитических добавок влияют размеры наночастиц никеля и кобальта.

ЗАКЛЮЧЕНИЕ

Таким образом, оксид и оксигидроксид железа для модельной смеси антрацена и фенантрена – неэффективные нанокатализаторы относительно выхода продуктов расщепления (табл. 2, опыт 2, 3).

Следует отметить, что NiO/микросфера и CoO/микросфера в качестве каталитических добавок в гидрогенизации смеси антрацена и фенантрена показали высокую активность. Содержание непрореагировавших продуктов в разы меньше, чем при использовании других катализаторов и каталитических добавок или при проведении гидрогенизации без катализатора и каталитической добавки (табл. 2, опыт 5, 6).

Кобальтовая каталитическая добавка наиболее эффективная и с позиции выхода продуктов деструкции, и с позиции выхода продуктов гидрирования. Каталитические добавки на основе оксида кобальта являются наиболее селективными в реакции гидрогенолиза смеси антрацена и фенантрена.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Калечиц И.В.* Моделирование ожижения угля. М.: ИВТАН, 1999. 229 с.
- Jongham P., Kwangjin A., Yosun H., Je-Geun P., Han-Jin N., Jae-Young K., Jae-Moon H., Taeghwan H. // Nature Materials. 2004. № 3. P. 891.
- 3. Yuanzhe P., Jaeyun K., Hyon B.N., Dokyoon K., Ji S.B., Mi K.K., Jung H.L., Mohammadreza Sh., Taeghwan H. // Nature materials. № 7. P. 242.
- 4. Ranjbar N., Kuenzel C. // Fuel. 2017. V. 207. P. 1.
- 5. *Мейрамов М.Г.* // XTT. 2017. № 2. С. 42. [Solid Fuel Chemistry, 201, vol. 51, no. 2, p. 107. DOI: 10.3103/S0361521917020070] https://doi.org/10.7868/S0023117717020074

- Гудун К.А., Байкенов М.И., Ма Фэн Юн // ХТТ. 2010. № 6. С. 56. [Solid Fuel Chemistry, 2010, vol. 44, no. 6, p. 419. DOI: 10.3103/S0361521910060091]
- 7. *Gudun K.A., Baikenov M.I., Ma Feng Yun //* Education and Sc. without borders. 2011. V. 2. № 4. P. 120.
- 8. *Ма Фэн-Юнь, Байкенов М.И., Гудун К.А.* // Вестник Карагандинского университета. Серия Химия. 2012. № 1. С. 51.
- 9. Байкенов М.И., Мейрамов М.Г., Халикова З.С., Ибишев К.С., Сарсембаев Б.Ш., Тусилхан А. // ХТТ. 2016. № 4. С.52. [Solid Fuel Chemistry, 2016, vol. 50, no. 4, p. 256. DOI: 10.3103/S0361521916040029] https://doi.org/10.7868/S0023117716040022
- 10. Гюльмалиев А.М., Малолетнев А.С., Магомадов Э.Э., Кадиев Х.М. // ХТТ. 2012. № 4. С. 3 [Solid Fuel Chemistry, 2012, vol. 46, no. 4, p. 205. DOI: 10.3103/S0361521912040052]