УДК 544.6+538.953+405

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА И ТЕПЛОЕМКОСТЬ ПОРИСТО-УГЛЕРОДНОГО МАТЕРИАЛА ИЗ УГЛЯ МАЙКУБЕНСКОГО БАССЕЙНА

© 2020 г. Б. Т. Ермагамбет^{1,*}, Б. К. Касенов^{2,**}, М. К. Казанкапова^{1,*}, Н. У. Нургалиев^{1,*}, Ж. М. Касенова^{1,*}, Е. Е. Куанышбеков^{2,**}, А. Т. Наурызбаева^{1,*}

¹ ТОО "Институт химии угля и технологии", 010000 Нур-Султан, Казахстан ² Химико-металлургический институт имени Ж. Абишева, 1000009 Караганда, Казахстан *e-mail: coaltech@bk.ru **e-mail: kasenov 1946@mail.ru

Поступила в редакцию 25.02.2019 г. После доработки 17.01.2020 г. Принята к публикации 10.02.2020 г.

Проведен химический анализ пористо-углеродного материала (ПУМ) из угля бассейна "Майкубен" (Казахстан). ПУМ получен методом карбонизации и активации в средах аргона и водяного пара. Изучены физико-химические характеристики и морфология поверхности исследуемого образца. Определены электрофизические характеристики ПУМ путем измерения электроемкости образцов в интервале температур 293–483 К. Методом динамической калориметрии получены температурные зависимости удельной теплоемкости. Выведены уравнения температурной зависимости тепло-емкости, которые в дальнейшем могут быть использованы для определения их теплопроводности и температуропроводимости.

Ключевые слова: пористо-углеродный материал, электрофизичесие свойства, емкость, электросопротивление, диэлектрическая проницаемость, теплоемкость

DOI: 10.31857/S0023117720030032

Майкубенский буроугольный бассейн, включающий Шоптыкольское, Сарыкольское и Талдыкольское месторождения, известен с начала XIX века. С 1941 г. на Шоптыкольском месторождении ведется разработка угля небольшим карьером для местных нужд, а с 1987 г. — крупным Майкубенским разрезом проектной мощностью 20 млн т/год.

Угли бассейна гумусовые, бурые высокой степени углефикации (Б₃), среднезольные (25–28%). Зола тугоплавкая с высоким содержанием $A1_2O_3$ (до 30%), угли малосернистые (0.5–1.0%) и многофосфористые (0.1%). Теплота сгорания на горючую массу 29.3–31.4 кДж/кг. Выход смол составляет 4–7%, редко – 10%, гуминовых кислот – 5% на сухой уголь для Шоптыкольской свиты и битумов ~2.5%. Общие запасы углей бассейна оцениваются в 5.3 млрд т, в том числе пригодные для открытой отработки при вскрыше до 10 м³/т составляют 1.8 млрд т [1–3].

В связи с развитием "зеленой энергетики" добыча твердых ископаемых в мире в качестве энергетического сырья сокращается. Это обуславливает поиск высокоэффективных технологий комплексной переработки горючих ископаемых в продукты с высокой добавочной стоимостью, что является актуальной задачей для науки и промышленности [4, 5]. Например, стоимость наносорбентов в 450 раз превышает стоимость сырья при огромном объеме рынка сбыта, а суммарное мировое производство пористых углеродных материалов в настоящее время составляет около 1 млн т в год [6, 7].

Пористые углеродные материалы, получаемые термической обработкой (карбонизацией) и/или активацией (с использованием различных окислителей) углеродсодержащего сырья, обладают способностью высокоэффективно разделять газовые и жидкие смеси за счет сорбционного эффекта [8–10]. Такие материалы широко применяются в качестве различных сорбентов, носителей катализаторов, нанокомпозитных материалов, подложки в источниках тока нового поколения (литий-ионных аккумуляторах, суперконденсаторах, ионисторах и топливных элементах) и т.д. [11–19].

Цель данной работы — исследование электрофизических свойств пористо-углеродного мате-

Элемент	Исходный уголь, мас. %	ПУМ, %
С	62.33	60.69
Ο	24.88	19.44
Mg	0.34	0.58
Al	3.39	5.29
Si	6.71	10.09
К	0.73	1.05
Ca	0.37	0.75
Fe	0.87	1.60

Таблица 1. Химический состав ПУМ из угля бассейна "Майкубен"

риала из угля бассейна "Майкубен", месторождения "Шоптыколь" (Казахстан). Образцы ПУМ были получены в ТОО "Институт химии угля и технологии" (г. Нур-Султан) карбонизацией (при 973–1023 К в среде аргона) и активацией (при 1123–1173 К водяным паром) угля в соответствии с методикой, описанной в [20]. Технические характеристики активированного угля составляют (мас. %): A^d 15.61; W^r 1.72; V^d 10.86.

Химический анализ и морфология поверхности ПУМ изучены методом энергодисперсионной рентгеновской спектроскопии на приборе *SEM* (*Quanta 3D 200i*) с приставкой для энергодисперсионного анализа от *EDAX* в Национальной нанотехнологической лаборатории открытого типа (КазНУ имени аль-Фараби, г. Алматы). Энергия возбуждающего пучка электронов при анализе составила 15 кэВ. Результаты элементного анализа представлены в табл. 1.

Для идентификации фазового состава ПУМ использовали рентгеновскую дифракцию. Рентгенофазовый анализ проводили на установке ДРОН-2. Условия съемки: Fe K_{α} -излучение, U = 28 kB, J = 28 мА. В результате анализа установлено, что ПУМ практически рентгеноаморфен, наблюдаются слабые рефлексы SiO₂, Fe₂O₃ и K₂O.

Результаты проведенного элементного анализа, представленные в табл. 1, показывают, что после термической обработки угля большая часть летучих компонентов удаляется в виде газообразных продуктов, соответственно, повышается концентрация минеральных составляющих. Физико-химические характеристики ПУМ представлены в табл. 2.

Микроснимки образцов исходного угля бассейна "Майкубен" и активированных ПУМ на его основе представлены на рис. 1. При анализе морфологии поверхности исходного угля установлено, что поверхность скола представлена неоднородностью структуры, характеризуется хлопьевидными включениями в углеродной матрице,

N⁰	Показатель	Единица измерения	НД на метод испытания	Значение показателя
1	Массовая доля воды	%	CT PK 2407-2013	1.55
2	Массовая доля золы	%	CT PK 2406-2013	17.51
3	Структурная прочность	%	CT PK 2243-2012	80.42
4	Суммарный объем пор по воде	см ³ /г	CT PK 2404-2013	0.48
5	Адсорбционная активность по йоду	%	CT PK 2402-2013	20.30
6	Адсорбционная активность по метилоранжу	мг/г	ГОСТ 4453-74	57.50
7	Адсорбционная активность по метилен-голубому	мг/г	ГОСТ 4453-74	30.00
8	Удельная поверхность	M^2/Γ	Метод БЭТ	348.99
9	Насыпная плотность	г/см ³	CT PK 2408-2013	0.69
10	Массовая доля хлора	%	ГОСТ 9326-2002	0.01
11	Массовая доля мышьяка	%	ГОСТ 10478-93	0.0006
12	Массовая доля общей серы	%	ГОСТ 8606-93	0.62
13	Гранулометрический состав, мм:	%	CT PK 2405-2013	
	более 5			18.61
	3-5			73.26
	1–3			6.82
	0.1-1			0.36
	менее 0.1			0.95
	Итого			100.00

Таблица 2. Физико-химические характеристики ПУМ из угля бассейна "Майкубен"

Рис. 1. Электронные микроскопические снимки исходного (а)-(в) и ПУМ на основе угля бассейна "Майкубен" (г)-(е).

встречаются частицы пластинчато-ступенчатой формы. Результаты анализа микроснимков показывают, что после термической активации угля поверхностная структура изменяется и становится более развитой, с меньшими размерами частиц, а значения удельной поверхности и удельного объема пор существенно увеличиваются по сравнению с исходным образцом — от 5.11 до $348.99 \text{ м}^2/\text{г}$, приблизительно в 70 раз в результате высокотемпературной активации. На СЭМ-рисунках ПУМ видно, что на поверхности образца образовались мелкодисперсные нано- и макрочастицы кремния с диаметром от ~50 до ~1 мкм.

активированные Полученные адсорбенты апробированы для очистки сточных канализационных вод, взятых в ГКП "Астана су арнасы" (г. Нур-Султан). Место отбора проб – распределительная камера после предварительной механической очистки. Химический анализ сточных вод до (контроль) и после очистки ПУМ проведен в аккредитованной аналитической лаборатории канализационных очистных сооружений ГКП "Астана су арнасы", в которой были определены основные показатели очистки сточных вод. Анализ полученных данных показал, что после очистки сточных вод значения всех химических показателей снижаются, особенно таких, как

БПК (76-88%), взвешенные вещества (77.38– 61.57%), железо (61.16-70.87%) и нефтепродукты (96.52-97.22%). Такие показатели, как pH, взвешенные вещества, фосфаты, нефтепродукты, в основном соответствуют нормам по НД.

Пористо-углеродные материалы также были апробированы по очистке газов в ООО "Сорбенты Кузбаса" (г. Кемерово, Россия). Удельный удерживаемый объем газов (по данным газовой хроматографии) при 303 К составил: $O_2 0.46 \text{ см}^3/\text{г}$, $CO_2 33.5 \text{ см}^3/\text{г}$, пропан 1.31 см $^3/\text{г}$, бутан 3.83 см $^3/\text{г}$. Диоксид серы (SO₂) при 300, 343, 373 и 403 К показал полное поглощение.

Электрофизические свойства майкубенского пористо-углеродного материала были исследованы в лаборатории термохимических процессов Химико-технологического института имени Ж. Абишева (г. Караганда). Определение электрофизических характеристик (диэлектрической проницаемости ε , электрического сопротивления *R*) проводили путем измерения электроемкости *C* образцов на серийном приборе *LCR-800* (измеритель *L*, *C*, *R*) при рабочей частоте 1 кГц с базовой погрешностью 0.05–0.1% непрерывно в сухом воздухе в термостатном режиме со временем выдержки в течение 3 мин при каждой фиксированной температуре.

Таблица	3.	Зависимость	электросопротивления	(<i>R</i>),
электроем	лкос	ти (С) и диэлек	трической проницаемост	и (ε)
от темпер	атур	ры (ПУМ из уг	ля бассейна "Майкубен"	')

Таблица 4. Зависимость электросопротивления (R), электроемкости (C) и диэлектрической проницаемости (ϵ) от температуры (титанат бария – BaTiO₃)

				(-)							
Т, К	С, нФ	<i>R</i> , Ом	3	lgɛ	lg <i>R</i>	<i>Т</i> , К	С, нФ	<i>R</i> , Ом	3	lgɛ	lg <i>R</i>
293	2997.3	6790	33436360	7.52	3.83	293	0.27278	13400	1296	3.11	4.13
303	3176.6	6469	35436540	7.55	3.81	303	0.27426	13270	1303	3.11	4.12
313	3596.6	6097	40121847	7.60	3.79	313	0.27715	12910	1316	3.12	4.11
323	4119.5	5488	45955054	7.66	3.74	323	0.28125	12560	1336	3.13	4.10
333	4192.9	4707	46773867	7.67	3.67	333	0.28772	11890	1367	3.14	4.08
343	4355.2	4006	48584404	7.69	3.60	343	0.29313	11210	1392	3.14	4.05
353	4795.2	3297	53492821	7.73	3.52	353	0.29916	10290	1421	3.15	4.01
363	5875.6	2720	65545216	7.82	3.43	363	0.30751	9383	1461	3.16	3.97
373	7792.1	2208	86924718	7.94	3.34	373	0.31202	8831	1482	3.17	3.95
383	13612	1747	151848573	8.18	3.24	383	0.31702	9061	1506	3.18	3.96
393	28746	1322	320675807	8.51	3.12	393	0.32255	8814	1532	3.19	3.95
403	39839	1064	444423693	8.65	3.03	403	0.32967	7881	1566	3.19	3.90
413	56683	817.8	632326820	8.80	2.91	413	0.3423	7098	1626	3.21	3.85
423	64487	682	719384289	8.86	2.83	423	0.35119	6902	1668	3.22	3.84
433	80560	572.1	898686531	8.95	2.76	433	0.36668	6153	1742	3.24	3.79
443	73630	601.5	821378963	8.91	2.78	443	0.38018	6317	1806	3.26	3.80
453	62286	644.5	694831048	8.84	2.81	453	0.39802	6010	1891	3.28	3.78
463	82549	635.7	920874807	8.96	2.80	463	0.4169	5584	1980	3.30	3.75
473	99508	525.5	1110060815	9.05	2.72	473	0.43147	5149	2050	3.31	3.71
483	<999999	434	<1115538163	<9.05	2.64	483	0.45456	4656	2159	3.33	3.67

Предварительно изготавливали плоскопараллельные образцы в виде дисков диаметром 10 мм и толщиной 5–6 мм со связующей добавкой (~1.5%). Прессование проводили под давлением 20 кг/см². Полученные диски обжигали в силитовой печи при 200°С в течение 6 ч. Далее проводили их тщательное двухстороннее шлифование.

Диэлектрическую проницаемость определяли из электроемкости образца и электроэмкости конденсатора. Для получения зависимости между электрической индукцией D и напряженностью электрического поля Е использовали схему Сойера-Тауэра. Визуальное наблюдение D (Е-петли гистерезиса) проводили на осциллографе С1-83 с делителем напряжения, состоящим из сопротивлений 6 Ом · м и 700 кОм, и эталонным конденсатором 0.15 мкФ. Частота генератора 300 Гц. Во всех температурных исследованиях образцы помещали в печь, температуру измеряли хромельалюмелевой термопарой, подключенной к вольтметру *B2-34* с погрешностью ± 0.1 мВ. Скорость изменения температуры ~5 К/мин. Величину диэлектрической проницаемости при каждой температуре определяли по формуле $\varepsilon = C/C_0$, где C - Cемкость конденсатора без исследуемого вещества

(воздушного). В табл. 3 приведены результаты измерения электрофизических характеристик ПУМ из угля бассейна "Майкубен".

Как видно из полученных данных, ПУМ в интервале 293–433 К проявляет полупроводниковые свойства, а при 433–453 К – металлический, 433–453 К – полупроводниковый характер проводимости. При 433 К наблюдается фазовый переход II рода. Данный материал обладает достаточно высокими значениями диэлектрической проницаемости: ~33 млн при 293 К и >1 млрд при 483 К. Образец ПУМ представляет интерес как полупроводник, а также в качестве перспективного микроконденсаторного материала.

Для достоверности полученных данных проведено измерение диэлектрической проницаемости стандартного вещества — титаната бария BaTiO₃. В табл. 4 приведены результаты измерений электрофизических характеристик BaTiO₃.

Как видно из табл. 4, значение диэлектрической проницаемости стандартного образца $BaTiO_3$ при 293 K, равное 1296, согласуется с его рекомендованной величиной 1400 ± 250 [21–23]. Кроме того, наблюдаемое повышение электропроводности $BaTiO_3$ при 383 K также согласуется с литературными данными [21–23] при 393 К в связи с его переходом из перовскитовой кубической фазы *Рт3т* в тетрагональную (полярную) сегнетоэлектрическую фазу с пр. гр. *Р4тт*.

Таким образом, ПУМ на основе майкубенского угля представляет интерес для конденсаторов: при 293 К имеет значение $\varepsilon = 33$ млн, превышающее эталонное BaTiO₃ в 25000 раз, а при 483 К ($\varepsilon \ge 1$ млрд) превышающее BaTiO₃ в 463000 раз.

Следует отметить, что диэлектрические проницаемости данного относительно дешевого ПУМ могут конкурировать с аналогичной характеристикой нового La_{15/8}Sr_{1/8}NiO₄, обладающего гигантским значением диэлектрической проницаемости = 10^5-10^6 [24]. Следует отметить, что для запоминающих устройств, основанных на емкостных компонентах (конденсаторах), это означает, что при уменьшении размеров конденсатора величина его емкости должна оставаться прежней [24].

Наряду с электрофизическими характеристиками определенный научный и практический интерес представляет определение удельной теплоемкости ПУМ для выявления их теплотворных характеристик.

Измерение температурной зависимости теплоемкости ПУМ проводили на серийном динамическом калориметре *ИТ-С-400* в интервале температур 298.15—473 К в режиме монотонного, близкого к линейному, разогрева образца со средней скоростью 0.1 К/с. Предел допускаемой погрешности прибора, по паспортным данным, составляет ±10.0%. Эталоном для градуировки служил медный образец.

Работу калориметра проверяли, определяя стандартную теплоемкость α -Al₂O₃. Ее опытное значение (76.0 Дж/(моль · K)) удовлетворительно согласуется со справочными данными (79.0 Дж/(моль · K)) в пределах ~4.0% [6].

Измерения теплоемкости проводили по методике [6]. При каждой температуре (через 25 K) проводили по пять параллельных опытов, результаты которых усредняли и обрабатывали методами математической статистики. Для усредненных значений удельных теплоемкостей вычисляли среднеквадратичные отклонения ($\overline{\delta}$) [9].

В табл. 5 и на рис. 2 представлены данные измерения теплоемкости ПУМ из угля бассейна "Майкубен" в интервале температур 298.15–473 К.

Из экспериментальных данных, приведенных в табл. 5, выведено уравнение (1) температурной зависимости теплоемкости ПУМ (Дж/г · K):

$$C_p^0(V) = (1.25 \pm 0.07) + (1.78 \pm 0.11) \times 10^{-3}T - (1) - (0.689 \pm 0.041) \times 10^5 T^{-2}.$$

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 3 2020

Таблица 5. Экспериментальные значения удельной теплоемкости ($C_p \pm \overline{\delta}, \mbox{Дж/г} \cdot K$)) ПУМ из угля бассейна "Майкубен"

<i>Т</i> , К	$C_p \pm \overline{\delta}$
298.15	1.6339 ± 0.0510
323	1.9754 ± 0.0257
348	2.0407 ± 0.0536
373	2.3076 ± 0.0564
398	2.4564 ± 0.0633
423	2.5578 ± 0.0505
448	2.7731 ± 0.0511
473	2.9015 ± 0.0372

Для рассматриваемых интервалов температур при определении погрешности коэффициентов в уравнениях зависимостей $C_p^0 \sim f(T)$ использовали величину средней случайной погрешности. Математическая обработка полученных данных про-

Рис. 2. Температурная зависимость удельной теплоемкости ПУМ на основе угля бассейна "Майкубен".

ведена в соответствии с [25]. Графическое изображение этой зависимости приведено на рис. 2.

Таким образом, в результате высокотемпературных процессов карбонизации (в инертной среде) и активации (водяным паром) угля бассейна "Майкубен" (Казахстан) получены пористые углеродные материалы, с удельной поверхностью $(348.99 \text{ м}^2/\Gamma)$, обладающие более развитой и упорядоченной поверхностной структурой и высокими адсорбционными свойствами. В связи с этим ПУМ на основе угля бассейна "Майкубен" можно рассматривать в качестве адсорбента для очистки сточных вод и газов, а также в качестве емкостного материала при производстве микроконденсаторов и полупроводников. В температурном интервале 298.15-473 К измерены теплоемкости и выведены уравнения температурной зависимости теплоемкости исследуемых образцов, которые могут быть использованы для определения их теплопроводности и температуропроводимости.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках научно-технической программы № ИРН BR05236359 "Научно-технологическое обеспечение переработки углей и производство продуктов углехимии высокого передела" и проекта № ИРН AP05130707 по теме "Разработка технологии и создание производства углеродных нанокомпозитных материалов на основе минерального отечественного сырья для очистки газовой фазы и сточных вод", финансируемых Комитетом науки MOH PK.

СПИСОК ЛИТЕРАТУРЫ

- 1. Азизов Т.М., Власов В.И. Бассейны и месторождения углей и горючих сланцев Казахстана. Справочник Алматы. 1997. С. 91.
- Ermagambet B.T., Kasenov B.K., Kasenova Sh.B., Bekturganov N.S., Nabiev M.A. // XTT. 2015. № 6. С. 6. [Solid Fuel Chemistry, 2015, vol. 49, no. 6, p. 343. DOI: 10.3103/S0361521915060038] https://doi.org/10.7868/S002311771506003
- Ермағамбет Б.Т., Нургалиев Н.У., Касенова Ж.М., Бижанова Л.Н. // Изв. НАН РК. 2014. № 4(406). С. 53.
- Хабибуллин Е.Р., Исмагилова З.Р., Журавлева Н.В., Созинов С.А., Лырщиков С.Ю., Фурега Р.И., Хицова Л.М., Потокина Р.Р. // Комплексное исследование каменных углей Кузбасса ряда метаморфизма. VII Междунар. Российско-Казахстанский симп. "Углехимия и экология Кузбасса". Кемерево. 2018. С. 99.

- Ермагамбет Б.Т., Касенов Б.Т., Нургалиев Н.У., Касенова Ж.М., Набиев М.А., Шалабаев Ж.А. // Технологии глубокой переработки углей Казахстана. Монография: Dusseldorf, Germany: LAP LAMBERT Acad. Publ., 2017. 158 с.
- Ermagambet B.T., Kasenov B.K., Nurgaliyev N.U., Nabiev M.A., Kasenova Zh.M., Kazankapova M.K., Zikirina A.M. // Solid Fuel Chemistry. 2018. V. 52. № 2. P. 138–141 [XTT. 2018. № 1. C. 68] https://doi.org/10.3103/S0361521918020039
- Ермагамбет Б.Т., Касенов Б.К., Нургалиев Н.У., Казанкапова М.К., Касенова Ж.М., Зикирина А.М. // XTT. 2018. № 5. С. 27. [Solid Fuel Chemistry, 2018, vol. 52, no. 5, p. 302. DOI: 10.3103/S036152191805004X] https://doi.org/10.1134/S0023117718050043
- Sanchez A.R., Elguezabal A.A., Saenz L.T. // Carbon. 2001. V. 39. P. 1367.
- Robie R.A., Hewingway B.S., Fisher I.K. // Thermodynamic Properties of Minerals and Related Substances at 298.15 and (10⁵ Paskals) Pressure and at Higher Temperatures, Washington, DC: United States Government Printing Office, 1978. 456 p.
- 10. *Farberova E.A., Tingaeva E.A., Maksimov A.S.* // Rus. J. Appl. Chem. 2015. V. 88. № 4. P. 579.
- Уваров Н.Ф. // Мезапористые углеродные материалы и их применение в емкостных электрохимических устройствах. V Международные Фарабиевские чтения. 2018. С. 3.
- Simenyuk G.Y., Zakharov Y.A., Puzynin A.V., Vladimirov A.A., Ivanova N.V., Pugachev V.M., Dodonov V.G., Barnakov C.N., Manina T.S., Ismagilov Z.R. // Mater. and Manifactur. Proc. 2016. V. 31. № 16. P. 739.
- Farberova E.A., Tingaeva E.A., Chuchalina A.D., Kobeleva A.R., Maximov A.S. // Изв. вузов. Сер. Химия и химическая технология. 2018. Т. 61. № 3. Р. 51. https://doi.org/10.6060/tcct.20186103.5612
- Сименюк Г.Ю., Манина Т.С., Пузынин А.В., Барнаков Ч.Н., Захаров Ю.А., Козлов А.П., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2015. Т. 23. № 2. С. 157.
- 15. Ермагамбет Б.Т., Казанкапова М.К., Канагатов К.Г., Наурызбаева А.Т., Танабаева А.К. // Наука, техника и образование. 2018. № 9(50). С. 16.
- Yu Z., Sun S., Huang M. // Intern. J. Electrochem. Sci. 2016. V. 11. P. 3643.
- Захаров Ю.А., Сименюк Г.Ю., Пугачев В.М., Додонов В.Г., Павелко Н.В., Манина Т.С., Барнаков Ч.Н. // Российские нанотехнологии. 2015. Т. 10. № 5–6. С. 51.
- 18. Барнаков Ч.Н., Самаров А.В., Шикина Н.В., Якубик Д.Г. // Химия в интересах устойчивого развития. 2015. Т. 23. № 2. С. 219.
- 19. Сименюк Г.Ю., Захаров Ю.А., Нетребенко П.А., Троснянская Т.О., Пугачев В.М. Додонов В.Г., Лари-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 3 2020

66

чев Т.А., Илькевич Л.В., Нечаева Т.С., Исмагилов З.Р. // Нанокомпозитные электродные материалы суперконденсаторов. VII Междунар. Российско-казахстанский симп. "Углехимия и экология Кузбасса". Кемерево. 2018. С. 89.

- Мухин В.М., Учанов П.В., Сотникова Н.И. // Сорбционные и хроматографические процессы. 2013. Т. 13. № 1. С. 83.
- 21. *Фесенко Е.Г.* Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 248 с.
- 22. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- 23. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
- 24. *Ерин Ю.* // Найдено вещество с гигантским значением диэлектрической проницаемости. Химия и Химики. 2009. № 1. С. 16.
- 25. Спиридонов В.П., Лопаткин А.А. Математическая обработка экспериментальных данных. М.: МГУ, 1970. 221 с.