УДК 550.43:553.96

МОРФОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ БЛАГОРОДНЫХ МЕТАЛЛОВ В ПРОДУКТАХ СГОРАНИЯ УГЛЕЙ АРХАРО-БОГУЧАНСКОГО МЕСТОРОЖДЕНИЯ (ПРИАМУРЬЕ)

© 2020 г. А. П. Сорокин^{1,*}, В. А. Чантурия^{2,**}, О. А. Агеев^{1,***}, С. В. Дугин^{1,****}

¹ ФГБУН Институт геологии и природопользования ДВО РАН, 675000 Благовещенск, Россия ² ФГБУН Институт проблем комплексного освоения недр РАН, 111020 Москва, Россия

> *e-mail: sorokinAP@ignm.ru **e-mail: vchan@mail.ru ***e-mail: vip.ageev2014@mail.ru ****e-mail: duservad@gmail.com Поступила в редакцию 24.01.2020 г. После доработки 06.02.2020 г. Принята к публикации 30.03.2020 г.

Исследованы химические и физико-химические характеристики бурых углей Архаро-Богучанского месторождения, обладающих повышенной зольностью (до 18.7%), высоким содержанием алюминия (до 30.5%), кремния (до 69.5%) и основными петрографическими составляющими – витринитом (42%) и семивитринитом (46%). С помощью сжигания крупнообъемной пробы весом 270 кг в Экспериментально-технологическом комплексе "Амур" получены раздельные продукты сгорания (шлак, зола-уноса и шлам). В процессе их исследования во всех этих фракциях установлены благородные металлы (БМ) Au, Ag и Pt, которые представлены двумя морфологическими разновидностями. Первая из них — массивные комковатые индивидуумы, часто с заметной обработкой в водной среде — характеризуются высоким содержанием золота (более 80%), размером от 2.0 \cdot 1.6 до 115.0 \cdot 160.0 мкм и наличием элементов-примесей. По своим характеристикам (пробности, составу элементов-примесей и др.) они в значительной мере отражают минеральную специализацию рудных объектов областей сноса. Вторая форма выделения БМ — рыхлые агломераты, состоящие из зерен Аu и Ag с различными концентрациями в интервале температур 600–800°С. Способность концентрирования зерен БМ различной генетической природы позволяет рассматривать этот интервал как начальную стадию сохранения золота в золе-уноса от улетучивания газовым потоком.

Ключевые слова: бурый уголь, продукты сгорания углей, температурные режимы, морфология и состав благородных металлов

DOI: 10.31857/S0023117720040076

введение

Исследование металлоносности угленосных отложений продолжается уже более 100 лет. Длительное время они рассматривались как нетрадиционный тип благородно-металльного оруденения, которое в настоящее время известно в осадочных бассейнах Сибири, Дальнего Востока, Нового Южного Уэльса, Австралии, Узбекистана и в КНР [1–3]. Одновременно с этим в последние десятилетия серьезное внимание уделяется также изучению в углях и продуктах их сгорания стратегически важных рассеянных (Ga, V, Se), редкоземельных (Y, Sc и др.) элементов, а также Al и Mg. На Дальнем Востоке и в Сибири указанное оруденение в углях установлено во второй половине XX века [4–7]. В Зейско-Буреинском осадочном бассейне на основе изучения Тыгдинского,

Свободного, Сергеевского, Ерковецкого, Райчихинского и Архаро-Богучанского буроугольных месторождений (рис. 1) установлена связь распределения металлоносных углей с геодинамическими особенностями развития и палеогеографическими условиями формирования бассейна, изучены генетические типы благородно-металльной, рассеянной и редкоземельной минерализации, условия миграции, формы переноса микрокомпонентов и взаимодействие их с органическим веществом [8-10]. В ряде районов выявлены закономерности накопления благородных металлов в углях при сингенетических процессах россыпеобразования и торфонакопления: в одних случаях – вдоль обрамления статичных морфоструктур с широко развитыми корами выветривания химического типа, а в других – в обстановке контрастных форм сопряжения с оро-

Рис. 1. Схема размещения угленосных площадей Зейско-Буреинского бассейна в зонах сопряжения с горно-складчатым обрамлением: *1* – горно-складчатое обрамление бассейна; *2* – денудационная равнина; *3* – аллювиальная равнина; *4* – угленосные площади (I – Пиканско-Сергеевская, II – Селемджинско-Ерковецская, III – Завитинско-Архаринская); *5* – граница бассейна; *6* – минерагенические зоны (*1* – Западнотуранская цеолит-редкоземельно-сереброзолоторудно-россыпная, *2* – Центральнобуреинская олово-молибденово-ураново-золоторудно-россыпная, *3* – Нимано-Мельгинская редкоземельно-олово-молибденово-рудная); *7* – Архаринская депрессия (АД); *8* – месторождения бурого угля. Граница РФ и КНР проходит по р. Амур.

генными структурами — в приразломных впадинах, на конусах выноса и т.д. Это позволило внести существенные коррективы в решение проблемы миграции неорганического материала, поступающего в торфяные массивы из областей сноса, а также глубже понять минеральный состав объектов рудных провинций [3]. Все эти работы направлены на разработку методов извлечения комплекса благородных, рассеянных металлов (БМ, РМ) и редкоземельных элементов (РЗЭ), решение которых позволит рассматривать месторождения угля экономически и экологически привлекательным ресурсом.

В Амурском научном центре (АмурНЦ) ДВО РАН и Институте геологии и природопользования (ИГиП) ДВО РАН эти работы ведутся с начала текущего столетия [3, 11, 12]. В настоящее время они выполняются с помощью созданного в 2017 г. Экспериментально-технологического комплекса "Амур" (ЭТК "Амур"), позволяющего раздельно получать и исследовать шлак, золууноса, шлам (продукты мокрой очистки дыма) и осадок технологической воды. Это дает возможность, в первую очередь, изучить особенности переноса золота и других микрокомпонентов в процессе термических воздействий на уголь, исследовать состав, морфологию минералов и рыхлых агломератов БМ и провести корреляцию Au, Pt и Ag с коренными источниками питающих провинций обрамления бассейнов.

1. ХАРАКТЕРИСТИКА ОБЪЕКТОВ И МЕТОДИКА ИССЛЕДОВАНИЯ

1.1. Природные объекты (бурые угли осадочных бассейнов и питающие их рудные провинции). Физико-химические, минералогические, морфологические и ряд других характеристик БМ зависят как от состава руд, питающих области сноса угленосных бассейнов, так и от условий их транспор-

Рис. 2. Зона сочленения Туранского поднятия и Архаринской депрессии: *1* – горно-складчатое обрамление; *2* – отложения кивдинской свиты; *3* – отложения цагаянской свиты; *4* – условная граница между кивдинской и цагаянской свитами; *5* – месторождения бурого угля; *6* – углепроявления (1 – Аркадие-Семеновское, 2 – Сухушинское, 3 – Могилевское, 4 – Леводжельменское, 5 – Верхнеджельменское, 6 – Треногское); 7 – минерагенические зоны (*1* – Центральнобуреинская олово-молибденово-ураново-золоторудно-россыпная, *2* – Нимано-Мельгинская редкоземельноолово-молибденово-рудная); *8* – рудопроявления золота; *9* – рудопроявления иных элементов; *10* – россыпи золота; *11* – шлиховые пробы, обогащенные золотом; ореолы рассеяния: *12* – литохимические, *13* – шлиховые, *14* – гидрохи-

тировки и осаждения в процессе взаимодействия с органической массой торфяников [11], поэтому наряду с месторождениями металлоносных углей изучаются также и рудные провинции обрамления. В соответствии с этим в качестве таких объектов выбраны Завитинско-Архаринская угленосная площадь и сопряженная с ней южная окраина Туранского массива (рис. 1).

В пределах указанной угленосной площади расположено Архаро-Богучанское буроугольное месторождение с целым рядом углепроявлений позднемелового, палеогенового и раннемиоценового возраста, непосредственно обрамляющих южный фланг массива. Позднемеловые отложения на рассматриваемой территории слагают структуры северо-восточного простирания, выполненные аллювием палеодолин Архары, Урила, Татакана, Илги, глубоко проникающие в горно-складчатое обрамление Туранского массива, а угленосные палеогеновые породы на участках разгрузки меловых водотоков вдоль поднятия формируют предгорную Архаринскую депрессию, в пределах которой, кроме Архаро-Богучанского месторождения, расположены Грибовское, Верхнеджельменское, Сухушинское и Аркадие-Семеновское углепроявления. И, наконец, неогеновые отложения с маломощными пластами угля наложены на более древние структуры, развитые в близмеридиональных речных системах Илги, Татакана, Урила, заложенных вдоль наиболее молодых разрывов (рис. 2).

Исследования проводили на южном борту Архаринской депрессии, на участке "Придорожный" Архаро-Богучанского месторождения. В действующем карьере эксплуатируются два пласта угля: Двойной (1.5 м) и Нижний (1.5 м), включающие линзы туфов и глин мощностью 1–2 см, разделенные глинами (1.5 м). Изучение угленосности участка проводили в 2018 г. с детальным описанием разреза и опробованием. Угли опробованы бороздовыми пробами секциями по 0.5 м и весом 12–15 кг, а вмещающие породы – точечно, по 2–3 кг. Из указанных выше пластов угля отобрана крупнообъемная проба весом 270 кг, включающая все разновидности угля из обоих пластов.

С южной окраины Туранского массива транспортировка рудных микроэлементов в Архаринскую депрессию проходила в обстановке регионального морфоструктурного перекоса с севера на юг, обусловившего сток поверхностных вод в меридиональном направлении. Изучение геодинамической обстановки южного и восточного флангов Туранского массива позволяет считать, что этапы его тектонической активности, сопряженные с высокой степенью эрозионной деятельности, приходились на границу позднего мела – палеоцена и ранний миоцен, которым прелшествовали периоды тектонического покоя с образованием поверхностей выравнивания и кор выветривания химического типа [11]. В данном случае эрозия Туранского массива системами палеорек Илга, Архара, Татакан и Урил на рубеже мезозоя и кайнозоя обеспечивала вынос породного и в том числе рудного материала с южной окраины Западно-Туранской цеолит-редкоземельно-серебро-золоторудно-олово-молибден-руднороссыпной минерагенической зоны.

Непосредственно в озерно-болотные отложения Архаринской депрессии микрокомпоненты поступали из месторождений и рудопроявлений олова, молибдена, вольфрама, ниобия, циркония, иттрия, церия вышеуказанной минерагенической зоны, которые фиксируются шлиховыми ореолами и единичными пробами касситерита, киновари и циркона, а также (по металлометрическому и гидрохимическому опробованию) серебра, меди, свинца и цинка [13]. БМ в зоне сопряжения Турана и Архаринской депрессии представлены золотом и серебром. Золото в современных и палеоген-неогеновых россыпных месторождениях, а также в шлиховых пробах в бассейнах рек Архара, Татакан, Илга, Урил, Домикан и др. представлено зернами неправильной комковатой и пластинчатой форм в сростках с серебром размером от 0.05 до 1 мм. Пробность золота – от 632.5 до 852.5. Серебро, по данным гидрохимического опробования, установлено в междуречье Илга-Татакан.

1.2. Химические и физико-химические методы исследования бурых углей. Изучение технического и элементного состава угля и золы Архаринского буроугольного месторождения выполнено в Федеральном исследовательском центре угля и углехимии СО РАН (г. Кемерово) по двум пробам из пластов Промежуточный (2540 г) и Нижний (2020 г). Пробы подвергались разделке, включающей измельчение, перемешивание и сокращение, проведенной вручную методом квартования. Подготовленные пробы углей, измельченные до размеров менее 3 мм, использовались для определения общей влаги по ГОСТ Р 52911-2013. После ее определения методом квартования были отобраны образцы угля массой примерно по 100 г, доведены в лаборатории до воздушно-сухого состояния и измельчены до размера менее 0.2 мм для дальнейших аналитических исследований.

Определение влаги в аналитических пробах выполнено по ГОСТ 33503-2015, зольности — по ГОСТ Р 55661-2013, выход летучих веществ — по ГОСТ Р 55660-2013, серы — по ГОСТ 8606-2015 (метод Эшка), содержаний углерода и водорода по ГОСТ 2408.1-95 (ИСО 625:1996), азота — методом Кьельдаля по ГОСТ 28743—93.

Петрографический анализ проводили на автоматизированном комплексе оценки марочного состава углей системы *SIAMS-620* (Россия) в среде масляной иммерсии. Порции воздушно-сухой пробы, измельченной по ГОСТ Р 55663-2013, смешивали со связующим веществом (шеллаком), одну сторону которого шлифовали и полировали до получения гладкой поверхности. Мацералы идентифицировали в иммерсионной среде по их показателю отражения, цвету, морфологии, высоте микрорельефа, структуре, степени ее сохранности, а также по размерам. Подсчет микрокомпонентов проводили вручную при увеличении в отраженном свете в 300 раз.

Золу для анализа получали медленным озолением аналитических проб исследуемых бурых углей в муфельной печи при температуре 815°С согласно ГОСТ 11022-95. Химический состав зольных остатков определяли методом атомноэмиссионной спектроскопии на спектрометре с индукционно-связанной плазмой *iCAP* 6500 *Duo LA* фирмы *Thermo Scientific*.

Термический анализ проводили на термоанализаторе фирмы *Netzsch STA* 409 с масс-спектрометрической приставкой *Aeolos* в следующих условиях: масса образца 40 мг; тигель платиновоиридиевый; нагрев до 1000°С со скоростью 10°С/мин в среде гелия. В ходе анализа регистрировали потерю массы (ТГ) и скорость потери массы (ДТГ). Термогравиметрические данные обрабатывали с использованием программного обеспечения *NETZSCH Proteus*. Для характеристики термического разложения использовали показа-

Таблица	1. Получение	продуктов сгорания	бурого угля	Архаро-Богучанси	кого месторождения на ЭТК	"Амур"
---------	--------------	--------------------	-------------	------------------	---------------------------	--------

N⁰	Описание процесса	Продукт сгорания
1	Послойное сжигание угля (рис. 3, I) при температуре 800—1100°С (рис. 3, термопара 5. I), в топочной камере с формированием несгораемого остатка из минеральных примесей (топочный шлак) (рис. 3, II)	Сжигаемый исходный уголь
2	Принудительный перенос воздушно-газовой смеси, создаваемый дымососом, из топоч- ной камеры в камеру дожига золоуловителя. В двухсекционном золоуловителе происхо- дит дожиг летучих соединений углерода при температуре 600–800°С (рис. 3, термопара <i>5.2</i>) и осаждение золы-уноса (рис. 3, III)	Шлак топочный Зола-уноса
3	Газовый поток, очищенный от золы-уноса массой более 20 мкг, а также летучие продукты сгорания топлива, состоящие из горячих газов, содержащих окислы углерода, азота, серы и водяного пара, выводятся из золоуловителя дымососом в скруббер для дальнейшей "мокрой" очистки дымовых газов от примесей с понижением температуры <200–250°С на выходе из золоуловителя (рис. 3, термопара <i>5.3</i>) до 60–80°С на выходе из скруббера (рис. 3, термопара <i>5.4</i>). Из скруббера очищенные газы выносятся в атмосферу, а жидкая фаза с взвесями попадает в фильтровальный блок. В фильтровальном блоке проводится многоступенчатая очистка техногенной воды от шлама (рис. 3, IV) и ионов тяжелых металлов	Шлам фильтра- ции техногенной воды скруббера
4	Очищенная техногенная вода поступает в емкость (рис. 3, V) для дальнейшего использования (оборотное водоснабжение)	Очищенная тех- ногенная вода

тели: T_{max} – температура максимальной скорости разложения, V_{max} – скорость разложения в точке перегиба на кривой ДТГ. Потерю массы (Δm) рассчитывали в интервалах температур наиболее интенсивного разложения образца. Масс-спектры продуктов термической деструкции регистрировали на масс-спектрометрической приставке *Aeolos* при ионизации электронным ударом с энергией 70 эВ в диапазоне сканирования 1–300 а.е.м.

Исследования текстурных характеристик образцов бурых углей проводили методом низкотемпературной адсорбции азота на объемной вакуумной статической установке *ASAP*-2020 *Micromeritics*. Величину удельной поверхности образцов получили с помощью анализа изотерм адсорбции-десорбции N₂ при –196°С (77 К). Перед проведением адсорбционных измерений исследуемые образцы вакуумировали непосредственно в специальном порту прибора при 105°С, в течение 15 ч до остаточного давления не менее $5 \cdot 10^{-3}$ мм рт. ст. Измерения изотерм адсорбции-десорбции азота проводили в области равновесных относительных давлений паров от 10^{-3} до 0.995 *P*/*P*₀.

1.3. Технология получения раздельных фракций продуктов сгорания бурых углей. Выделение из угля продуктов сгорания проводили на ЭТК "Амур" [12]. При сжигании крупно-объемной

пробы угля Архаро-Богучанского месторождения весом 270 кг были получены (кг): топочный шлак (16.0), две фракции золы-уноса (тяжелая – 2.0 и легкая – 1.08), шлам фильтра-отстойника (0.24), шлам скруббера (0.37), шлам фильтрации (осадок техногенной воды) (2.4). Общий вес ПСУ (продукты сгорания угля) – 22.09 кг, объем техногенной воды – 80 л (табл. 1, рис. 3).

Полученные продукты сгорания бурых углей проходили последовательную процедуру обогащения. Топочный шлак измельчался на щековой дробилке ДЛШ-80-150 до фракции – 1 мм. Для выделения и разделения недожога и легких частиц использовали слабонаклонный шлюз прямоугольного сечения, на дно которого укладывали дражные коврики, позволяющие создать в придонных слоях турбулентный поток и удерживать осевшие на дно тяжелые частицы. Измельченная тяжелая фракция шлюза пропускалась через мокрый магнитный сепаратор ММС-0.1. Немагнитная фракция стола подавалась на концентрационный стол СКО-0.5, на котором были получены конечные продукты обогащения: концентрат и хвосты обогащения. Основное количество благородных металлов и других полезных компонентов установлено в концентрате тяжелой фракции.

Рис. 3. Схема экспериментально-технологического комплекса (ЭТК) "Амур": 1 – дутьевой вентилятор; 2 – топочная камера; 3 – двухсекционный золоуловитель с камерой дожига летучих соединений углерода; 4 – дымосос; 5.1–5.4 – термопары; 6 – дымоход; 7 – спринклерный ороситель; 8 – конфузор; 9 – скруббер с влагоуловителем; 10 – фильтровальный блок; 11 – насосная секция с водопроводом; I – сжигаемый уголь; II – топочный шлак; III – зола-уноса; IV – шлам фильтрации техногенной воды; V – техногенная вода.

Зола-уноса распределялась на ситовом анализаторе А-50 по классам крупности на фракции от +0.5 до -0.04 мм. На мокром магнитном сепараторе MMC-0.1 выделены магнитная и немагнитная фракции, после чего немагнитная фракция обогащалась на концентрационном столе СКО-0.5.

Шлам, полученный в результате очистки техногенной воды на фильтре грубой очистки, промывали в бромоформе и разделяли на магнитную, электромагнитную, немагнитную тяжелую и немагнитную легкую фракции.

С помощью гравитационного и магнитного обогащения из шлака и золы-уноса получили объединенный концентрат. Из него выделили частицы БМ, которые исследовали минералогическим методом с применением микрохимических реакций и иммерсионного метода в лаборатории ИГиП ДВО РАН. Химический состав частиц определяли с помощью сканирующей электронной микроскопии (*YEGA 3LMH*) с энергодисперсионным рентгеновским микроанализатором *X-Max*80 в Хабаровском инновационно-аналитическом центре Института тектоники и геофизики имени академика Ю.А. Косыгина (ИТиГ) ДВО РАН. Пробирный анализ золота выполняли в АмурНЦ ДВО РАН.

2. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

2.1. Химические и физико-химические характеристики бурых углей. Результаты анализов показали, что бурые угли Архаро-Богучанского месторождения характеризуются повышенной зольностью (до 18.7%), содержанием кислорода (до 28.7%). В составе углей установлено содержание семивитринита до 46% с показателем $R_{0,r}$ витринита 0.403%. В золе угля отмечается высокое содержание оксидов алюминия (17.7-30.5%) и кремния (36.8-69.5%) и, судя по их отношению $(Al_2O_3/SiO_2 < 0.9)$, они могут быть отнесены к алюмосиликатному типу глинистой природы. Это подтверждает широкое развитие кор выветривания химического типа на южной окраине Туранского поднятия в период формирования палеогеновых торфяников Архаринской депрессии. В золе углей присутствуют также кальций (до 15.3%), железо (до 12.72%), титан (1%) и калий (до 0.3%).

Термогравиметрический анализ углей месторождения показывает, что термическое разложение угля при нагреве до температуры 1000°С протекает в несколько стадий: ниже 200°С – удаление связанной влаги, а при 300–600°С – основная потеря массы угля, обусловленная деструкцией

Рис. 4. Микрофотографии самородного золота (а)-(в) и платины (г), извлеченных из шлаков.

углерод-углеродных связей с выделением летучих продуктов и формированием полукокса. Третий интервал разложения (750—1000°С) связан с процессами структурирования углеродного остатка в кокс. При этом в интервале температур 600— 800°С, вероятно, происходит разложение минеральных веществ (сидерит, пирит, каолинит) [14]. В масс-спектрах летучих продуктов пиролиза отмечается возрастание интенсивности пиков, характерных для карбоксильных и карбонильных ионов, что подтверждает наличие в его минеральной составляющей карбонатных минералов.

Анализируя результаты экспериментальных данных по изучению удельной поверхности, можно отметить, что угли в исследованных образцах характеризуются мезопористой структурой с повышенной адсорбционной емкостью по азоту (до 0.036 см³/г) и наличием щелевидных плоскопараллельных мезопор.

2.2. Морфологические характеристики частии благородных металлов в продуктах сгорания бурых углей. Фотографии частиц Аи в ПСУ показаны на рис. 4,а,в, а их химический состав представлен в табл. 2-5. Благородные металлы в шлаках представлены Au и Pt (рис. 4, табл. 2). На рис. 4,а – золото наблюдается в виде зерна массивной текстуры размером 160.0 · 115.0 мкм, окатанного с одной стороны, а с другой – с неровной (зазубренной) поверхностью с включениями Fe₂O₃ (спектр 871) и FeTiO₃ (спектр 869). Структура зерна комковатая, текстура массивная. Концентрация Аи (спектры 866-868, 870) колеблется от 98.76 до 99.45% с примесями (мас. %): Fe (0.33), Cu (0.55–1.24). На рис. 4,6 золото представлено рыхлым агломератом ("спеком") размером 60.0 · 36.0 мкм, неправильной комковатой формы с острыми гранями, с примесью (мас. %): Cu (от 0.48 до 7.65), Hg (от 5.30 до 15.85) и алюмосиликатов, цементирующих отдельные зерна золота с содержаниями Аи 80.45-86.25% (спектры 872-874) и 21.20%

		Номер спектра											
Элемент	866	867	868	869	870	871	872	873	874	875	883	888	
			рис	. 4,a	-			рис	. 4,б		рис. 4,в	рис. 4,г	
Au	98.78	99.45	99.10	0.65	98.76	7.45	80.45	86.25	82.56	21.20	73.06	_	
Ag	-	-	_	-	—	-	-	-	1.41	-	-	_	
Ο	_	_	_	33.45	_	14.04	_	_	_	35.99	_	_	
Na	-	-	-	-	—	-	-	-	-	-	-	0.81	
Al	-	-	-	0.16	—	0.81	-	-	-	9.18	-	0.92	
Si	_	_	_	0.14	_	0.95	_	_	_	4.85	_	_	
Cl	-	-	-	-	—	-	-	-	-	0.43	-	-	
Ca	-	-	-	-	—	0.14	-	-	-	9.44	-	-	
Ti	-	-	_	25.34	—	-	-	-	-	-	-	_	
V	-	-	-	0.26	—	-	-	-	-	-	-	-	
Mn	-	-	_	1.79	—	-	-	-	-	0.36	-	_	
Fe	0.33	-	-	37.37	—	61.93	-	-	-	5.59	0.69	—	
Cu	0.89	0.55	0.90	0.57	1.24	14.67	3.70	0.48	1.59	7.65	6.63	1.14	
Sn	-	-	_	-	—	-	-	-	-	-	4.59	_	
Sb	-	-	-	-	—	-	-	-	-	-	7.60	-	
As	-	-	-	0.26	—	0.00	-	-	-	-	-	-	
Hg	-	-	-	-	—	-	15.85	13.27	14.43	5.30	-	—	
Pb	-	-	-	-	—	-	-	-	-	-	7.42	-	
Pt	-	-	-	-	-	-	-	-	-	-	-	97.14	
Сумма	100	100	100	100	100	100	100	100	100	100	100	100	

Таблица 2. Химический состав благородных металлов, извлеченных из шлаков, мас. %

Таблица 3. Химический состав	благородных металлов,	извлеченных из золы-уноса,	мас. %
------------------------------	-----------------------	----------------------------	--------

	Номер спектра											
Элемент	922	923	924	926	927	928	929	930	932			
		рис. 5,а			рис	рис. 5,в	рис. 5,г					
Au	81.25	80.05	79.00	80.46	82.19	80.85	_	_	-			
Ag	18.75	19.95	21.00	19.54	17.43	18.71	_	_	89.79			
0	_	_	_	_	_	_	47.74	10.14	_			
Na	_	_	_	_	_	_	_	0.55	_			
Al	—	—	—	—	—	—	8.00	0.89	—			
Si	_	_	_	_	_	_	20.97	_	_			
S	_	_	_	_	_	_	0.18	_	10.21			
Cl	—	—	—	—	—	—	0.20	_	—			
Κ	_	_	_	_	_	_	1.03	0.85	_			
Ca	_	_	_	_	_	_	0.27	_	_			
Ti	—	—	—	—	—	—	0.13	_	—			
Fe	_	_	_	_	0.38	0.44	20.53	_	_			
Cu	—	—	—	—	—	—	0.96	1.32	—			
Pt	—	-	—	—	—	—	—	86.25	—			
Сумма	100	100	100	100	100	100	100	100	100			

Рис. 5. Микрофотографии самородного золота (а), (б), платины (в) и серебра (г), извлеченных из золы-уноса.

(спектр 875). Золото на рис. 4, в наблюдается в виде зерна размером 2.0 · 1.6 мкм (спектр 883) массивной текстуры с содержанием 73.06%; в качестве примесей в нем присутствуют (мас. %): Fe (0.69), Cu (6.63), Sn (4.59), Sb (7.60), Pb (7.42). На рис. 4,г установлено зерно платины (спектр 888) размером 2.0 · 1.6 мкм с содержанием 97.14%. Среди примесей выявлены Na, Al и Cu.

Благородные металлы в золе-уноса представлены на рис. 5, а их характеристики — в табл. 3. На рис. 5,а наблюдается полуокатанное зерно электрума с гладкой поверхностью массивной текстуры размером 98.0 \cdot 74.0 мкм. Содержание Au в нем колеблется от 79.00 до 81.25% (спектры 922–924). На рис. 5,6 представлено полуокатанное зерно электрума с концентрацией Au от 80.46 до 82.19%, а Ag – от 17.43 до 19.54% (спектры 926–928). На рис. 5,в изображено зерно платины неокатанной прямоугольной формы размером 6.5 \cdot 6.0 мкм (спектр 930). Содержания (мас. %): Pt (86.25), Cu (1.32), O (10.14). На рис. 5,г – зерно серебра размером 3.0 \cdot 1.6 мкм комковато-оваль-

ной формы с неровной поверхностью (спектр 932). Содержание (мас. %): Ад (89.79), S (10.21).

Золото и серебро в золе-уноса показаны также и на рис. 6 (табл. 4). Рисунок 6,а (спектры 944-947) характеризует рыхлый агломерат размером 28.0 · 21.0 мкм с частицами золота и серебра (мас. %): Аи (60.71–74.08), Ад (2.64–10.15) с Си (1.50-8.60), сцементированными Нg (19.52-27.37). Рисунок 6,6 иллюстрирует полуокатанное зерно золота размером 65.0-44.0 мкм с гладкой поверхностью с концентрацией Au (80.94-81.49%), Ag (2.08–2.66%) и значительным содержанием Нд (15.93–16.59%) (спектры 941–943). На рис. 6,в показан агломерат ("спек") пористой текстуры размером 60 · 68 мкм, основу которого составляет (мас. %): Аи (69.19-76.71) с примесью Ад (4.90-8.97) и Hg (17.73-21.30) (спектры 937-940). Ha рис. 6, г представлен агломерат размером 4.5 · · 4.0 мкм (спектр 952), в виде спекшихся частиц Ад (66.88%) и Си (0.45%) величиной от 0.5 до 1.25 мкм.

Рис. 6. Микрофотографии самородного золота (а)-(в) и серебра (г), извлеченных из золы-уноса.

В шламе (рис. 7, табл. 5) обнаружены Au (рис. 7,а) и Ag (рис. 7,б): первая золотина (рис. 7,а) брусковидной формы с гладкой поверхностью с широкими бороздами вдоль краев с удлиненной поверхностью размером $86.0 \cdot 40.0$ мкм (спектр 274) и содержанием (мас. %): Au (94.15), Ag (5.85). На рис. 7,б наблюдается раздробленное зерно округлой формы размером меньшего индивидуума $0.4 \cdot 0.4$ мкм (спектр 461), основу которого составляет Pt (75.83%) с обилием включений (мас. %): S (9.32), Fe (2.61), Cu (3.21), Zn (1.25).

Анализируя распределение БМ в продуктах сгорания углей Архаро-Богучанского месторождения, следует отметить, что их основу составляют золото, серебро и реже платина. Золото по составу элементов-примесей в значительной мере сохраняет связи с коренными источниками из областей сноса [13]. Судя по месторождениям, рудопроявлениям и ореолам рассеяния в обрамлении (см. рис. 2), можно предполагать, что часть из них (Си, Pb, Fe, как и Hg) могли формироваться в первичных золоторудных и комплексных месторождениях в виде постоянных элементов-примесей [15]. В то же время некоторые из них могли заполнять пустоты и каверны в самородном золоте во время термических и других природных процессов. Эти вопросы будут рассматриваться в процессе последующих исследований.

Самородное золото существенно различается по морфологическим признакам. В шлаках — это комковатые массивные обломки различной степени окатанности, вероятно, поступавшие в торфяники из россыпей и шлиховых ореолов в период наводнений и паводков [16]. Содержание Аи в них обычно превышает 80%, размер зерен — от $2.0 \cdot 1.6$ до $160.0 \cdot 115.0$ мкм. В золе-уноса вместе с золотом в значительной мере присутствуют серебро и платина. Как правило, это плохо- и полуокатанные обломки, пластины и бруски размером $98.7 \cdot 74.0$ мкм с концентрацией Pt до 86.5%, а Ag — от 21.8 до 66.88%. Элементы-примеси в них крайне редки (Fe, Cu).

СОРОКИН и др.

		Номер спектра										
Элемент	944	945	946	947	941	942	943	937	938	939	940	952
		рис	. 6,a			рис. 6,б			рис	. 6,в		рис. 6,г
Au	60.71	74.08	61.83	68.71	81.49	81.33	80.94	71.86	76.71	71.24	69.19	_
Ag	9.36	4.89	10.15	2.64	2.08	2.08	2.66	8.33	4.90	6.09	8.97	66.88
Na	_	_	_	_	_	_	_	_	_	_	_	0.46
Al	_	_	_	_	_	_	0.47	_	_	0.33	_	_
Cl	_	_	_	_	_	_	_	_	_	_	_	5.31
Ca	0.23	_	_	0.41	_	_	_	_	_	_	_	—
Ti	_	_	_	_	_	_	_	_	_	_	_	—
Fe	_	_	_	_	_	_	_	_	_	_	_	—
Cu	2.82	1.50	0.66	8.60	_	_	_	1.08	_	4.61	0.54	0.45
Br	_	_	_	_	_	_	_	_	_	_	_	26.89
Hg	26.89	19.52	27.37	19.64	16.43	16.59	15.93	18.73	18.39	17.73	21.30	_
Сумма	100	100	100	100	100	100	100	100	100	100	100	100

Таблица 4. Химический состав благородных металлов, извлеченных из золы-уноса, мас. %

Кроме рассмотренных минеральных ассоциаций, в золе-уноса в значительном количестве присутствуют рыхлые агрегированные образования (агломераты) размером от $4.5 \cdot 4.0 \text{ до } 60.0 \cdot 68.0 \text{ мкм}$, формирование которых связано с процессами термических преобразований. Они состоят из зерен Au и Ag с различной концентрацией — от 2.4 до 89.79%, размером от 0.5-1.0 до 1.6-3.0 мкм с включением Hg до 19.5% и Cu 8.6%, реже — алюмосиликатов и Mn. Указанные индивидуумы, су-

дя по размерности, составу включений и морфологии, представляют собой, по мнению авторов, продукты разных генетических групп: обломки руд из обрамления бассейна, привнесенные в торфяники водными потоками, новообразованные формы, созданные во время миграции в речной среде и при взаимодействии с органической средой торфяников. Их "спекание" происходит преимущественно в золе-уноса в интервале температур 600–800°С. Этот интервал может рас-

Рис. 7. Микрофотографии самородного золота (а) и платины (б), извлеченных из шлама.

	Номер спектра					
Элемент	274	461				
	рис. 7,а	рис. 7,б				
Au	94.15	—				
Ag	5.85	—				
Na	—	1.47				
Al	—	3.17				
S	—	9.32				
Cl	—	2.47				
K	—	0.76				
Fe	—	2.61				
Cu	_	3.21				
Zn	_	1.25				
Pt	_	75.83				
Сумма	100	100				

Таблица 5. Химический состав благородных металлов, извлеченных из шлама, мас. %

сматриваться наиболее продуктивным для осаждения и "спекания" мелких, в том числе дисперсных частиц БМ, замедляющий их унос газовым потоком. Количество золота в продуктах сгорания угля приведено в табл. 6.

При рассмотрении состава элементов-примесей в шлаке и золе-уноса обращает внимание присутствие значительного количества в них ртути, что связано, по-видимому, с технологическими особенностями проведения эксперимента на ЭТК "Амур". Уголь сжигался в топочной камере на горизонтальных колосниках слоевым способом с периодом загрузки топлива 30 мин. Часть ртути оставалась в шлаковых и зольных отходах вследствие небольшого временного интервала температурного воздействия в зонах более низких температур и в "недожогах". Отметим, что технология отпарки ртути из амальгамы продолжается от 3 до 6 ч при температуре 400–800°С. Следует также подчеркнуть наличие повышенных концентраций ртути в месторождениях углей Приамурья (г/т): в Сутарском – 0.65, Ушумунском – 0.14, Архаро-Богучанском – 0.32 при кларке в бурых углях 0.1–0.2 г/т [17]. Наличие ртути ранее отмечалось в золе Приморской ГРЭС [18], в ЗШО ТЭЦ Хабаровска [19], причем в ЗШО ртуть была обнаружена в капельно-жидком состоянии в составе тяжелой фракции продуктов обогащения. Таким образом, вопрос о поведении ртути в процессе сгорания угля пока остается открытым, хотя имеет первоначальное значение вследствие высокой ее токсичности.

выводы

1. Бурые угли Архаро-Богучанского месторождения характеризуются повышенной зольностью (до 18.7%), высоким содержанием семивитринита, оксидов алюминия (до 30.52%) и кремния (до 69.52%), указывающими на алюмосиликатный тип глинистой природы. Установлено, что термическое разложение этих углей происходит в несколько стадий: при 20–120°С – удаление влаги, при 300–600°С – основная потеря массы угля с выделением летучих продуктов, а при 600– 800°С – разложение минеральных веществ.

2. Разработана технология раздельного получения фракций продуктов сгорания угля, изучена морфология, особенности состава и строения БМ Архаро-Богучанского буроугольного месторождения. Выявлены две основные их разновидности: первая — массивные комковатые индивидуумы, часто с заметными элементами обработки поверхности при переносе водными потоками, в значительной мере сохраняющие рудную специализацию коренных источников областей сноса. По мере снижения температурного режима сгорания они "облагораживаются" и теряют элементы-примеси в шламе. Вторая разновидность БМ – рыхлые агломераты, слабо сцементированные окислами железа и ртути, которые при макроскопическом изучение легко распадаются с выделением частиц золота различной концентрации. Эти соединения формируются в интервале тем-

No	Наименорацие	Macca KE	Содержание Аи				
JN⊵	Пайменование	Wacca, N	г/т	итого, г	%		
1	Топочный шлак	16.00	0.91	0.01456	83.5		
2	Зола-уноса	3.08	0.31	0.00096	5.5		
3	Шлам (продукты мокрой очистки)	3.01	0.64	0.00192	11.0		
	Итого ПСУ:	22.09	0.79	0.01745	100		

Таблица 6. Содержание золота в продуктах сгорания углей Архаро-Богучанского месторождения

ператур 600–800°С, создавая режим термического "концентрирования" обломков различной генетической природы, которые можно рассматривать как начальный этап сохранения БМ от уноса в газовом потоке.

БЛАГОДАРНОСТИ

Авторы выражают признательность В.О. Крутиковой (ИТиГ ДВО РАН, Хабаровск) за выполнение аналитических работ по определению химического состава самородного золота и Е.Н. Воропаевой (ИГиП ДВО РАН, Благовещенск) — за минералогический анализ проб. Авторы благодарны Л.А. Чурсиной и С.Б. Турморе (АмурНЦ ДВО РАН, Благовещенск) за определение содержания золота в углях и продуктах сгорания.

СПИСОК ЛИТЕРАТУРЫ

- Середин В.В. // Геология рудных месторождений. 2007. Т. 49. № 1. С. 3. [Geology of Ore Deposits, 2007, vol. 49, № 1, р. 1. https://doi.org/10.1134/S1075701507010011]
- 2. Сорокин А.П., Чантурия В.А., Рождествина В.И., Кузьминых В.М., Жмодик С.М. // ДАН. 2012. Т. 446. № 6. С. 672. [Doklady Earth Sciences, 2012, vol. 446, № 2, p. 1215.
 - https://doi.org/10.1134/S1028334X12100182]
- 3. Сорокин А.П., Рождествина В.И., Кузьминых В.М., Жмодик С.М., Анохин Г.Н., Митькин В.Н. // Геология и геофизика. 2013. Т. 54. № 7. С. 876. [Russian Geology and Geophysics 2013, vol. 54, № 7, p. 671. https://doi.org/10.1016/j.rgg.2013.06.003]
- 4. *Крапивенцева В.В.* // Тихоокеанская геология. 2005. Т. 24. № 1. С. 73.
- Сорокин А.П., Конюшок А.А., Агеев О.А., Кузьминых В.М. // ФТПРПИ. 2019. № 4. С. 141. [Journal of Mining Science, 2019, vol. 55, № 4, p. 643. https://doi.org/10.15372/FTPRPI20190415
- 6. Арбузов С.И., Ильенок С.С., Машенькин В.С., Сунь Юйчжуан, Жао Цунлян, Блохин М.Г., Иванов В.В., Зарубина Н.В. // Изв. Томского политехн. ун-та. Инжиниринг георесурсов. 2016. Т. 327. № 8. С. 74.

- 7. Неженский И.А., Вялов В.И., Мирхалевская Н.В., Чернышев А.А. // Региональная геология и металлогения. 2013. № 54. С. 99.
- Куимова Н.Г., Сорокин А.П. // ДАН. 2010. Т. 430. № 1. С. 94. [Doklady Earth Sciences, 2010, vol. 430, № 1, p. 43. https://doi.org/10.1134/S1028334X10010095]
- 9. Павлова Л.М., Некрасов Э.В., Радомская В.И., Шумилова Л.П., Сорокин А.П. // ДАН. 2018. Т. 483. № 6. С. 190. [Doklady Earth Sciences, 2018, vol. 483, № 1, р. 1442. DOI: 10.1134/S1028334X18110120] https://doi.org/0.31857/S086956520003479-9
- Sorokin A.P., Konyushok A.A., Ageev O.A, Zarubina N.V., Ivanov V.V., Wang J. // Energy Exploration & Exploitation. 2019. V. 37. № 6. P. 1721.
- Сорокин А.П., Конюшок А.А., Кузьминых В.М., Артеменко Т.В., Попов А.А. // Геотектоника. 2019. № 2. С. 33. [Geotectonics, 2019, vol. 53, №. 2, р. 193. DOI: 10.1134/S0016852119 0200 92] https://doi.org/10.31857/S0016-853X2019233-45
- Сорокин А.П., Агеев О.А. Устройство для получения разделенных продуктов сгорания углей. Пат. 2699642 РФ // Б.И. 2019. № 25. С. 9.
- Карта полезных ископаемых СССР масштаба 1:200 000. Лист М-52-ХХІІІ (Архара). Хингано-Буреинская серия / Под ред. Л.Б. Кривицкого. Л.: Аэрогеология, 1975.
- 14. Шпирт М.Я. Безотходная технология. Утилизация отходов добычи и переработки твердых горючих ископаемых. М.: Недра, 1986. 255 с.
- 15. Петровская Н.В. Самородное золото. М.: Наука, 1973. 347 с.
- Crosdale P.J., Sorokin A.P., Woolfe K.J., Macdonald D.I.M. // Int. J. Coal Geology. 2002. V. 51. P. 215.
- 17. *Юдович Э.Я., Кетрис М.П.* // Вестн. Ин-та геол. Коми НЦ УРО РАН. 2004. № 10. С. 6.
- Рассказова А.В., Лаврик Н.А., Литвинова Н.М., Богомяков Р.В. // ГИАБ. 2016. № S21. С. 282.
- Черепанов А.А. // Тихоокеанская геология. 2008.
 № 2. С. 16. [Russian Journal of Pacific Geology, 2008, vol. 2, № 2, p. 110. https://doi.org/10.1134/S1819714008020024]