УДК 66.097:544.478.13:546.96:661.961.92

ВЛИЯНИЕ ОКИСЛИТЕЛЬНОЙ ОБРАБОТКИ И СОДЕРЖАНИЯ ПЛАТИНЫ НА УСТОЙЧИВОСТЬ СИСТЕМЫ Pt/СИБУНИТ В ОКИСЛИТЕЛЬНОЙ АТМОСФЕРЕ ПРИ ПОВЫШЕННОЙ ТЕМПЕРАТУРЕ

¹ Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН, 644040 Омск, Россия ² ΦГАОУ ВО Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия *e-mail: borisovtiger86@mail.ru

e-mail: iost.k.n@mail.ru *e-mail: tvls@rambler.ru ****e-mail: simonowa.alyon@yandex.ru *****e-mail: eugebel@ihcp.ru *****e-mail: s_in_cube@mail.ru ******e-mail: solfraum@yandex.ru *******e-mail: tremv@yandex.ru ********e-mail: tremv@yandex.ru ********e-mail: savelieva1968@mail.ru ********e-mail: vudvord@rambler.ru *********e-mail: dysprozii666@gmail.com *********e-mail: dysprozii666@gmail.com *********e-mail: dash@ihcp.ru Поступила в редакцию 20.03.2020 г. После доработки 15.05.2020 г. Принята к публикации 15.07.2020 г.

Изучено влияние повышенных температур на текстурные и структурные характеристики углеродного материала Сибунита в условиях кислородсодержащей среды в зависимости от предварительной обработки Сибунита HNO₃, присутствия активного компонента (Pt) и его количества. Согласно результатам термогравиметрии, предварительная обработка Сибунита HNO₃ приводит к увеличению температурного интервала окисления углерода, в то время как введение Pt приводит к сокращению этого температурного интервала. Установлено, что выдерживание образцов Pt/Сибунит в течение 4 ч в азотовоздушной смеси при температуре 400°С приводит к увеличению суммарного объема и среднего диаметра пор при незначительном изменении удельной поверхности, а средний размер частиц платины увеличивается с 2 до 5 нм.

Ключевые слова: Pt/C, Cuбунит, фазовый состав, устойчивость к окислению, углерод, пористая структура

DOI: 10.31857/S002311772006002X

введение

Графитоподобный мезопористый углеродный материал Сибунит является объектом большого числа исследований [1—6] ввиду уникального сочетания свойств графита и активированных углей. Это сочетание определяет наличие у материала свойств сорбента, а также устойчивости по отношению к химическим реагентам различной природы. Весьма интересен вопрос направленного регулирования свойств Сибунита: в целях приготовления высокоэффективных катализаторов и сорбентов используются такие способы модификации, как обработка азотной кислотой [7–12], а также высокотемпературная обработка в инертной среде [13]. Как было показано в [14, 15], присутствие платиновых металлов оказывает влияние на устойчивость Сибунита в восстановительной среде. Способность к взаимодействию с компонентами среды зависит от природы нанесенного металла, что дает возможность регулировать свойства углеродного композита Сибунита. В связи с этим было изучено взаимодействие углеродного материала с окислительной, кислородсодержащей средой в присутствии нанесенного металла, что стало целью настоящей работы, применительно к системе Pt/Сибунит.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика подготовки носителя. В качестве углеродного носителя был использован графитоподобный мезопористый углеродный материал Сибунит с размером гранул 2–2.5 мм. Удельная поверхность носителя (далее обозначается как Sib) составляла $400 \pm 20 \text{ m}^2/\text{г}$. Для получения окисленного носителя (в дальнейшем обозначается как SibN) Сибунит обрабатывали 56%-ной азотной кислотой при комнатной температуре в течение 90 мин, после чего отмывали дистиллированной водой до нейтрального pH и высушивали при 120°С на воздухе в течение 3 ч. Удельная поверхность SibN после такой обработки составляла 276 ± 14 м²/г.

Методика синтеза нанесенных образцов Pt/Cu-бунит. Нанесение предшественника активного компонента, в качестве которого использовали раствор H_2PtCl_6 , на подготовленный, как описано в предыдущем резделе, Сибунит проводили методом пропитки по влагоемкости. Затем образцы сушили при 120°C на воздухе в течение 3 ч. Восстановление нанесенного предшественника платины проводили при 450°C (скорость нагрева 10°C/мин) в токе H_2 (60 мл/мин) в течение 4 ч. Затем образец охлаждали в токе аргона до комнатной температуры. Были получены четыре образца на носителях Sib и SibN: 4% Pt/Sib, 4% Pt/SibN, 2% Pt/SibN, 2% Pt/SibN, где 2 и 4 – содержание Pt в образце (мас. %).

Исследование термической стабильности носителей и платиносодержащих образцов в кислородсодержащей атмосфере. Устойчивость носителей к окислению определяли методом термогравиметрического анализа (ТГА) на совмещенном ТГА/ДСК/ДТА-анализаторе марки SDT Q600 с программной обработкой данных TA Instruments Universal V4.2E (чувствительность весов 0.1 мкг, шум ДСК ≤4 мкВт), в интервале температур 20– 800°С, воздушной среде при скорости нагрева 10°С/мин. Навеска образца составляла 25–30 мг.

Термическая устойчивость образцов, содержащих платину, в воздушной среде была изучена при температуре 400°С по методике, описанной в [14] для восстановительных условий; время эксперимента составило 4 ч. Образцы после эксперимента по окислению в изотермическом режиме ниже обозначены как 2% Pt/Sibox и 2% Pt/SibNox.

Просвечивающая электронная микроскопия (ПЭМ). Исследование структуры и морфологии образцов проводили с использованием просвечивающего электронного микроскопа JEM 2100 "JEOL" (ускоряющее напряжение 200 кВ, разрешение по кристаллической решетке 0.14 нм), оснащенного энергодисперсионным рентгеновским спектрометром *INCA-250* "Oxford Instruments". Образцы предварительно растирали в агатовой ступке. Затем спиртовые суспензии порошков, полученных после растирания, подвергали ультразвуковому диспергированию с последующим осаждением на перфорированную углеродную пленку, закрепленную на медной сетке. Данные сетки помещали в колонну микроскопа и проводили исследования методом ПЭМ и энергодисперсионной спектроскопии (ЭДС).

Рентгенофазовый анализ (РФА). Рентгенофазовый анализ проводили на порошковом рентгеновском дифрактометре *D8 Advance*, фирмы "*Bruker*" (Германия) в монохроматизированном Cu- K_{α} -излучении (длина волны 0.15406 нм). Использовали следующий режим измерения: шаг сканирования 0.050, время накопления сигнала 2 с/точка, напряжение и ток накала 40 кВ и 40 мА, соответственно, диапазон сканирования 2Θ – 10–80°. Расшифровку полученных дифрактограмм проводили с использованием базы данных по порошковой дифракции *ICDD PDF-2*.

Определение текстурных характеристик носителей. Исследование параметров пористой структуры исходных носителей проводили по изотермам адсорбции-десорбции азота при -195.7°С на приборе Sorptomatic-1900 ("CarloErba", Италия). Расчеты S_{yg} по методу БЭТ ($S_{БЭТ}$) выполняли в интервале равновесных относительных значений давления паров азота при $P/P_{\rm S} = 0.05 - 0.33$ по изотерме адсорбции. Суммарный адсорбционный объем пор ($V_{\Sigma nop}$) определяли по величине адсорбции азота при $P/P_{\rm S} = 0.996$, при плотности адсорбированного азота, которая принималась равной плотности нормальной жидкости (мольный объем жидкого N₂ составляет 34.68 см³/моль). Прибор Sorptomatic-1900 был откалиброван путем измерения удельной поверхности различных стандартных дисперсных и пористых материалов. Погрешность измерения величин удельной поверхности (Δ) стандартных образцов на данном приборе равна ±2.8 отн. %.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Устойчивость в окислительной среде. Термогравиметрический анализ является наиболее простым и информативным методом для описания процессов, происходящих при нагревании углеродных материалов в окислительной среде (рис. 1).

Из кривых зависимости потери массы от температуры видно, что для каждого образца характерен температурный "индукционный" период, заканчивающейся температурой $T_{\rm hay}$, соответ-

Рис. 1. ТГА носителей и образцов с нанесенной платиной: 1 - Sib, 2 - 4% Pt/Sib, 3 - SibN, 4 - 2% Pt/SibN, 5 - 4% Pt/SibN (воздух 100 мл/мин, скорость нагрева 10° С/мин).

ствующей точке, с которой становится заметной убыль массы образца, прямолинейный характер зависимости сменяется криволинейным участком, который, далее, сменяется на прямолинейный участок с почти постоянной скоростью потери массы образца, последний участок оканчивается температурой Ткон, соответствующий практически полному сгоранию углеродной составляющей образца. Следует отметить, чем ниже содержание платины, тем при большей температуре начинается участок с почти постоянной скоростью потери массы образца. Сопоставляя кривые ТГА, можно заключить, что более протяженный в сторону высоких температур (в данном случае $T_{\text{нач}}$, равная 472 и 450°С для Sib и SibN соответственно) "индукционный" период для окисления Сибунита без платины связан с высокой энергией активации реакции взаимодействия кислорода с углеродным материалом. Для различных углеродных материалов некаталитическое окисление углерода характеризуется энергиями активации в широком интервале 105-255 кДж/моль: для каменного угля 105 [16] и 132-150 [17], для дизельной сажи 141 [18], для кокса 140-160 [16] и для графита 255 [19]. Катализаторы значительно снижают энергию активации: для дизельной сажи до 55 [18] и для графита до 106 [19]. Для чистого Сибунита скорость окисления становится заметной при температуре выше 450°С. Скорость некаталитического окисления углерода кислородом нарастает с температурой быстрее, чем скорость каталитического процесса, вследствие более высокой энергии активации. В результате в высокотемпературной области скорость некаталитического окисления становится сопоставимой со скоростью каталитического процесса окисления углерода кислородом, активированным на платине, развивается процесс горения, который переходит в режим,

определяемый скоростью диффузии кислорода к поверхности Сибунита. Соответственно величина температурного интервала горения (разница между $T_{\text{кон}}$ и $T_{\text{нач}}$), как видно из данных, представленных на рис. 1, мало зависит от количества нанесенной платины. При увеличении количества платины, нанесенной на носитель SibN, с 2 до 4 мас. % температурный интервал горения меняется незначительно, снижаясь с 308 до 296°С. Однако введение платины заметно ускоряет процесс – температура начала окисления снижается на 78°С для носителя Sib и на 48°С для носителя SibN, при одном и том же количестве нанесенной платины – 4 мас. %. Авторы [20, 21] также указывают на значительное снижение температуры начала окисления образцов на углеродных носителях с увеличением содержания платины, в частности, для катализаторов Pt/Vulcan XC72. Влияние же обработки носителя азотной кислотой прослеживается более заметно – температурный интервал окисления возрастает с 303 до 344°С, видимо, вследствие того, что такая обработка приводит к окислению наиболее активных, дефектных участков поверхности и формированию защитного слоя функциональных групп на поверхности углеродного материала, что хорошо согласуется с данными физических методов исследования и экспериментов по изотермическому окислению, как это будет показано ниже.

Исходя из приведенных данных ТГА температуру для проведения экспериментов по изучению устойчивости платиносодержащих образцов в изотермическом режиме выбрали равной 400°С, как близкую к температурному пределу устойчивости образцов, а время эксперимента — равным 4 ч.

В табл. 1 приведены сравнительные данные по изменению массы образцов, согласно которым

Образец	Потеря массы, %	Скорость реакции окисления Сибунита (г/м ² мин · 10 ⁶)		
Sib	0.84	0.11		
SibN	3.42	0.46		
2% PtSib	10.7	1.33		
2% PtSibN	13.6	1.81		
4% PtSib	14.3	1.90		
4% PtSibN	19.5	2.69		

Таблица 1. Устойчивость платинусодержащих образцов к окислению при температуре 400°С, 4 ч

по скорости окисления углеродного носителя в окислительной среде образцы можно расположить в следующий ряд: Sib < SibN < 2% Pt/Sib < 2% Pt/SibN < 4% Pt/Sib < 4% Pt/SibN. Очевидно, на образцах Сибунита, подвергнутых окислительной обработке, появляется больше центров адсорбции предшественника платины, т.е. как в 2% Pt/SibN, так и в 4% Pt/SibN дисперсность платины высока и близка по величине, что и определяет более высокие удельные скорости окисления носителя в данных образцах, пропорциональные количеству платины.

Фазовый состав, удельная поверхность и текстурные характеристики образцов. Микроструктурные параметры для носителей, исходных образцов, содержащих платину, и образцов после окисления в изотермическом режиме представлены в табл. 2.

Согласно результатам рентгенофазового анализа, исходный Сибунит отличается увеличенным межплоскостным расстоянием (d_{002}) – 0.347 нм по сравнению с эталонным графитом, для которого этот показатель составляет 0.335 нм. Кислотная обработка увеличивает d_{002} – 0.351 нм и снижает среднюю высоту графитовых пакетов L_c с 3.2 до 2.7 нм. Причем L_c для обработанного Сибунита меньше примерно на два графеновых слоя, это может означать, что внешние слои кристаллитов

после обработки частично разрушаются с формированием кислородсодержащих функциональных групп. Этим же можно объяснить значительное снижение S_{ул} обработанного Сибунита, вследствие разрушения стенок микропор, состоящих из нескольких слоев. После нанесения на исходный Сибунит и восстановления предшественника платины до металла удельная поверхность полученного образца падает на 47 м²/г. Это означает, что стенки наиболее мелких пор разрушаются в результате метанирования углерода при восстановлении предшественника платины, и происходит их укрупнение. А при нанесении платины на SibN удельная поверхность полученного образца, наоборот, возрастает на 36 м²/г, вероятнее всего, вследствие удаления функциональных групп и образования дополнительных пор вследствие метанирования частично разрушенных при кислотной обработке участков кристаллитов.

После эксперимента в потоке азото-воздушной смеси при 400°С пористая структура приготовленного образца 2% Pt/Sib подвергается изменениям под действием кислородсодержащей среды. Наблюдается увеличение суммарного объема и среднего диаметра пор соответственно на 21 и 25% (табл. 2) при небольшом снижении удельной поверхности (5%). Для образца 2% Pt/SibN после испытаний в окислительной атмосфере наблюдаются аналогичные изменения текстурных параметров. Величины суммарного объема и среднего диаметра пор увеличиваются на 19%, однако удельная поверхность остается неизменной.

На рис. 2 представлено распределение пор по размерам для образцов на окисленном Сибуните до и после эксперимента по окислению в изотермическом режиме. Как видно, образец 2% Pt/SibN характеризуется одним интенсивным узким пиком с размером пор 3–5 нм и вторым незначительным, уширенным пиком, отвечающим порам размером 5–10 нм, что указывает на преимущественно мономодальное распределение пор.

Название образца	$S_{\rm yg}$, м ² /г	Параметр ОКР			$V_{\Sigma \text{пор}}, \text{cm}^3/\Gamma$	d _{БЭТ}
		<i>d</i> ₀₀₂ , нм	L ₁₀ , нм	$L_{\rm c}$, нм	(при $P/P_{\rm s} = 0.996$)	(4 <i>V/S</i> _{уд}), нм
Sib	400	0.347	8.6	3.2	—	_
SibN	276	0.351	8.1	2.7	—	—
2% Pt/Sib	353	0.349	7.2	3.2	0.53	6.0
2% Pt/Sibox	334	0.349	7.2	3.3	0.67	8.0
2% Pt/SibN	312	0.350	7.3	3.2	0.51	6.5
2% Pt/SibNox	312	0.349	7.0	3.3	0.63	8.1

Таблица 2. Данные РФА и низкотемпературной адсорбции азота для образцов

Примечание. Величина d_{002} – межплоскостное расстояние, нм; L_c – средняя высота графитовых пакетов, нм; L_{10} – длина графитовых пакетов, нм.

Рис. 2. Дифференциальное распределение пор по размерам.

После выдерживания в окислительной среде в изотермическом режиме (образец 2% Pt/SibNox) распределение пор становится бимодальным. При этом первый пик, соответствующий размерам пор 3–5 нм, существенно уменьшается в размере, второй пик исчезает, но появляется широ-

кий пик в области 6–25 нм. Следовательно, происходит перестройка пористой структуры носителя – объем пор в области 3–5 нм снижается в ~4 раза, и возрастает в ~2.4 раза – в области 6–25 нм. Такое изменение пористой структуры образцов может свидетельствовать о разрушении стенок между порами размером 3–5 нм и трансформацией их в более крупные (>10 нм) мезопоры. Эффект укрупнения частиц платины подтверждается просвечивающей электронной микроскопией (рис. 3).

Электронно-микроскопическое исследование образцов. Из анализа результатов ПЭМ следует, что образцы 2% Pt/SibN (исходный) и 2% Pt/SibNox (после окисления) представляют собой глобулы Сибунита, содержащие контрастные частицы платины (рис. 3) в металлическом состоянии.

Рассмотрим подробнее изменения, происходящие с образцом 2% Pt/SibN (рис. 3).

Частицы платины после выдерживания образцов в потоке азото-воздушной смеси при 400 °С увеличиваются в размерах. Так, средний размер частиц увеличивается с 2 до 5 нм (рис. 36 и 3г). Это явление можно объяснить агрегацией вследствие спекания высокодисперсных частиц платины в результате локальных перегревов частиц металла и выгорания углерода носителя. В [22, 23] было показано, что наночастицы металлов ката-

Рис. 3. ПЭМ-изображения платиносодержащего образца 2% Pt/SibN (а), (б) и Pt/SibNox (в), (г).

литически окисляя, выжигают углерод, образуя каналы, располагающиеся параллельно кристаллографическим направлениям графена. Ряд авторов образование каналов объясняют высокой энергией взаимодействия между металлической частицей и краевыми атомами графитовых пакетов, находящимися в контакте с ней [24, 25]. На примере серебра [26] показано, что развивающаяся во время окисления температура достаточно высока. чтобы повысить подвижность атомов наночастицы и вызвать смачивание поверхности графита. По мере удаления близлежащих к металлической частице атомов углерода путем каталитического окисления возрастают силы притяжения на границе раздела фаз, между атомами, входящими в состав металлической частицы и атомами углерода, расположенными в следующем, по порядку, слое атомов углерода, ставшем краевым, вызывая ее перемешение вместе с фронтом реакции. В то же время движение наночастиц по поверхности аморфной трехмерной структуры, подобной техническому углероду или Сибуниту, как ожидается, не будет следовать какому-либо предпочтительному направлению, а скорее будет отражать локальные вариации границы раздела Аg-С. При встрече наночастицы начинают срастаться, причем в силу перегрева самих наночастиц это происходит в жидкоподобном состоянии, в результате чего образуются кристалличные частицы. Для серебряных наночастиц это было подтверждено сообщением о типичных дифракционных ореолах из частиц серебра и получением временных диаграмм дифракции электронов в ходе дополнительных экспериментов по окислению *in situ* [26]. В отсутствие кислорода движения и сращивания частиц серебра не наблюдалось. Вероятнее всего, укрупнение частиц платины в условиях выдержи-

цессов. Структура углерода так же претерпевает значительные изменения, что видно на рис. За и Зв: в частности, появляются крупные отверстия в пироуглеродном каркасе Сибунита. Аналогичные результаты с использованием метода ПЭМ наблюдали [27] для окисления нановолокон углерода частицами платины и рутения, а так же при метанировании графита [28].

вания в азото-воздушной смеси при температуре

400°С происходит вследствие аналогичных про-

Кроме того, по результатам полуколичественного рентгеновского анализа, проведенного методом ЭДС, концентрация кислорода в исходном образце 2% Pt/SibN и после выдержки в потоке азото-воздушной смеси при 400°С – 2% Pt/SibNox остается на уровне 3 мас. %. Структурная упорядоченность углеродных слоев, составляющих "скорлупки" Сибунита, также не претерпевает существенных изменений.

выводы

Показано, что предварительная обработка углеродного материала Сибунита азотной кислотой приводит к повышению термической устойчивости образца Pt/Сибунит в кислородсодержащей среде, о чем свидетельствует увеличение температурного интервала окисления образца (ТГА). Повышение термической устойчивости обусловлено удалением дефектных участков, в большей степени склонных к окислению, о чем свидетельствуют снижение высоты графитовых пакетов и увеличение показателя d_{002} (РФА).

Нанесение платины на углеродный материал Сибунит, не подвергнутый окислительной обработке азотной кислотой, приводит к снижению устойчивости образца при его выдерживании в кислородсодержащей атмосфере при 400°С, при этом структурные параметры углеродного носителя меняются незначительно, как следует из данных РФА и ПЭМ, текстурные же характеристики свидетельствуют о снижении объема пор в области 3-5 нм в ~4 раза и возрастании в области 6-25 нм – в ~2.4 раза, что является следствием катализируемого платиной процесса окисления углеродного носителя, приводящем к разрушению стенок мелких пор, о чем свидетельствуют также значительная потеря массы образца и увеличение размеров частиц платины (в образце 2% Pt/SibN после окисления средний размер частиц платины возрастает с 2 до 5 нм).

Для серии образцов на подвергнутом окислительной обработке Сибуните с различным количеством нанесенной платины установлено, что скорость окисления углеродного носителя, отнесенная к 1 м² его поверхности, приблизительно пропорциональна количеству нанесенной платины, что говорит о значительном количестве центров сорбции — кислородсодержащих групп, обеспечивающих приблизительно одинаковую дисперсность платины в исследованном интервале концентраций.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания Института катализа СО РАН (номер госрегистрации в системе ЕГИСУ НИОКТР АААА-А17-117021450096-8).

Физико-химические исследования проведены с использованием оборудования ЦКП "Национальный центр исследования катализаторов" Института катализа СО РАН. Исследование проведено при поддержке программы развития конкурентоспособности ТПУ.

СПИСОК ЛИТЕРАТУРЫ

 Smirnova N.S., Borisov V.A., Iost K.N., Temerev V.L., Surovikin Ju.V., Guljaeva T.I., Arbuzov A.B., Cyrul'nikov P.G. // Proc. Engng. 2015. V. 113. P. 84. https://doi.org/10.1016/j.proeng.2015.07.296

- Iost K.N., Borisov V.A., Temerev V.L., Smirnova N.S., Surovikin Y.V., Trenikhin M.V., Arbuzov A.B., Gulyaeva T.I., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Reaction Kinetics, Mechanisms and Catalysis. 2019. V. 127. № 1. P. 85. https://doi.org/10.1007/s11144-019-01555-3
- Pyanova L.G., Luzyanina L.S, Drozdov V.A., Veselovskaya A.V., Arbuzov A.B., Likholobov V.A. // Protection of Metals and Phys. Chem. Surfaces. 2010. V. 46. № 3. P. 320. https://doi.org/10.1134/S2070205110030056
- Таран О.П., Деком К., Полянская Е.М., Аюшеев А.Б., Бессон М., Пармон В.Н. // Катализ в промышленности. 2013. V. 1. Р. 40. https://doi.org/10.1134/S2070050413020104
- Borisov V.A., Iost K.N., Temerev V.L., Fedotova P.A., Surovikin Y.V., Arbuzov A.B., Trenikhin M.V., Shlyapin D.A. // Diamond and Related Materials. 2020. V. 108. # 107986. https://doi.org/10.1016/j.diamond.2020.107986
- Surovikin V.F., Surovikin Yu.V., Tsekhanovich M.S. // Russian Journal of General Chemistry. 2007. V. 77. № 12. P. 2301. https://doi.org/10.1134/S1070363207120353
- Rodriguez-Reinoso F., Molina-Sabio M., Munecas M.A. // J. Phys. Chem. 1992. V. 96. № 6. P. 2707. https://doi.org/10.1021/j100185a056
- Rizom R., Sebastián D., Rodriguez J.L., Lazaro M.J., Pastor E. // J. Catalysis. 2017. V. 348. P. 22. https://doi.org/10.1016/j.jcat.2017.02.007
- Antolini E. // Appl. Catalysis B: Environmental. 2009.
 V. 88. P. 1. https://doi.org/10.1016/j.apcatb.2008.09.030
- Fraga M.A., Jordao E., Mendes M.J., Freitas M.M.A., Faria J.L., Figueiredo J.L. // J. Catalysis. 2002. V. 209. P. 355. https://doi.org/10.1006/jcat.2002.3637
- Pyanova L.G., Luzyanina L.S, Drozdov V.A., Veselovskaya A.V., Arbuzov A.B., Likholobov V.A. // Protection of Metals and Phys. Chem. of Surfaces. 2010. V. 46. № 3. P. 320. https://doi.org/10.1134/S2070205110030056
- Суровикин Ю.В., Шайтанов А.Г., Резанов И.В., Сырьева А.В. // Перспективные материалы. 2018. V. 12. P. 53. https://doi.org/10.30791/1028-978X-2018-12-53-73
- Forni L., Molinari D., Rossetti I., Pernicone N. // Appl. Catalysis A: General. 1999. V. 185. P. 269. https://doi.org/10.1016/S0926-860X(99)00144-1
- 14. Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Reac-

tion Kinetics, Mechanisms and Catalysis. 2019. V. 127. № 1. P. 103. https://doi.org/10.1007/s11144-019-01554-4

- Iost K.N., Borisov V.A., Temerev V.L., Surovikin Y.V., Pavluchenko P.E., Trenikhin M.V., Lupanova A.A., Arbuzov A.B., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // Surfaces and Interfaces. 2018. V. 12. P. 95. https://doi.org/10.1016/j.surfin.2018.05.003
- Babin'ski P., Łabojko G., Kotyczka-Moran'ska M., Plis A. // J. Thermal Anal. and Calorimetry. 2013, V. 113. № 1. P. 371. https://doi.org/10.1007/s10973-013-3002-x
- 17. *Boiko E.A.* // Thermochimica Acta. 2000. V. 348. P. 97. https://doi.org/10.1016/S0040-6031(99)00454-2
- Badini C., Serra V., Saracco G., Montorsi M. // Catalysis Letters. 1996. V. 37. P. 247.
- Stevens D.A., Dahn J.R. // Carbon. 2005. V. 43. P. 179. https://doi.org/10.1016/j.carbon.2004.09.004
- Pinchuk O.A., Aubuchon S.R., Marks C., Dominey R., Dundar F., Deniz O.F., Ata A., Wynne K.J. // FUEL CELLS. 2009. V. 5. P. 554. https://doi.org/10.1002/fuce.200800183
- Baturina O.A., Steven R.A., Kenneth J.W. // Chem. Mater. 2006. V. 18. P. 1498. https://doi.org/10.1021/cm052660e
- 22. Baker R.T.K., France J.A., Rouse L., Waite R.J // J. Catal. 1976. V. 41. P. 22. https://doi.org/10.1016/0021-9517(76)90196-2
- Booth T.J., Pizzocchero F., Andersen H., Hansen T.W., Wagner J.B., Jinschek J.R. // Nano lett. 2011. V. 11. P. 2689. https://doi.org/10.1021/nl200928k
- 24. Hennig G.R. // J. Inorg. Nucl. Chem. 1962. V. 24. P. 1129: https://doi.org/10.1016/0022-1902(62)80258-9
- Pizzocchero F., Vanin M., Kling J., Hansen T.W., Jacobsen K.W., Boggild P. // J. Phys. Chem. 2014. V. 118. P. 4296. https://doi.org/10.1021/jp500800n
- Gardini D., Christensen J.M., Damsgaard C.D., Jensen A.D., Jakob B. // Appl. Catalysis B: Environmental. 2016. V. 183. P. 28. https://doi.org/10.1016/j.apcatb.2015.10.029
- Jang J.S., Lim S., Kim S.K., Peck D.H., Lee B., Yoon C.M., Jung D. // J. Nanosci. Nanotechnol. 2011. V. 11. № 7. P. 5775. https://doi.org/10.1166/jnn.2011.4452
- Schaeffel F., Warner J.H., Bachmatiuk A., Rellinghaus B., Büchner B., Schultz L., Rümmeli M.H. // Phys. Status Solidi B. 2009. V. 246. № 11. P. 2540. https://doi.org/10.1002/pssb.200982293

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 6 2020

52