УДК 544.6+538.953+405

ФИЗИКО-ХИМИЧЕСКИЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА УГЛЕРОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ ГУМИНОВЫХ КИСЛОТ

© 2021 г. Б. Т. Ермагамбет^{1,*}, Б. К. Касенов^{1,**}, М. К. Казанкапова^{1,***}, Ж. М. Касенова^{1,****}, Е. Е. Куанышбеков^{1,****}, А. Т. Наурызбаева^{1,*****}

¹ ТОО "Институт химии угля и технологии", 010000 Нур-Султан, Казахстан

*e-mail: coaltech@bk.ru **e-mail: kasenov1946@mail.ru ***e-mail: maira_1986@mail.ru ****e-mail: zhanar_k_68@mail.ru *****e-mail: mr.ero1986@mail.ru *****e-mail: asemai_2296@mail.ru Поступила в редакцию 18.05.2020 г. После доработки 02.10.2020 г. Принята к публикации 07.10.2020 г.

Проведен химический анализ гуминовых кислот и их активированных форм на основе бурого угля Майкубенского бассейна (Казахстан). Гуминовые кислоты были получены на основе гуматов калия. Активированные гуминовые кислоты (АГК) были получены методом карбонизации и активации в средах аргона и водяного пара при 873 К, изучены физико-химические характеристики и морфология поверхности исследуемых образцов. Впервые определены электросопротивление (R), электроемкость (C) и диэлектрическая проницаемость (ε) образцов в интервале температур 293–483 К. Полученные образцы испытаны в качестве адсорбента для очистки воды от тяжелых металлов.

Ключевые слова: активированный адсорбент, гуминовые кислоты, электрофизические свойства, электроемкость, электросопротивление, диэлектрическая проницаемость **DOI:** 10.31857/S0023117721010023

Майкубенский буроугольный бассейн, включающий Шоптыкольское, Сарыкольское и Талдыкольское месторождения, известен с начала XIX века. С 1941 г. на Шоптыкольском месторождении ведется разработка угля небольшим карьером для местных нужд, а с 1987 г. - крупным Майкубенским разрезом проектной мощностью 20 млн т/год [1]. Угли бассейна гумусовые, бурые, высокой степени углефикации (Б₃), среднезольные (25-28%). Зола тугоплавкая с высоким содержанием $A1_2O_3$ (до 30%), угли малосернистые (0.5-1.0%) и многофосфористые (0.1%). Теплота сгорания на горючую массу 29.3-31.4 кДж/кг. Общие запасы углей бассейна оцениваются в 5.3 млрд т, в том числе пригодные для открытой отработки при вскрыше до 10 м³/т составляют 1.8 млрд т [2, 3].

В настоящее время производство активированного угля перспективно в связи с возможностью получения материалов с развитой структурой для решения различных задач, в том числе защиты биосферы от антропогенного воздействия, в атомной энергетике, в современных устройствах для хранения и передачи энергии. При этом масштабы использования нанопористого углерода ограничиваются достаточно высокой стоимостью материалов. Это обусловливает поиск новых методов получения углеродных материалов с требуемым комплексом свойств из дешевых видов сырья, что является актуальной задачей для науки и промышленности [4, 5]. Например, стоимость адсорбентов в 450 раз превышает стоимость сырья при огромном объеме рынка сбыта, а суммарное мировое производство пористых углеродных материалов в настоящее время составляет около 1 млн т/год [6, 7].

Проблема утилизации углесодержащих отходов и некондиционных окисленных углей приобретает особую актуальность в крупных угледобывающих центрах, поэтому в настоящее время существует потребность в разработке эффективных способов утилизации этих некондиционных углей как вторичного сырьевого ресурса.

Гуминовые вещества (ГВ), получаемые из окисленных углей, торфа, представляют собой слож-

ные полимерные комплексы, эффективно связывают поллютанты органической и неорганической природы и, выводя их из биологического круговорота, предотвращают деградацию природных биоценозов. Гуминовые кислоты (ГК) обладают значительной способностью к образованию комплексных и внутрикомплексных (хелатных) соединений с железом и алюминием, а также медью и другими поливалентными катионами, которые в зависимости от рН среды приобретают большую подвижность или образуют прочные не растворимые в воде соединения. При этом ГК образуют комплексные соединения с металлами преимущественно в области низких значений рН. Кислородсодержащие функциональные группы (-СООН, фенольные и спиртовые -OH, а также >C=O), входящие в состав ГВ, могут образовывать стабильные комплексы с ионами металлов. В образовании металлоорганических комплексов также участвуют аминные $(-NH_2)$ -, амидные (CO-NH₂)- и иминные (>C=NH)-группы [8].

Углеродные материалы, получаемые термической обработкой (карбонизацией) и/или активацией (с использованием различных окислителей) углеродсодержащего сырья, обладают способностью высокоэффективно разделять газовые и жидкие смеси за счет сорбционного эффекта [9, 10]. Такие материалы широко применяются в качестве различных сорбентов, носителей катализаторов, нанокомпозитных материалов, подложки в источниках тока нового поколения (литий-ионных аккумуляторах, суперконденсаторах, ионисторах и топливных элементах) и т.д. [11–19].

Электрофизические свойства – основной показатель углеродных материалов, используемых при электротермических процессах, а также для изготовления из них сверхпроводниковых материалов, конденсаторов и топливных элементов. Существует распространенное мнение, что для повышения электрических характеристик суперконденсатора необходимо повышать объем и поверхность пор. Однако, по мнению авторов статьи [20], высокая удельная поверхность пор не является достаточным условием для достижения высокой емкости двойного электрического слоя. Важную роль играет состояние поверхности углеродного материала, например, наличие поверхностных С-О-групп, краевой угол смачивания и другие физико-химические характеристики.

Цель данной работы — исследование физикохимических и электрофизических свойств углеродных материалов на основе гуминовых кислот из окисленного угля бассейна "Майкубен" (Казахстан).

В качестве исходного сырья использовали бурый уголь месторождения Майкубен, предварительно измельченный до крупности менее 0.3 мм и имеющий следующие характеристики (мас. %):

 A^d 25.8; W^r 9.3; V^d 46.6; S_t^d 0.71. Выход свободных гуминовых кислот составил (на аналитическое состояние) 87%.

Гуминовые вещества получены из окисленного бурого угля, очищены и определены в соответствии с рекомендациями Международного общества по гуминовым веществам (*IHSS*). Гуминовые кислоты были получены на основе гуматов калия путем подкисления их 20%-ным раствором кислоты до pH = 3-4.5, в результате реакции гуминовые кислоты выпадали в виде аморфных бурых осадков.

Образцы активированных адсорбентов были получены методом карбонизации при 873 К в среде аргона и активацией водяным паром образцов в соответствии с методикой, описанной в [21].

Влажность, зольность и летучесть образцов были определены на термогравиметрическом анализаторе "Thermoster Eltra" (согласно ASTM D7582-12). Суммарный объем пор, насыпную плотность, pH водной вытяжки, адсорбционную активность по метилоранжу определяли в соответствии с методиками [10, 11]. Адсорбционные характеристики сорбентов (удельная площадь поверхности) изучали методом Брунауэра–Эммета-Теллера (БЭТ), измерения проводили на приборе КАТАКОН Sorbtometer M. Химический анализ и морфологию поверхности изучали методом энергодисперсионной рентгеновской спектроскопии на приборе SEM (Quanta 3D 200i) с приставкой для энергодисперсионного анализа от EDAX.

Для проведения исследований по очистке от тяжелых металлов с применением адсорбентов гуминовых кислот и их активированной формы готовился модельный раствор тяжелых металлов из государственных стандартых образцов (ГСО). ГСО 7256-96 состава раствора ионов цинка представляет собой раствор цинка сернокислого 7-водного, ГСО 7012-93 ионов свинца – водный раствор свинца (II) азотнокислого, ГСО 7998-93 ионов меди — водный раствор меди (II) сернокислой, ГСО 6690-93 ионов кадмия – водный раствор кадмия азотнокислого. В конической колбе (250 мл) размешивали навеску сорбента (0.5 гр) с модельным раствором (50 мл, pH = 3.26) и перемешивали в шейкере при комнатной температуре (25°С), при скорости перемешивания 200 об/мин в течение 3 ч. После проведения процесса из раствора адсорбент с тяжелыми металлами извлекали путем фильтрации. Отфильтрованный от адсорбента раствор анализировали на содержание тяжелых металлов на вольтамперометрическом анализаторе Ta-lab.

Определение электрофизических характеристик (диэлектрической проницаемости ε , электрического сопротивления R) проводили путем

Образец	Содержание элементов, мас. %							Содержание функциональных групп, мг-экв/г	
	С	0	Na	Al	Si	K	Fe	карбоксильные	фенольные
Гуминовые кислоты	19.47	40.03	-	0.72	0.58	38.06	1.15	1.18	0.42
Активированные гуминовые кислоты	36.29	23.23	0.53	1.08	0.98	34.52	2.94	0.13	2.88

Таблица 1. Химический состав образцов

Таблица 2. Физико-химические характеристики образцов

Наименование	$W_t^r,\%$	<i>A</i> ^r ,%	V^d , %	V_{Σ} по воде, см ³ /г	$ ho_{\rm насып},$ г/см ³	рН _{вод. вытяж.}	$A_{_{\mathcal{M}}},$ мг/г	S_{BET} , м ² /г
Гуминовые кислоты	13.32	25.73	62.25	—	0.95	4.09	28.0	0.42
Активированные гуминовые кислоты	5.27	48.42	34.30	1.45	0.55	9.90	39.0	16.93

измерения электроемкости C образцов на серийном приборе LCR-800 (измеритель L, C, R) при рабочей частоте 1 кГц с базовой погрешностью 0.05–0.1% непрерывно, в сухом воздухе, в термостатном режиме со временем выдержки 3 мин при каждой фиксированной температуре.

Предварительно изготавливали плоскопараллельные образцы в виде дисков диаметром 10 мм и толщиной 5–6 мм со связующей добавкой (~1.5%). Прессование проводили под давлением 20 кг/см². Полученные диски обжигали в силитовой печи при 473 К в течение 6 ч. Далее проводили их тщательное двухстороннее шлифование.

Диэлектрическую проницаемость определяли из электроемкости образца и электроемкости конденсатора. Для получения зависимости между электрической индукцией D и напряженностью электрического поля Е использовали схему Сойера-Тауэра. Визуальное наблюдение D (Е-петли гистерезиса) проводили на осциллографе С1-83 с делителем напряжения, состоящим из сопротивлений 6 мОм и 700 кОм, и эталонным конденсатором 0.15 мкФ. Частота генератора 300 Гц. Во всех температурных исследованиях образцы помещали в печь, температуру измеряли хромельалюмелевой термопарой, подключенной к вольтметру *B2-34* с погрешностью ± 0.1 мВ. Скорость изменения температуры ~5 К/мин. Величину диэлектрической проницаемости при каждой температуре определяли по формуле $\varepsilon = C/C_0$, где C_0 — емкость конденсатора без исследуемого вещества (воздушного).

Результаты проведенного элементного анализа, представленные в табл. 1, показывают, что после термической обработки гуминовых кислот большая часть летучих компонентов удаляется в виде газообразных продуктов, соответственно, повышается концентрация минеральных составляющих. Содержание углерода увеличивается почти в 2 раза. Физико-химические характеристики образцов представлены в табл. 2.

Микроснимки образцов исходных гуминовых кислот и их активированной формы представлены на рис. 1. При анализе морфологии поверхности исходных гуминовых кислот установлено, что поверхность скола представлена неоднородностью структуры и имеет плотные образования с прочными агломератами с размером частиц 1.15-10.47 мкм. Результаты анализа микроснимков показывают, что после термической активации гуминовых кислот поверхностная структура изменяется и становится более развитой, с меньшим размером частиц от ~274.9 нм до ~1.94 мкм, а значения удельной поверхности увеличиваются по сравнению с исходным образцом - с 0.420 до 16.934 м²/г, приблизительно в 16 раз в результате высокотемпературной активации. На СЭМ-рисунках активированных гуминовых кислот видно, что на поверхности образца образовались мелкодисперсные наночастицы диаметром от ~196.4 до ~355.7 нм. которые могут образовываться газофазным осаждением углеродных матриц на поверхности металических активных частиц (например, Fe) присутствующих в составе продукта, которые могут выступать в качестве катализатора.

Полученные ГК и активированные формы ГК апробированы для очистки воды от тяжелых металлов. Анализ полученных данных показал, что после очистки воды значения всех тяжелых металлов снижаются (табл. 3).

В результате сорбции полученные углеродные материалы адсорбировали из раствора большую часть тяжелых металлов и показали высокую степень очистки: 99.00–100% цинка, 94.0–96.7% кадмия, 78.4–81.8% свинца и 82.9–97.7% меди. Это объясняется тем, что при взаимодействии с

Рис. 1. Электронные микроскопические снимки исходных (а)-(в) и активированных гуминовых кислот (г)-(е).

тяжелыми металлами гуминовые кислоты и их активированная форма образуют хелатный комплекс за счет карбоксильных, фенольных и аминных групп [22]. Исходные ГК при взаимодействии с тяжелыми металлами при рН = 4-5 образуют координационные связи с карбоксильными группами, так как при рН ниже 6 будут полностью диссоциированы сильнокислотные карбоксильные функциональные группы, а также карбоксильные группы средней силы [23]. Активированная форма гуминовых кислот связывает в большой степени катионы меди (превышение составляет ~15%) по сравнению с исходными гуминовыми кислотами. Это связано с дополнительной физической адсорбцией пористого материала и комплексообразования фенольными группами при pH = 7-8, при которой происходила адсорбция активированной формы гуминовых кислот с тяжелыми металлами. Как известно [23],

в щелочных условиях металлы связываются за счет фенольных и спиртовых групп.

Высокое сорбционное свойство полученных углеродных материалов также может быть связано с их магнитными свойствами, так как в образцах присутствуют в достаточном количестве железо — 1.15— 2.94 мас. %. В ряде работ [24, 25] подробно показаны микроструктура и использование магнитоуправляемых материалов для удаления ионов тяжелых металлов из воды благодаря высокой сорбционной способности и возможности приложения внешнего магнитного поля. Таким образом, адсорбенты на основе гуминовых кислот и их активированной формы могут быть использованы в качестве адсорбента для извлечения ионов цинка, кадмия, свинца и меди.

Тяжелые	<i>C</i> ₀ (Me), мг/л	Гуминов	ые кислоты	Активированные гуминовые кислоты		
металлы, мг/л		<i>C</i> _{остат} (Ме), мг/л	степень очистки, %	С _{остат} (Ме), мг/л	степень очистки, %	
Цинк	0.10 ± 0.01	0.0010 ± 0.0004	99.00	Не обнаружен	100.00	
Кадмий	0.10 ± 0.01	0.0033 ± 0.0003	96.70	0.0060 ± 0.0005	94.00	
Свинец	0.10 ± 0.01	0.0216 ± 0.0005	78.40	0.0182 ± 0.0004	81.82	
Медь	0.10 ± 0.01	0.0171 ± 0.0003	82.9	0.0033 ± 0.0013	97.70	

Таблица 3. Результаты очистки воды от тяжелых металлов

В табл. 4 приведены результаты измерения электрофизических характеристик гуминовых кислот.

Как видно из полученных данных, гуминовые кислоты в интервале 293–373 К проявляют полупроводниковые свойства, а при 373–483 К – металлическую проводимость. Ширина запрещенной зоны гуминовых кислот при 293–373 К равна 0.91 эВ и относится к узкозондовым полупроводникам. Диэлектрическая проницаемость при 293 К равна 1772, и при 373 К достигает значения, равного 31089712, т.е. увеличивается в 17545 раз и далее падает до 26932 при 483 К. Представляет интерес в качестве конденсаторного материала при 353–423 К.

В табл. 5 приведены результаты измерения электрофизических характеристик активириванного адсорбента на основе гуминовых кислот.

Активированные гуминовые кислоты в интервале температур 293–363 К проявляют полупроводниковую проводимость, в интервале 363– 383 К – металлическую и в 383–483 К – опять полупроводниковую проводимость. Ширина запрещенной зоны активированной формы гуминовых кислот при 293–363 К равна 0.74 эВ, а при 383– 483 К – 0.85 эВ. В этом интервале температур данный образец можно отнести к узкозондовому полупроводнику.

Диэлектрическая проницаемость активированной формы по сравнению с исходной формой гуминовых кислот уже при 293 К достигает 1891741, а при 483 К – до 433 570118, т.е. увеличивается с повышением температуры. Приведенные данные показывают, что активированная форма гуминовых кислот представляет интерес как для микроконденсаторных, так и для полупроводниковых технологий.

Для достоверности полученных данных было проведено измерение диэлектрической проницаемости стандартного вещества — титаната бария BaTiO₃ (см. табл. 6).

Как видно из табл. 6, значение диэлектрической проницаемости стандартного образца $BaTiO_3$ при 293 K, равное 1296, согласуется с его рекомендованной величиной 1400 ± 250 [26–28]. Кроме того, наблюдаемое повышение электропроводности $BaTiO_3$ при 110°C (383 K) также согласуется с литературными данными [26–28] при 393 K в связи с его переходом из перовскитовой кубической фазы *Pm3m* в тетрагональную (полярную) сегнетоэлектрическую фазу с пространственной группой *P4mm*.

Таким образом, активированная форма гуминовых кислот на основе Майкубенского угля представляет интерес для конденсаторов: при 293 К имеет значение $\varepsilon = 1\,891741$, превышающее эталонное BaTiO₃ в 1460 раз, а при 483 К ($\varepsilon =$

Таблица 4. Зависимость электросопротивления (*R*), электроемкости (*C*) и диэлектрической проницаемости (ε) от температуры (гуминовые кислоты)

				<i>'</i>	
<i>T</i> , K	С, нФ	<i>R</i> , Ом	ε	lgɛ	lg <i>R</i>
293	0.20519	3128000	1772	3.25	6.50
303	0.36673	2341000	3167	3.50	6.37
313	0.76441	1302000	6602	3.82	6.11
323	2.5954	778200	22415	4.35	5.89
333	13.328	302900	115107	5.06	5.48
343	50.722	134300	438061	5.64	5.13
353	167.06	63770	1442816	6.16	4.80
363	587.11	28410	5070582	6.71	4.45
373	3599.8	7772	31089712	7.49	3.89
383	2079.8	13410	17962215	7.25	4.13
393	1440.4	15560	12440030	7.09	4.19
403	1206.1	16950	10416496	7.02	4.23
413	908.97	19840	7850329	6.89	4.30
423	307.3	40750	2653999	6.42	4.61
433	61.393	107000	530221	5.72	5.03
443	20.035	208100	173032	5.24	5.32
453	4.0597	519800	35062	4.54	5.72
463	2.4405	681800	21077	4.32	5.83
473	2.2723	698 500	19625	4.29	5.84
483	3.1184	565200	26932	4.43	5.75

= 433570118) превышающее эталонное BaTiO₃ в 200 820 раз.

Следует отметить, что диэлектрическая проницаемость приведенного относительно дешевого углеродного материала может конкурировать с аналогичной характеристикой нового $La_{15/8}Sr_{1/8}NiO_4$, обладающего гигантским значением диэлектрической проницаемости — 10^5 — 10^6 [29]. Для запоминающих устройств, основанных на емкостных компонентах (конденсаторах), при уменьшении размеров конденсатора величина его емкости должна оставаться прежней [30].

Таким образом, в результате высокотемпературных процессов карбонизации (в инертной среде) и активации (водяным паром) ГК на основе угля бассейна "Майкубен" (Казахстан) получена активированная форма гуминовых кислот, обладающая более развитой и упорядоченной поверхностной структурой и высокими адсорбционными свойствами. В связи с этим активированную форму гуминовых кислот на основе угля бассейна "Майкубен" можно рассматривать в качестве адсорбента для очистки воды от тяжелых металлов, а также в качестве емкостного материала при производстве микроконденсаторов и полупроводников.

Таблица 5. Зависимость электросопротивления (R), элек-
троемкости (С) и диэлектрической проницаемости (є) от
температуры (активированные гуминовые кислоты)

<i>Т</i> , К	С, нФ	<i>R</i> , Ом	3	lgɛ	lg <i>R</i>
293	219.04	10750	1891741	6.28	4.03
303	241.82	9039	2088481	6.32	3.96
313	322.13	7147	2782079	6.44	3.85
323	435.42	5578	3760510	6.58	3.75
333	814.99	3399	7038670	6.85	3.53
343	1122.7	2705	9696211	6.99	3.43
353	1603.1	2229	13845191	7.14	3.35
363	1780.3	1978	15375580	7.19	3.30
373	1778.6	2356	15360898	7.19	3.37
383	1596.1	2411	13784735	7.14	3.38
393	1557.8	2356	13453957	7.13	3.37
403	1668	2214	14405700	7.16	3.35
413	1818.9	2040	15708950	7.20	3.31
423	2245.5	1890	19393285	7.29	3.28
433	2891.4	1803	24971607	7.40	3.26
443	4566.8	1744	39441218	7.60	3.24
453	8089.5	1565	69865055	7.84	3.19
463	17963	1285	155137644	8.19	3.11
473	30899	1063	266859549	8.43	3.03
483	50202	852.1	433 570 118	8.64	2.93

Таблица 6. Зависимость электросопротивления (R), электроемкости (C) и диэлектрической проницаемости (ϵ) от температуры (титанат бария — BaTiO₃)

<i>Т</i> , К	С, нФ	<i>R</i> , Ом	3	lgɛ	lg <i>R</i>
293	0.27278	13400	1296	3.11	4.13
303	0.27426	13270	1303	3.11	4.12
313	0.27715	12910	1316	3.12	4.11
323	0.28125	12560	1336	3.13	4.10
333	0.28772	11890	1367	3.14	4.08
343	0.29313	11210	1392	3.14	4.05
353	0.29916	10290	1421	3.15	4.01
363	0.30751	9383	1461	3.16	3.97
373	0.31202	8831	1482	3.17	3.95
383	0.31702	9061	1506	3.18	3.96
393	0.32255	8814	1532	3.19	3.95
403	0.32967	7881	1566	3.19	3.90
413	0.3423	7098	1626	3.21	3.85
423	0.35119	6902	1668	3.22	3.84
433	0.36668	6153	1742	3.24	3.79
443	0.38018	6317	1806	3.26	3.80
453	0.39802	6010	1891	3.28	3.78
463	0.4169	5584	1980	3.30	3.75
473	0.43147	5149	2050	3.31	3.71
483	0.45456	4656	2159	3.33	3.67

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках научно-технической программы № ИРН BR05236359 "Научно-технологическое обеспечение переработки углей и производство продуктов углехимии высокого передела" и проекта № ИРН AP05130707 по теме "Разработка технологии и создание производства углеродных нанокомпозитных материалов на основе минерального отечественного сырья для очистки газовой фазы и сточных вод", финансируемых Комитетом науки MOH PK.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ермагамбет Б.Т., Касенов Б.К., Казанкапова М.К., Нургалиев Н.У., Касенова Ж.М., Куанышбеков Е.Е., Наурызбаева А.Т. // ХТТ. 2020. № 3. С. 61. [Solid Fuel Chemistry, 2020, vol. 54, no. 3, p. 180–185. https://doi.org/10.3103/S0361521920030039] https://doi.org/10.31857/S0023117720030032
- 2. Азизов Т.М., Власов В.И. Бассейны и месторождения углей и горючих сланцев Казахстана. Справочник, Алматы: Инст. геол. наук им. К.И. Сатпаева, 1997. С. 112.
- 3. Ermagambet B.T., Kasenov B.K., Kasenova Sh.B., Bekturganov N.S., Nabiev M.A. // XTT. 2015. № 6. C. 6. [Solid Fuel Chemistry, 2015, vol. 49, no. 6, p. 343. https://doi.org/10.3103/S0361521915060038] https://doi.org/10.7868/S002311771506003
- 4. Хабибуллин Е.Р., Исмагилов З.Р., Журавлева Н.В., Созинов С.А., Лырщиков С.Ю., Фурега Р.И., Хицова Л.М., Потокина Р.Р. // Комплексное исследование каменных углей Кузбасса ряда метаморфизма. VII Междунар. Российско-Казахстанский симп. "Углехимия и экология Кузбасса", Кемерево: ФИЦ УУХ СО РАН, 2018. С. 99.
- Ермагамбет Б.Т., Касенов Б.К., Нургалиев Н.У., Касенова Ж.М., Набиев М.А., Шалабаев Ж.А. Технологии глубокой переработки углей Казахстана. Монография: Dusseldorf, Germany: LAP LAMBERT Acad. Publ., 2017. 158 с.
- Ермагамбет Б.Т., Касенов Б.К., Нургалиев Н.У., Набиев М.А., Касенова Ж.М., Казанкапова М.К., Зикирина А.М. // ХТТ. 2018. № 1. С. 68. [Solid Fuel Chemistry, 2018, vol. 52, no. 2, p. 11. https://doi.org/10.3103/S0361521918020039] https://doi.org/10.7868/S0023117718010127
- Ермагамбет Б.Т., Касенов Б.К., Нургалиев Н.У., Казанкапова М.К., Касенова Ж.М., Зикирина А.М. // XTT. 2018. № 5. С. 27. [Solid Fuel Chemistry, 2018, vol. 52, no. 5, p. 302. https://doi.org/10.3103/S036152191805004X] https://doi.org/10.1134/S0023117718050043
- 8. *Попов А.И.* Гуминовые вещества: свойства, строение, образование. Под ред. *Е.И. Ермакова*. СПб.: СПГУ, 2004. 248 с.
- Sanchez A.R., Elguezabal A.A., Saenz L.T. // Carbon. 2001. V. 39. P. 1367.
- 10. *Farberova E.A., Tingaeva E.A., Maksimov A.S.* // Rus. J. Appl. Chem. 2015. V. 88. № 4. P. 579.
- 11. Уваров Н.Ф. // Мезапористые углеродные материалы и их применение в емкостных электрохимиче-

ских устройствах. V Международные Фарабиевские чтения. 2018. С. 3.

- 12. Simenyuk G.Y., Zakharov Y.A., Puzynin A.V., Vladimirov A.A., Ivanova N.V., Pugachev V.M., Dodonov V.G., Barnakov C.N., Manina T.S., Ismagilov Z.R. // Mater. and Manifactur. Proc. 2016. V. 31. № 16. P. 739.
- 13. Farberova E.A., Tingaeva E.A., Chuchalina A.D., Kobeleva A.R., Maximov A.S. // Изв. вузов. Сер. Химия и химическая технология. 2018. Т. 61. № 3. С. 51. [Bulletin of universities Series Chemistry and chemical technology. 2018. Vol. 61. No. 3. P. 51. https://doi.org/10.6060/tcct.20186103.5612] https://doi.org/10.6060/tcct.20186103.5612
- Сименюк Г.Ю., Манина Т.С., Пузынин А.В., Барнаков Ч.Н., Захаров Ю.А., Козлов А.П., Исмагилов З.Р. // Химия в интересах устойчивого развития. 2015. Т. 23. № 2. С. 157. [Chemistry for Sustainable Development. 2015. Vol. 23. No. 2. Р. 157. https://doi.org/10.15372/KhUR20150209] https://doi.org/10.15372/KhUR20150209
- 15. Ермагамбет Б.Т., Казанкапова М.К., Канагатов К.Г., Наурызбаева А.Т., Танабаева А.К. // Наука, техника и образование. 2018. № 9 (50). С. 16. [Science, technology and education. 2018. No. 9 (50). Р. 16]
- Yu Z., Sun S., Huang M. // Intern. J. Electrochem. Sci. 2016. V. 11. P. 3643. https://doi.org/10.20964/2016.06.94
- Захаров Ю.А., Сименюк Г.Ю., Пугачев В.М., Додонов В.Г., Павелко Н.В., Манина Т.С., Барнаков Ч.Н. // Российские нанотехнологии. 2015. Т. 10. № 5-6. С. 51. [Russian nanotechnology. 2015. Т. 10. № 5-6. Р. 51]
- Барнаков Ч.Н., Самаров А.В., Шикина Н.В., Якубик Д.Г. // Химия в интересах устойчивого развития. 2015. Т. 23. № 2. С. 219. [Chemistry for Sustainable Development. 2015. Т. 23. No. 2. Р. 219. DOI: 10.15372 / KhUR20150217] https://doi.org/10.15372/KhUR20150217
- Сименюк Г.Ю., Захаров Ю.А., Нетребенко П.А., Троснянская Т.О., Пугачев В.М. Додонов В.Г., Ларичев Т.А., Илькевич Л.В., Нечаева Т.С., Исмагилов З.Р. // Нанокомпозитные электродные материалы супер-

конденсаторов. VII Междун. Российско-Казахстанский симп. "Углехимия и экология Кузбасса", Кемерево: ФИЦ УУХ СО РАН, 2018. С. 89.

- Вервикишко Д.Е., Янилкин И.В., Добеле Г.В., Вольпертс А., Атаманюк И.Н., Саметов А.А, Школьников Е.И. // Теплофизика высоких температур. 2015. Т. 53. Вып. 5. С. 799. [Thermal physics of high temperatures. 2015. Vol. 53. № 5. Р. 799–806. https://doi.org/10.7868 / S0040364415050270] https://doi.org/10.7868/S0040364415050270
- Мухин В.М., Учанов П.В., Сотникова Н.И. // Сорбционные и хроматографические процессы. 2013. Т. 13. № 1. С. 83. [Sorption and chromatographic processes. 2013. V. 13. No. 1. Р. 83]
- 22. Вязова Н.Г., Крюкова В.Н., Латышев В.П. // XTT. 1999. № 6. С. 47. [Solid Fuel Chemistry. 1999. No. 6. P. 47]
- 23. Варшал Г.М., Кощеева И.Я., Велюханова Т.К., Чхетия Д.Н., Тютюнник О.А., Гриневская Ж.М. // Геохимия. 1996. № 11. С. 1107. [Geochemistry. 1996. No. 11. P. 1107–1112]
- Liu J.F., Zhao Z.S., Jiang G.B. // Environ. Sci. Technol. 2008. № 42. P. 694. https://doi.org/10.1021/es800924c
- 25. Юрищева А.А. Гибридные функциональные наноматериалы на основе магнетита и гуминовых кислот. Дис. ... канд. техн. наук. М.: РХТУ имени Д.И. Менделеева, 2013. 140 с.
- 26. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 248 с.
- Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнетои антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- 28. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
- 29. *Ерин Ю.//* Химия и химики. 2009. № 1. 16 с. [Chemistry and Chemists. 2009. No. 1. P. 16]
- Спиридонов В.П., Лопаткин А.А. Математическая обработка экспериментальных данных. М.: МГУ, 1970. 221 с.