УДК 665.642:66.092-977

ВЛИЯНИЕ ДИКУМИЛПЕРОКСИДА НА ИЗМЕНЕНИЕ СТРУКТУРЫ МОЛЕКУЛ АСФАЛЬТЕНОВ В ПРОЦЕССЕ КРЕКИНГА ВЫСОКОСЕРНИСТЫХ ГУДРОНОВ

© 2022 г. А. В. Гончаров^{1,*}, Е. Б. Кривцов^{1,**}, С. С. Юрлов^{2,***}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия ² Национальный исследовательский Томский государственный университет, 634050 Томск, Россия

> *e-mail: mad111-2011@mail.ru **e-mail: john@ipc.tsc.ru ***e-mail: stasyurlov0960@mail.ru Поступила в редакцию 19.11.2021 г. После доработки 24.11.2021 г. Принята к публикации 08.12.2021 г.

Представлены результаты исследования асфальтенов, выделенных из жидких продуктов крекинга (при температуре 500°С) гудронов с высоким содержанием серы, в присутствии добавки дикумилпероксида. Показаны характерные изменения состава продуктов крекинга в зависимости от количества добавки. С использованием данных ¹Н-ЯМР-спектроскопии, элементного состава и результатов измерения молекулярной массы установлены изменения структурно-групповых параметров асфальтенов гудронов в процессе крекинга. Молекулы асфальтенов становятся более конденсированными, характеризуются повышенным содержанием ароматических фрагментов, уменьшением количества нафтеновых и длины алифатических структур.

Ключевые слова: крекинг, гудрон, асфальтены, структурно-групповые параметры, сернистые соединения, тиофен

DOI: 10.31857/S0023117722020025

введение

Стремительный рост энергопотребления, высокий спрос на моторное топливо (бензиновая и дизельная фракция), снижение запасов "легких" нефтей, тенденция утяжеления добываемого и перерабатываемого сырья – все это приводит к необходимости вовлечения в нефтепереработку "нетрадиционных" источников сырья, таких как гудрон, битум, сланцы [1]. Россия занимает третье место после Канады и Венесуэлы по объемам тяжелых углеводородных ресурсов, доля нефтяных остатков достигает 25-40 мас. % от общего объема переработки сырой нефти и это количество постепенно увеличивается. Переработка такого сырья позволит увеличить эффективность нефтепереработки с возможностью получения дополнительного количества дистиллятных фракций. Однако переработка гудрона осложнена его физико-химическими свойствами, а также высокой степенью ароматичности его компонентов, низким содержанием парафиновых и нафтеновых углеводородов. Серьезной проблемой, связанной с переработкой гудронов, является высокое содержание (до 60-70 мас. %) в них высокомолекулярных компонентов - смол и асфальтенов, в составе которых присутствуют серосодержащие структурные фрагменты, попадающие в процессе переработки в состав получаемых дистиллятных фракций. Асфальтены являются причиной образования большого количества твердого коксоподобного продукта, дезактивации применяемых в процессах переработки катализаторов, а также снижения выхода дистиллятных фракций. Значительное количество исследований связано с изучением химического состава и строения молекул нефтяных асфальтенов. Однако из-за того, что асфальтены чрезвычайно сложные по своему составу и свойствам, до настоящего времени эта проблема полностью не решена [2, 3]. Таким образом, изучение свойств асфальтенов, а также установление основных маршрутов их преобразований в термических процессах. в частности превращения серосодержащих фрагментов молекул, остаются актуальной задачей. Кроме того, для увеличения глубины переработки гудронов необходимо развитие методов, позволяющих воздействовать на стабильность и реакционную способность молекул асфальтенов в процессе крекинга. Один из таких методов - это крекинг в присут-

Οδιεντ	Содержание S,	H/C	Веществ	енный сос	тав, мас. %	Фракционный состав, мас. %		
Obberri	мас. %	11/0	масла	смолы	асфальтены	200–360 отс.	>360	
Омский	1.80	1.54	65.8	33.1	1.1	отс.	100.0	
Новокуйбышевский	3.04	1.56	60.7	33.6	5.7	1.4	98.6	

Таблица 1. Физико-химические характеристики гудронов

ствии различных радикал-образующих добавок (например, нефтерастворимых органических пероксидов), в процессе которого образуются свободные радикалы, позволяющие облегчить инициирование процесса, активируя протекание реакций крекинга, как углеводородов, так и высокомолекулярных гетероатомных компонентов [4], что позволит увеличить глубину переработки тяжелого углеводородного сырья и повысить выходы дистиллятных фракций.

Цель работы заключалась в исследовании влияния дикумилпероксида на превращения асфальтенов высокосернистого гудрона в процессе термического крекинга.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектами исследования были гудроны Омского НПЗ и Новокуйбышевского НПЗ. Гудроны содержат в своем составе значительные количества высокомолекулярных компонентов: смол до 33.6 мас. %, а асфальтенов до 5.7 мас. %, что в совокупности с высоким содержанием серы и низким отношением H/C характеризует их как неподходящее сырье для получения дистиллятных топлив (бензин, дизельное топливо). Основные физико-химические характеристики гудронов представлены в табл. 1.

Термический крекинг гудрона. Термическую обработку гудронов проводили в автоклавах объемом 12 см³, масса навески образца составляла 7 г. На основании проведенных ранее исследований [5, 6] были подобраны температура (500°С) и продолжительность (гудрон Омского НПЗ – 45 мин, гудрон Новокуйбышевского НПЗ – 30 мин) крекинга. При проведении термической обработки объектов исследования фиксировалась масса реактора без образца и масса реактора с навеской гудрона, подготовленного к крекингу. После проведения термической обработки гудрона выход газообразных продуктов определяли по потере массы реактора с образцом после дегазации продуктов крекинга. Жидкие продукты крекинга сливали, реактор промывали хлороформом. Полученная разность масс реактора до крекинга и после составляла массу кокса.

В качестве радикал-образующей добавки применялся дикумилпероксид (ДКП) (*Acros Organics*, *CAS number* 80-43-3, концентрация 99 мас. %). Количество добавки составляло от 0.1 до 2.5 мас. % от массы навески объекта исследования.

Определение содержания серы. Определение содержания серы в исследуемых образцах проводили с помощью рентгенофлуоресцентного энергодисперсионного анализатора серы в нефтях и нефтепродуктах "Спектроскан *S*" согласно ГОСТ Р 51947—2002. Диапазон измерений массовой доли серы составляет от 0.0002 до 5 мас. %.

Определение состава и количественного содержания сернистых соединений. Анализ сернистых соединений жидких продуктов крекинга гудронов проводили методом газожидкостной хроматографии (ГЖХ) с помощью хроматографа "Кристалл-2000М" с пламенно-фотометрическим детектором (ПФД), линейное повышение температуры составляло от 50 до 290°С, скорость нагрева колонки 4°С/мин. Длина капиллярной колонки составляла 30 м, внутренний диаметр 0.25 мм; толщина неподвижной фазы CR-5 2.5 мкм. Качественный состав сернистых соединений определяли путем сравнения времен удерживания анализируемых компонентов с модельными серосодержащими соединениями (тиофен, бензотиофен, дибензотиофен), а также с привлечением данных из работ [7, 8].

Определение вещественного состава. Вещественный состав объекта исследования и продуктов крекинга, крекинга в присутствии добавки дикумилпероксида определяли по стандартной методике. Асфальтены осаждались "холодным" методом Гольде. Содержание смол в полученных мальтенах определяли адсорбционным способом, для чего анализируемый продукт помещали на активированный силикагель АСК в экстрактор Сокслета, затем последовательным элюированием смывали углеводородные компоненты (масла) *н*-гексаном и смолы — этанол-бензольной смесью в соотношении 1:1.

Определение фракционного состава. Фракционный состав жидких продуктов крекинга определяли методом ГЖХ на хроматографе "Кристалл-2000М", оснащенном пламенно-ионизационным детектором (ПИД). Длина кварцевой капиллярной колонки 25 м × 0.22 мм, стационарная фаза SE-54; газ-носитель – гелий. Линейное повышение температуры составляло от 80 до 290°С, скорость нагрева термостата колонки – 15°С/мин. Идентификацию углеводородов и разделение отрезков хроматограммы на бензиновую (н.к.-200)

ГОНЧАРОВ и др.

Условие	Содержание, мас. %										
	газ	жидкость/S _{общ}	кокс	масла	смолы	асфальтены	н.к200°С	200-360°C			
Исходный	0.0	100.0/1.80	0.0	64.9	34.0	1.1	0.0	0.0			
Крекинг	11.8	77.1/1.09	11.1	59.1	15.1	2.9	24.6	31.8			
+ 0.1% ДКП	15.2	78.9/0.93	5.9	54.7	19.7	4.5	27.8	34.5			
+ 0.5% ДКП	8.9	86.1/0.73	5.0	62.4	18.0	5.7	23.9	34.9			
+ 1.0% ДКП	8.6	85.7/0.66	5.7	63.1	17.2	5.4	25.2	33.9			
+ 1.5% ДКП	8.2	86.6/0.69	5.2	63.6	16.5	6.5	24.9	35.0			
+ 2.5% ДКП	7.5	87.8/0.69	4.7	64.2	16.0	7.5	24.7	33.2			

Таблица 2. Состав продуктов крекинга гудрона Омского НПЗ с добавкой дикумилпероксида (500°С, 45 мин)

Таблица 3. Состав продуктов крекинга гудрона Новокуйбышевского НПЗ с добавкой дикумилпероксида (500°С, 30 мин)

Условие	Содержание, мас. %										
	газ	жидкость/S _{общ}	кокс	масла	смолы	асфальтены	н.к200°С	200-360°C			
Исходный	0.0	100.0/3.04	0.0	60.7	33.6	5.7	0.0	1.4			
Крекинг	8.3	81.3/2.95	10.4	54.7	16.1	10.5	9.3	18.1			
+ 0.1% ДКП	16.6	69.3/1.69	14.1	56.5	11.5	1.3	28.7	24.2			
+ 0.5% ДКП	11.2	75.2/1.77	13.6	61.7	11.6	1.9	20.3	28.5			
+ 1.0% ДКП	10.0	77.6/2.09	12.4	63.6	11.7	2.3	19.8	33.5			
+ 1.5% ДКП	8.6	83.9/2.18	7.5	65.2	13.6	5.1	20.6	34.6			
+ 2.5% ДКП	7.9	85.3/1.17	6.8	66.8	14.3	4.2	21.7	33.3			

и дизельную (200–360°С) фракцию проводили по временам удерживания *н*-алканов (гексан и гексадекан), пристана и фитана.

Структурно-групповой анализ смолисто-асфальтеновых компонентов. Структурно-групповой анализ (СГА) асфальтенов из исходного гудрона и жидких продуктов его крекинга проводили по методике, разработанной в ИХН СО РАН и основанной на совместном использовании результатов определения элементного состава, средней молекулярной массы и данных спектроскопии протонного магнитного резонанса. Содержание С, Н, N, S и О устанавливали с помощью элементного анализатора VarioELCube (Германия). Молекулярную массу асфальтенов измеряли методом криоскопии в нафталине на приборе "Крион", разработанном в ИХН СО РАН. Спектры ¹Н-ЯМР регистрировали с помощью фурьеспектрометра AVANCEIIIHD (400 МГц) фирмы Bruker (Германия). В качестве растворителя применялся дейтерохлороформ. внутренний стандарт - гексаметилдисилоксан, концентрации исследуемых веществ 1%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работах [5, 6] были установлены оптимальные условия крекинга гудронов Новокуйбышевского НПЗ и Омского НПЗ (табл. 2 и 3). Оптимальная температура крекинга для объектов исследования 500°С, продолжительность процесса для гудрона Новокуйбышевского НПЗ – 30 мин, для гудрона Омского НПЗ – 45 мин. Было установлено, что при термообработке гудронов происходит деструкция высокомолекулярных компонентов с увеличением выходов газообразных и твердых продуктов крекинга (кокс). Содержание асфальтенов в составе жидких продуктов в процессе крекинга увеличивается в 2-2.5 раза, что объясняется высокими скоростями реакций конденсации по маршруту смолы \rightarrow асфальтены \rightarrow → кокс. Анализ фракционного состава жидких продуктов крекинга гудронов показал, что при термической обработке образуется преимущественно фракция 200-360°С, вероятно, вследствие деструкции смол с образованием низкомолекулярных продуктов, температуры кипения которых соответствуют керосино-газойлевым фракциям.

Результаты определения состава продуктов крекинга гудрона Омского НПЗ в присутствии добавки дикумилпероксида представлены в табл. 2. Применение ДКП в количестве 0.1 мас. % приводит к интенсификации реакции деструкции смолисто-асфальтеновых компонентов: доля высокомолекулярных компонентов в продуктах кре-

	Содержание, мас. %								
Соединение	исход- ный	крекинг	+ 0.1% ДКП	+ 0.5% ДКП	+ 1.0% ДКП	+ 1.5% ДКП	+ 2.5% ДКП		
Гудрон Омского НПЗ (500°С, 45 мин)									
Σ гомологов тиофена	—	0.13	0.92	0.90	1.02	0.93	0.93		
∑ гомологов бензотиофена	—	3.06	3.02	1.63	1.60	1.57	1.61		
∑ гомологов дибензотиофена	-	0.26	0.42	0.51	0.19	0.38	0.43		
Гудрон Новокуйбышевского НПЗ (500°С, 30 мин)									
<u>Σ</u> гомологов тиофена	—	0.05	0.99	1.76	2.32	2.70	0.60		
∑ гомологов бензотиофена	-	10.99	6.73	4.70	6.71	6.35	3.41		
∑ гомологов дибензотиофена	-	0.24	0.8	1.51	0.91	1.08	1.33		

Таблица 4. Содержание различных типов сернистых соединений в жидких продуктах крекинга гудронов

кинга гудрона снижается практически в 2 раза, что приводит к образованию компонентов масел. Увеличение количества добавки приводит к замедлению реакции конденсации – смол в асфальтены и далее асфальтенов в кокс, также замедляются реакции образования газа из смол и масел. Вероятно, это объясняется взаимодействием продуктов термического распада высокомолекулярных компонентов с радикалами, генерированными из ДКП, что значительно снижает возможности протекания реакций конденсации компонентов гудрона [9].

Анализ данных фракционного состава показал, что применение добавки ДКП даже в незначительных количествах (0.1-0.5 мас. %) позволяет увеличить выходы фракции н.к.-360°С, вследствие образования компонентов дизельной фракции, в результате чего увеличивается суммарное содержание дистиллятных фракций в жидких продуктах крекинга гудронов. Увеличение количества добавки до 1 мас. % позволяет дополнительно увеличить содержание фракции н.к.-200°С, вследствие замедления реакций крекинга компонентов новообразованной бензиновой фракции, что способствует увеличению содержания дистиллятов в составе жидких продуктах крекинга гудрона. Также в этих условиях достигается максимальное снижение содержания серы в жидких продуктах крекинга, вероятно, за счет ускорения реакций конденсации в кокс (содержание серы снижается на 63% относительно исходного количества).

Состав продуктов крекинга гудрона Новокуйбышевского НПЗ в оптимальных условиях в присутствии добавки дикумилпероксида представлен в табл. 3. При введении 0.1 и 0.5 мас. % дикумилпероксида в реакционную среду увеличивается выход масел, снижается содержание смол и асфальтенов (по сравнению с составом продуктов термокрекинга) в жидких продуктах крекинга гудрона. Интенсифицируются реакции деструкции смолисто-асфальтеновых компонентов: доля смол снижается до 11.5 мас. % в продуктах крекинга, доля асфальтенов – до 1.3 мас. %. Увеличение количества добавки ДКП приводит к замедлению как реакций конденсации смол в асфальтены и далее в кокс, так и крекинга компонентов фракции н.к.-200°С в газообразные продукты.

На основании хроматографических данных по содержанию гомологов тиофена (Т), бензотиофена (БТ) и дибензотиофена (ДБТ) в маслах продуктов крекинга гудронов Омского и Новокуйбышевского (табл. 4) НПЗ был произведен расчет группового состава сернистых соединений. В составе исходных гудронов эти соединения отсутствуют. Согласно полученным данным, в процессе крекинга гудрона Омского НПЗ образуется широкий набор производных Т, БТ и ДБТ, при этом в маслах жидких продуктов крекинга преобладают гомологи БТ. Применение добавки дикумилпероксида приводит к увеличению содержания гомологов тиофена в составе масел, вероятно, за счет попадания серосодержащих фрагментов молекул смол и асфальтенов в состав масел. Увеличение добавки ДКП до 1 мас. % приводит к снижению содержания гомологов БТ и ДБТ практически в 2 раза, вероятно, за счет изменения маршрутов трансформации серосодержащих структурных асфальтенов, приводящего к ускорению их конденсации в твердые продукты крекинга.

Крекинг гудрона Новокуйбышевского НПЗ приводит к образованию голоядерных Т и БТ, ДБТ и их производных, по-видимому, за счет деструкции высокомолекулярных серосодержащих компонентов. В продуктах крекинга гудрона в присутствии добавки дикумилпероксида (0.1– 1.5 мас. %) содержание гомологов Т и ДБТ выше, чем в продуктах термического крекинга, что, возможно, обусловлено интенсификацией реакций деструкции серосодержащих фрагментов молекул асфальтенов. Увеличение количества добавки до 2.5 мас. % приводит к снижению содержания тиофена, бензотиофена и их гомологов в 2 и 4 раза соответственно, что, вероятно, обусловлено их конденсацией в побочные продукты крекинга.

Известно [10], что асфальтены являются одним из основных источников низкомолекулярных сернистых соединений в процессе крекинга тяжелого углеводородного сырья. Анализ сернистых соединений жидких продуктов крекинга показал, что применение дикумилпероксида приводит к снижению содержания серы в их составе, вероятно, вследствие конденсации серосодержащих фрагментов молекул асфальтенов и смол в твердые продукты крекинга. При добавлении ДКП содержание сернистых соединений в жидких продуктах крекинга снижается более, чем на 60 отн. % (по сравнению с исходным гудроном).

Таким образом, из совокупности данных о выходах газа и кокса, содержания смол и асфальтенов, дистиллятных фракций, а также содержания серы в составе жидких продуктов крекинга оптимальным количеством добавки дикумилпероксида для гудрона Омского НПЗ является 1 мас. %, для гудрона Новокуйбышевского НПЗ — 1.5 мас. %.

Для понимания влияния ДКП на трансформацию структуры молекул асфальтенов, в частности маршруты превращений их серосодержащих фрагментов, был проведен их структурно-групповой анализ, согласно которому усредненная молекула асфальтенов гудрона Омского НПЗ (табл. 5) имеет молекулярную массу 2142 а.е.м., число блоков 4.34, количество колец - 47.45 (16.40 ароматических и 31.05 нафтеновых). Низкое отношение Н/С, равное 0.93, является следствием высокого содержания колец и значительной их замещенности (σ_a). При термообработке гудрона в оптимальных условиях (500°C, 45 мин) молекулярная масса усредненной молекулы асфальтенов снижается практически в 4 раза. Число блоков в молекуле уменьшается с 4 до 2 за счет уменьшения общего числа колец до 14.22 (ароматических до 4.98; нафтеновых до 9.24). Количество атомов углерода в алифатических фрагментах ($C_{\rm n}$) снижается с 5.31 до 0.48, за счет чего отношение Н/С также снижается до 0.78.

Молекулярная масса усредненной молекулы асфальтенов продуктов крекинга гудрона в присутствии добавки дикумилпероксида (0.1 мас. %) снижается до 1557 а.е.м. Уменьшение содержания атомов серы в 3 раза в совокупности со снижением числа ароматических колец, вероятно, объясняется отрывом структурных блоков молекул асфальтенов, имеющих в основе дибензотиофеновый фрагмент, с образованием накапливающихся в составе масел гомологов тиофена и дибензотиофена. Количество атомов углерода в алифатических фрагментах (C_n) снижается с 5.31 до 2.19, за счет чего отношение H/C также уменьшается до 0.77. Общее число колец изменилось с 47.45 до 34.15, преимущественно за счет уменьшения количества нафтеновых колец с 31.05 до 18.80. Крекинг гудрона в присутствии оптимального количества добавки ДКП (1 мас. %) не приводит к значительному уменьшению молекулярной массы усредненной молекулы асфальтенов. Содержание серы снижается с 2.74 до 0.97, что свидетельствует о деструкции серосодержащих структурных фрагментов асфальтенов, по-видимому, с образованием гомологов тиофена, которые попадают в состав масел, а также конденсации серосодержащих соединений в кокс. Дальнейшее увеличение количества добавки дикумилпероксида до 2.5 мас. % приводит к снижению молекулярной массы асфальтенов более чем в 2.5 раза относительно исходного значения. В два раза уменьшается число структурных блоков, количество ароматических циклов в одном структурном блоке снижается в два, а нафтеновых – в три раза. Снижается содержание атомов азота в усредненной молекуле асфальтенов до 0.8 и кислорода до 2.1. Степень замещенности ароматических ядер составляет (σ_а) 0.42.

Согласно данным СГА (табл. 6), усредненная молекула асфальтенов гудрона Новокуйбышевского НПЗ имеет молекулярную массу 718 а.е.м., молекула преимущественно двухблочная, общее число колец 13.38 (5.59 – ароматические, 7.79 – нафтеновые). При термической обработке гудрона усредненная молекулярная масса асфальтенов жидких продуктов крекинга снижается с 718 до 702 а.е.м., число колец также незначительно снижается до 12.54, что может указывать на термическую стабильность молекулы асфальтенов данного гудрона. Число атомов углерода в алифатических фрагментах (С_п) снижается значительно – с 1.89 до 1.03, за счет чего отношение Н/С также снижается с 1.03 до 0.83. Количество серы и азота в составе средней молекулы снижается незначительно.

При крекинге с добавкой дикумилпероксида (0.1 мас. %) молекулярная масса усредненной молекулы асфальтенов жидких продуктов снижается с 718 до 602 а.е.м. Количество колец снижается до 12.2 за счет увеличения числа ароматических циклов, вследствие чего доля атомов углерода в ароматических циклах (f_a) повышается практически на 30 отн. %. Число атомов углерода в алифатических фрагментах (С_п) снижается с 1.89 до 1.03. Дальнейшее увеличение количества добавки (1.5 мас. %) приводит к снижению молекулярной массы асфальтенов до 492 а.е.м., f_a до 59.58%. Число атомов углерода в алифатических фрагментах молекулы снижается до 0.59. Общее число колец изменилось с 13.38 до 10.35 преимущественно за счет уменьшения количества нафтеновых структур. Снижение числа ароматических циклов в совокупности со снижением числа ато-

Показатен		Условие						
Показатель		исходный	крекинг	0.1% ДКП	1.0% ДКП	2.5% ДКП		
Молекулярная масса, а.е.м	2142	569	1557	1431	801			
Число атомов в средней молекуле: С		150.83	40.16	108.12	101.74	57.57		
	Н	139.83	31.39	83.72	83.48	46.49		
	Ν	1.99	0.61	1.72	1.65	0.85		
	S	2.74	0.41	1.02	0.97	0.54		
	0	7.07	2.12	7.40	4.50	2.13		
Число блоков в молекуле	m _a	4.34	1.89	3.83	3.70	2.44		
Кольцевой состав:	Ko	47.45	14.22	34.15	30.10	17.87		
	K _a	16.40	4.98	15.35	14.50	8.00		
	К _{нас}	31.05	9.24	18.80	15.60	9.87		
Фактор ароматичности	$f_{\rm a}$	43.24	53.23	57.48	58.61	58.92		
Число углеродных атомов разного	C _a	65.22	21.38	62.15	59.64	33.92		
типа в средней молекуле:	C _H	80.31	18.30	43.78	39.79	22.66		
	C _π	5.31	0.48	2.19	2.32	0.99		
	C_{α}	21.84	7.17	17.46	17.56	9.75		
	C_{γ}	5.31	0.48	2.19	2.32	0.99		
Степень замещенности ароматиче- ских ядер	σ_a	0.52	0.46	0.43	0.45	0.42		
H/C		0.93	0.78	0.77	0.82	0.81		

Таблица 5. Структурно-групповые параметры асфальтенов гудрона Омского НПЗ и продуктов крекинга (500°С, 45 мин)

Примечание. Величина $C_a -$ углерод в ароматических циклах; $C_H -$ углерод в нафтеновых кольцах; $C_\Pi -$ углерод в алифатических фрагментах; $C_{\Omega} -$ число атомов углерода в α -положении к ароматическому кольцу; $C_{\gamma} -$ число атомов углерода в не связанных с ароматическими ядрами терминальных метильных группах. Количество колец: $K_o -$ общее, $K_a -$ ароматических, $K_{\text{нас}} -$ насыщенных; $f_a -$ доля атомов углерода в ароматических фрагментах.

мов серы в усредненной молекуле асфальтенов, вероятно, объясняется деструкцией серосодержащих фрагментов асфальтенов с образованием гомологов тиофена.

Увеличение количества добавки дикумилпероксида до 2.5 мас. % приводит к снижению молекулярной массы усредненной молекулы асфальтенов до 480 а.е.м. Число блоков изменяется несущественно, что указывает на термическую устойчивость молекул асфальтенов. Количество колец в усредненной молекуле снижается на 3 преимущественно за счет деструкции нафтеновых циклов. Снижается содержание атомов азота в усредненной молекуле асфальтенов до 0.57 и серы до 0.7. Степень замещенности ароматических ядер составляет (σ_a) 0.44.

ЗАКЛЮЧЕНИЕ

Установлено, что крекинг гудронов приводит к образованию и накоплению производных тиофена в жидких продуктах. Набор гомологов не зависит от продолжительности процесса. Более половины от общего количества образовавшихся сернистых соединений приходится на долю производных бензотиофена. Исходя из данных структурно-группового анализа асфальтенов установлено, что при крекинге гудронов значительно снижается молекулярная масса усредненной молекулы асфальтенов. При термической обработке гудронов Омского и Новокуйбышевского с добавкой ДКП число структурных блоков в молекуле асфальтенов уменьшается, при этом молекулы становятся более сконденсированными, уменьшается число алифатических заместителей и нафтеновых колец. Снижение содержания атомов серы в совокупности с уменьшением количества ароматических колец и структурных блоков в усредненной молекуле асфальтенов свидетельствует о том, что в первую очередь происходит отрыв фрагментов, содержащих бензо- и дибензотиофеновые структуры. Отличительной особенностью крекинга гудронов в присутствии ДКП является то, что эти фрагменты не накапливаются в составе жидких продуктов крекинга, а далее

ГОНЧАРОВ и др.

Поморотот		Условие							
Показатель		исходный	крекинг	0.1% ДКП	1.5% ДКП	2.5% ДКП			
Молекулярная масса, а.е.м.	718	702	602	492	480				
Число атомов в средней молекуле: С		49.61	47.97	41.77	34.19	33.66			
	Н	50.86	40.04	34.58	28.65	28.00			
	Ν	0.89	0.49	0.62	0.54	0.57			
	S	1.11	1.00	0.76	0.69	0.7			
	0	1.47	2.68	2.07	1.43	1.11			
Число блоков в молекуле	m _a	2.03	2.25	2.02	1.80	1.76			
Кольцевой состав:	K _o	13.38	12.55	12.16	10.35	10.87			
	K _a	5.59	7.38	6.05	4.77	4.45			
	К _{нас}	7.79	5.16	6.11	5.58	6.42			
Фактор ароматичности	$f_{\rm a}$	46.48	64.96	61.22	59.58	56.82			
Число углеродных атомов разного	Ca	23.06	29.72	25.57	20.37	19.12			
типа в средней молекуле:	C _H	24.66	17.22	15.16	13.23	13.96			
	C _π	1.89	1.03	1.03	0.59	0.58			
	C_{α}	7.86	7.86	6.73	5.86	6.16			
	C_{γ}	1.88	1.03	1.03	0.59	0.58			
Степень замещенности аромати- ческих ядер	σ_{a}	0.48	0.39	0.38	0.40	0.44			
H/C		1.03	0.83	0.82	0.83	0.83			

Таблица 6. Структурно-групповые параметры асфальтенов гудрона Новокуйбышевского НПЗ и продуктов крекинга (500°С, 30 мин)

Примечание. Величина C_a – углерод в ароматических циклах; C_H – углерод в нафтеновых кольцах; C_I – углерод в алифатических фрагментах; C_α – число атомов углерода в α-положении к ароматическому кольцу; C_γ – число атомов углерода в не связанных с ароматическими ядрами терминальных метильных группах. Количество колец: K₀ – общее, K_a – ароматических, K_{нас} – насыщенных; f_a – доля атомов углерода в ароматических фрагментах.

конденсируются в кокс, в результате чего снижается содержание серы в целевых продуктах.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания Института химии нефти СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- Висалиев М.Я., Шпирт М.Я., Кадиев Х.М., Дворкин В.И., Магомадов Э.Э., Хаджиев С.Н. // ХТТ. 2012. № 2. С. 32. [Solid Fuel Chemistry, 2012, vol. 51, no. 2, p. 100. https://doi.org/10.3103/S0361521912020127].
- Boysen R.B., Schabron J.F. // EnergyFuels. 2013. V. 27. P. 4654.

https://doi.org/10.1021/ef400952b

3. *Flego C., Zannoni C.* // Energy Fuels. 2010. № 24. P. 6041.

https://doi.org/10.1021/ef100984y

 Кривцов Е.Б., Головко А.К. // ХИУР. 2019. Т. 27. № 1. C. 31. [Chemistry for Sustainable Development, 2019, vol. 27, no. 1, p. 24. https://doi.org/10.15372/CSD20190105]. https://doi.org/10.15372/KhUR20190105

- Гончаров А.В., Кривцов Е.Б. // Нефтехимия. 2021. T. 61. № 5. С. 704. [Petrol. Chemistry, 2021, vol. 61, no. 9, p. 1071. https://doi.org/10.1134/S0965544121090061] https://doi.org/10.31857/S0028242121050130
- 6. Goncharov A.V., Krivtsov E.B., Sviridenko N.N., Golovko A.K. // IOP Conf. Ser.: Mater. Sci. 2019. P.012022.
- https://doi.org/10.1088/1757-899X/597/1/012022.
 7. Safa M.A., Al-Shamary T., Al-Majren R., Bouresli R., Ma X. // Energy Fuels. 2017. V. 31. P. 7464.
- https://doi.org/10.1021/acs.energyfuels.7b01272
 8. Lorentz C., Laurenti D., Zotin J.L., Geantet C. // Catal.
- Today. 2017. V. 292. P. 26. https://doi.org/10.1016/j.cattod.2017.04.052
- 9. *Кривцов Е.Б., Гончаров А.В.* // Нефтехимия. 2020. T. 60. № 3. С. 394. [Petrol. Chemistry, 2020, vol. 60, no. 3, p. 358 https://doi.org/10.1134/ S0965544120030111]. https://doi.org/10.31857/S0028242120030119
- Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К. // Нефтехимия. 2012. Т. 52. № 4. С. 249. [Petrol. Chemistry, 2012, vol. 52. no. 4, p. 221. https://doi.org/10.1134/S0965544112020077].

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2022