УДК 547.992:621.792.3

ИЗМЕНЕНИЕ СТРУКТУРНЫХ ХАРАКТЕРИСТИК И СОСТАВА ОКИСЛЕННОГО УГЛЯ ВСЛЕДСТВИЕ МЕХАНОХИМИЧЕСКОГО ВОЗДЕЙСТВИЯ

© 2022 г. Е. В. Линкевич^{1,*}, Н. В. Юдина^{1,**}, А. В. Савельева^{1,***}, Е. М. Березина^{1,****}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия

*e-mail: maltseva2@gmail.ru **e-mail: natal@ipc.tsc.ru ***e-mail: anna@ipc.tsc.ru ***e-mail: emberz@yandex.ru Поступила в редакцию 19.11.2021 г. После доработки 24.11.2021 г. Принята к публикации 08.12.2021 г.

Показано увеличение содержания поверхностных кислых групп, сорбционной обменной емкости окисленного угля, выхода гуминовых кислот на 20–40% вследствие механического воздействия с щелочным и окислительно-щелочными реагентами. По данным ИК-спектроскопии углей и потенциометрического титрования кислых групп, отмечается снижение содержания карбоксильных групп в алифатических фрагментах за счет их максимальной сорбционной способности по отношению к ионам металлов. Гуминовые кислоты характеризуются значительным увеличением количества кислородсодержащих групп и устойчивых полисопряженных гетероароматических фрагментов в результате механохимического воздействия.

Ключевые слова: окисленный уголь, механохимическое воздействие, структурные характеристики, гуминовые кислоты, кислородсодержащие группы, состав

DOI: 10.31857/S0023117722020049

введение

В зависимости от цели применения продуктов угольной переработки выбор технологии модификации бурого угля определяется его техническими характеристиками [1]. Бурые угли широко применяются в химической промышленности, в области газификации, а также в производстве жидкого топлива, адсорбентов и гуминовых препаратов. Для извлечения неорганических ионов из водных растворов применяют активированные угли, свойства которых определяются пористой структурой и химической природой поверхности [2, 3]. Химическую природу углеродных сорбентов определяют кислотные поверхностные группы, включающие карбоксильные, лактонные, фенольные, карбонильные, пероксидные. Сорбционные и ионообменные свойства углей обусловлены, главным образом, карбоксильными группами, активность которых зависит не только от их силы, но и от взаимного расположения на поверхности угля. Гуминовые кислоты (ГК), выделенные из торфа, угля, характеризуются высоким количеством кислородсодержащих групп и участвуют во взаимодействии не только с ионами

тяжелых металлов, обеспечивая их детоксикацию, но и с макро- и микроэлементами, выполняя функцию питательного источника в жизнедеятельности растений [4, 5].

При создании углеродсодержащих сорбентов применяют технологии, позволяющие изменять количество и состав активных поверхностных групп. Для увеличения поверхностной концентрации оксигенированных функций активированного угля проводят его окисление с использованием термической обработки в присутствии реагентов щелочной и кислотной групп [6, 7]. Повышение содержания поверхностных функциональных групп в угле достигается при обработке фосфорной кислотой, диаммонийфосфатом водорода [8], жидкофазном окислении азотной кислотой или перекисью водорода [9].

Модифицирование поверхности угля может осуществляться путем механохимической активации (МА). Воздействие механических сил на уголь при определенных условиях проводит к качественным изменениям его химического состава и физико-химических свойств. При неравномер-

Таблица 1. Техническая характеристика окисленного бурого угля

Влажность, W_t^{α}	Зольность, А ^d	V^d	Элементный состав, % на <i>daf</i>				
			С	Н	N	S	0
16.8	16.7	44.3	68.1	9.0	2.2	0.7	20.0

ном силовом возмущении межатомных связей в нагруженном теле происходит изменение частоты колебаний и уменьшение энергетического барьера распада связи и появление напряжений, по которым будут развиваться структурные трансформации [10].

Цель работы — изучение структуры, состава и поверхностных свойств окисленного угля и выделенных ГК после механохимического воздействия с щелочными и окислительно-щелочными реагентами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования являлся окисленный бурый уголь месторождения Чуй-Кэнул (Монголия). Техническая характеристика угля приведена в табл. 1. Присутствие влаги в угле вызывает слипания частиц в процессе его МА. Для предотвращения слипания частиц угля добавляли абразивный материал песок.

Уголь (У1) предварительно измельчался в дезинтеграторе Nossen 8255 до размера частиц 1–3 мм (частота вращения измельчающих частей 3000 об/мин. Механоактивацию угля (У2) с песком в соотношении 3:1 проводили в мельнице планетарного типа. В присутствии реагентов и песка МА угля проводили с 8 мас. % твердого гидроксида натрия (У3) и комплекса окислительно-щелочных реагентов 7% NaOH, 3% Na₄P₂O₇, 5% Na₂CO₃ · 1.5H₂O₂ (У4) в следующем режиме: частота вращения барабанов – 1820 об/мин⁻¹ и центробежное ускорение – 600 м/с². Мелющими телами являлись керамические шары диаметром 8–10 мм.

Гуминовые кислоты (ГК1) выделяли из исходных и механоактивированных образцов углей (ГК2, ГК3, ГК4) 0.1 н. NaOH при температуре 20°С и перемешивании в течение 1 ч. Щелочную экстракцию повторяли трижды. Гуминовые кислоты в щелочном растворе осаждали 4% HCl до значения pH 2. Бурый аморфный осадок ГК отделяли центрифугированием, затем отмывали дистиллированной водой до значения pH 7 и высущивали в чашке Петри в вакуумном шкафу до постоянной массы.

Содержание кислых ионогенных групп в углях определяли методом потенциометрического титрования. Навеску ГК растворяли в 0.1 н. NaOH и добавляли насыщенный раствор NaCl для создания постоянной ионной силы раствора. Полученную смесь титровали 0.1 н. раствором HCl. Регистрацию ИК спектров ГК проводили на ИК-спектрометре *Nicolet-5700* ("*Thermo Electron*", США) в таблетках КВг в соотношении 1:300. Для идентификации органического вещества (OB) угля проведено его обеззоливание в присутствии 10% соляной кислоты при нагревании до 80°С в течение 1 ч. Полученный раствор центрифугировали, уголь промывали дистиллированной водой до рН 7 и сушили в вакуумном шкафу.

Удельную поверхность углей определяли методом БЭТ по низкотемпературной адсорбции поров азота на приборе "*Sorbtometer M*" фирмы КАТАКОН. Удельную поверхность и объем микропор устанавливали сравнительным методом. Образцы предварительно высушивали в сушильном шкафу 4 ч при 200°С, после чего перед измерением досушивались в приборе 1 ч при 200°С. Для расчета удельной поверхности использовали линейную формулу изотермы адсорбции:

$$\frac{P}{q(P_0-P)} = \frac{1}{q_m C} + \frac{C-1}{q_m C} \frac{P}{P_0},$$

где P – равновесное давление, Па; q – равновесное количество поглощенного адсорбата, мл/г; q_m – объем адсорбата, покрывающего монослоем 1 г сорбента при нормальных условиях (емкость монослоя), мл/г; C – отношение констант в первом слое и при конденсации.

Количественное определение минеральных элементов в углях и ГК проводили методом атомно-эмиссионной спектрометрии (комплекс "Гранд", НПО "Оптоэлектроника", Россия) с использованием дифракционного эмиссионного спектрометра высокого разрешения.

Термогравиметрический анализ и дифференциально-термический анализ (ДТА) образцов исходного угля и ГК 1–4 проводили на синхронном термоанализаторе *NETZSCH STA 449 F1* в интервале температур 25–800°С со скоростью подъема температуры 10 К/мин в атмосфере воздуха. Измерение массы проб регистрировали с точностью до 1 мкг, точность измерения температуры по кривой ДТА составляла 0.001 К.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структурные характеристики образцов угля рассчитывали из изотерм адсорбции азота. Методом БЭТ была проведена оценка сорбционной способности необработанного и механоактивированных углей. Определение площади удельной поверхности углей проводилось на начальном участке изотермы адсорбции при P/P_0 в диапазоне 0.05–0.25 (рис. 1). На рисунке показано, что наименьшую адсорбционную способность проявляет образец У1. Лучшие адсорбционные свойства зафиксированы для образца У2, механообработанного угля без добавок. Введение щелочного и окислительно-щелочного реагента не оказывает существенного влияния на адсорбционные показатели У3, У4.

В табл. 2 приведены значения площади удельной поверхности образцов, рассчитанных различными методами, и объем пор. Расхождение в значениях S_{va}, рассчитанных одноточечным и сравнительным методами, указывает на участие мезопор угля в адсорбционном процессе. Величина S_{ул} для У1 составляет 2.5 м²/г. После МА площадь удельной поверхности увеличивается в 2 раза. Однако добавление шелочных, окислительно-щелочных реагентов и абразивного материала в виде песка снижает S_{yg} модифицированного угля до значений S_{yg} необработанного угля. Возможные причины данного явления связаны с увеличением на его поверхности количества кислородсодержащих групп кислотного характера, которые могут прочно фиксироваться на входе и/или на стенках пор. тем самым ограничивая объем пор, доступных для адсорбции азота, либо за счет уменьшения доли угля с добавками реагентов, пропорциональной количеству адсорбционных центров [9].

На рис. 2 приведены спектры исходного и механоактивированного углей, свидетельствующие об идентичности структуры угольного вещества. В ИК-спектре углей в области 3400-2000 см⁻¹ выделяется широкая полоса поглощения (п.п.) с характерным максимумом при 3400 см⁻¹, относящимся к валентным колебаниям ОН-группы. Наличие п.п. при 1708-1700 см⁻¹ указывает на присутствие карбонильных групп. Интенсивная полоса при 1600 см⁻¹ соответствует ароматическим С=С-связям. Полоса поглошения 1380 см⁻¹ приписывается [2] либо к деформационным колебаниям С-Н-, С-ОН-связи, либо симметричным колебаниям карбоксильной группы СОО-. В данной области возможно наложение полос карбоксилата металлов. Поглощение при 1260-

 $R^2 = 0.9698$ 1.5 1.3 1.1 $q, MJ/\Gamma$ 0.9 $R^2 = 0.8752$ 0.7 $R^2 = 0.9094$ 0.5 0.3 0.10 0.15 0.20 0.05 0.25 P/P_0

Рис. 1. Изотермы адсорбции азота на угле в области парциальных давлений P/P_0 от 0.05 до 0.25 в зависимости от условий механообработки: $1 - y_1$; $2 - y_2$; $3 - y_3$; $4 - y_4$.

1245 см⁻¹ соответствует валентным колебаниям C(=O)—O-связей в составе ацетатной группы сложных эфиров, эпоксидного кольца, С—O-фенольной группы. Однако анализ кислородсодержащих фрагментов в области 1300–1000 см⁻¹ затруднен из-за наложения п.п. минеральных веществ. Поглощение в области между 1300 и 900 см⁻¹ связывают с фосфорными или фосфороуглеродистыми соединениями [2].

В диапазоне 700–900 см⁻¹ могут проявляться п.п. внеплоскостных деформационных колебаний С-Н– в замещенных бензольных кольцах. В то же время в области 750–460 см⁻¹ наблюдаются довольно сильные полосы дублета, относящиеся к колебаниям (Si–O–Si) колец из SiO₄, а при 460 и 530 см⁻¹ отмечаются п.п. валентных и деформационных колебаний тетраэдров кремнекислородного каркаса (O–Si–O и Si–O–Si).

По данным ИК-спектроскопии были рассчитаны спектральные коэффициенты, представляющие отношение значений оптической плотности полос поглощения к реперной п.п. 1600 см⁻¹ (табл. 3). Данная п.п. хорошо разрешима с высокой интенсивностью. Для расчета были выбраны

Таблица 2. Адсорбционные характеристики углей

	-				
Образец	С _{БЭТ}	Многоточечный метод БЭТ S _{уд} , м ² /г	Одноточечный метод БЭТ <i>S</i> _{уд} , м ² /г	Сравнительный метод <i>S</i> _{уд} , м ² /г	$V_{\text{пор}}, \text{см}^3/\Gamma$
У1	128.4	2.527	2.205	2.133	0.001
У2	60.7	5.119	5.189	5.107	0.002
У3	448	2.678	2.559	1.707	0.001
У4	235	2.625	2.623	2.160	0.001

Рис. 2. ИК-спектры углей У1; У4 и У4д и фрагмент песка: *1* – У1; *2* – У4; *3* – У4д.

пп., по которым может происходить связывание ионов металлов в процессе механоактивации. Из данных табл. 3 видно существенное снижение значений спектральных коэффициентов D_{1720}/D_{1600} , D_{1245}/D_{1600} для образцов У2, У3 и У4. Связывание ионов металлов с карбоксильными группами фиксируется по уменьшению интенсивности валентных колебаний 1720 и 1220–1270 см⁻¹ и увеличению п.п. карбоксилат-иона при длине 1380 см⁻¹.

Изменение значений интенсивности полос поглощения 796, 776 и 460 см⁻¹ в ИК спектрах (рис. 2) и коэффициентов D_{796}/D_{1600} , D_{773}/D_{1600} , D_{460}/D_{1600} (табл. 3) после механоактивации углей с песком и окислительно-щелочными реагентами объясняется повышением количества тетраэдров кремнекислородного каркаса (Si–O–Si и Al–O–Si). На рис. 2 приведен фрагмент ИК-спектра песка, подтверждающий данное предположение.

Для оценки влияния окислительно-щелочных реагентов при механоактивации угля проведена

Таблица 3. Спектральные коэффициенты для окисленных бурых углей

Уголь	D ₁₇₂₀ /	$D_{1380}/$	$D_{1260}/$	D ₇₉₆ /	D ₇₇₃ /	D ₄₇₀ /
	D_{1600}	D_{1600}	D_{1600}	D_{1600}	D_{1600}	D_{1600}
У1	0.64	0.65	0.73	0.16	0.17	0.16
У1д	0.97	0.63	0.89	0.23	0.25	0.17
У2	0.62	0.66	0.61	0.18	0.20	0.19
У2д	1.01	0.63	0.89	0.24	0.25	0.20
У3	0.56	0.68	0.59	0.21	0.25	0.39
У3д	1.05	0.59	0.93	0.37	0.42	0.51
У4	0.56	0.69	0.61	0.19	0.22	0.29
У4д	1.05	0.57	0.91	0.33	0.37	0.37

деминерализация образцов путем кислотной обработки. Из рис. 2 видно, что в ИК-спектре образца У4д после деминерализации возрастает интенсивность п.п. при 1710 и 1260 см⁻¹ и снижается п.п. в области 1380—1400 см⁻¹. При кислотной обработке образцов углей происходит десорбция ионов металлов в исходном и механоактивированных образцах угля, связанных с карбоксильными группами, и возрастает количество тетраэдров кремнекислородного каркаса (табл. 3). В углях У2, У3 и У4 разница значений коэффициентов D_{1720}/D_{1600} до и после их деминерализации возрастает по сравнению с У1, что свидетельствует о дополнительном связывании ионов металлов при механохимическом воздействии.

Методом потенциометрического титрования определено количество кислородсодержащих функциональных групп в углях и выделенных из них ГК. Данные приведены в пересчете на органическую массу угля. Из табл. 4 видно, что исследуемый уголь обладает высокой сорбционной обменной емкостью (СОЕ) 15.1 мг-экв/г. После механоактивации угля не происходит существенного изменения значений СОЕ. Введение щелочного реагента в процессе МА образца УЗ способствует возрастанию фенольных гидроксилов и значения СОЕ до 16.4 мг-экв/г. Наибольшая величина СОЕ зафиксирована для образца У4 с применением окислительно-щелочного реагента и соответствует 19.1 мг-экв/г. При этом наблюдается снижение доли карбоксильных групп на концах углеводородных цепочек периферической части ОВ угля.

Сорбционная обменная емкость ГК значительно выше, чем для углей. Количество ионогенных групп в составе ГКЗ и ГК4, выделенных после механоактивации угля с щелочным и окисли-

Образцы	Содержание	Количество с	COE,		
	ГК, мас. %	ArOH	ArCOOH	C _n COOH	мг-экв/г
У1		7.7 ± 0.1	4.9 ± 0.1	2.5 ± 0.1	15.1
ГК1	53.1	11.9 ± 0.1	7.9 ± 0.1	2.4 ± 0.1	22.2
У2		7.5 ± 0.1	5.4 ± 0.2	2.4 ± 0.1	15.3
ГК2	57.4	12.6 ± 0.2	7.5 ± 0.2	2.0 ± 0.1	22.1
У3		8.7 ± 0.2	5.5 ± 0.1	2.2 ± 0.1	16.4
ГК3	61.2	12.8 ± 0.2	8.0 ± 0.1	4.0 ± 0.1	24.8
У4		10.6 ± 0.2	6.9 ± 0.2	1.5 ± 0.1	19.1
ГК4	80.4	13.0 ± 0.1	8.4 ± 0.2	3.7 ± 0.1	25.1

Таблица 4. Содержание кислых ионогенных групп в углях и выделенных ГК

тельно-щелочным реагентами, возрастает в 1.5-2 раза.

Основной минеральный состав угля У1, ГК1, ГК2 и ГК3 представлен в табл. 5. Преобладающими элементами, содержащимися в угле, являются Са, Fe, Al, P, Si, в меньшем количестве присутствуют Mg и Mn. Из данных табл. 5 видно, что ГК1 содержат те же элементы, что обнаружены в угле У1, но в большем количестве присутствуют Si, Al, P. В образцах ГК2 и ГК3, выделенных из механоактивированных углей У2 и У3, значительно повышается количество кремния, алюминия, кальция за счет перераспределения элементов, содержащихся в угле и песке.

Результаты термогравиметрического анализа (ДТА) угля У1 и гуминовых кислот приведены на рис. 3 и в табл. 6. При анализе дериватограмм выявлены три или четыре стадии основного разложения ОВ угля и гуминовых кислот. Первая стадия для всех образцов, где фиксируется эндотермический эффект на кривой ДТА в интервале 20— 200°С, связана с испарением воды и выделением кислородсодержащих газов.

В интервале 200–400°С с максимумом 381°С в образце У1 протекают реакции деструкции кислородсодержащих функциональных групп и алифатических фрагментов с экзотермическим эффектом. Потеря массы угля в данной области составила 38.2 мас. %. Второй пик экзотермического эффекта с максимумом при 481°С соответствует деструкции ароматического каркаса, прочно связанного с минеральными компонентами угля. Потеря массы угля в области 400–600°С составила 54.1 мас. %.

Термогравиметрическая кривая ГК1 характеризуется двумя экзотермическими максимумами при 370 и 416°С в интервале температур 300– 500°С. Потеря массы ароматического каркаса ГК на третьей стадии составила 49.1 мас. % (табл. 6). Выход летучих веществ после термодеструкции ГК1 практически соответствует угольному образцу за исключением сниженной доли ароматического каркаса с 54.1 до 49.1 мас. %. Следовательно, после щелочной экстракции угля в ГК1 переходят все функциональные группы, периферическая часть и частично ароматический каркас.

Механохимическая активация угля оказывает непосредственное воздействие на негидрализуемый остаток угля и изменяет структурный состав выделяемых ГК. Так, из рис. 3 видно, что в образце ГК2 наблюдается смещение максимумов экзотермических эффектов с 370° С для ГК1 до 404° С и с 416 до 473° С, что подтверждает получение более устойчивой структуры ГК2. Потеря массы на третьей стадии возрастает до 57.7%.

При введении щелочного реагента при МА угля на термогравиметрической кривой ГКЗ зафиксировано три температурных максимума экзотермических эффектов: 370, 416 и 533°С. Смещение третьего пика в более высокотемпературную область может являться следствием образования более стабильных гетероциклических фрагментов молекул ГК под действием реагента и карбонизации органического вещества. Основная потеря массы 62.3 мас. % происходит на 4-й стадии деструкции OB.

Таблица 5. Содержание минеральных компонентов в золе окисленного бурого угля

Образец	Содержание, мас. %							
	Si	Al	Ca	Fe	Mg	Mn	Р	зола
У1	1.5	1.8	1.5	3.6	0.5	0.03	0.8	16.7
ГК1	3.6	2.5	0.7	0.7	0.7	0.07	7.5	1.6
ГК2	15.8	10.5	1.2	1.0	0.6	0.05	5.8	1.9
ГК3	9.3	30.0	0.6	21.8	1.2	0.03	4.1	3.2
Песок	30.0	3.40	0.078	1.90	0.25	0.078	Отс.	_

Рис. 3. ДТА-кривые окисленного бурого угля и гуминовых кислот: 1 – У1, 2 – ГК1, 3 – ГК2, 4 – ГК3, 5 – ГК4.

Окислительно-щелочной реагент в процессе МА угля оказывает аналогичное действие на структуру ГК4, как и в случае применения щелочного реагента. В процессе термодеструкции для образца ГК4 зафиксирован наибольший экзотермический эффект при температуре 560°С. Доля летучих продуктов в диапазоне 480–600°С возрастает до 65.7 мас. %, что соответствует деструкции более устойчивых гетероароматических фрагментов. Выше 600 °С разрушается органоминеральный комплекс (рис. 3).

выводы

1. Показано изменение структурных характеристик и состава окисленного бурого угля вследствие механохимического воздействия. Механоактивация угля без реагентов способствует увеличению в 2 раза удельной площади поверхности. Введение щелочных и окислительно-щелочных реагентов при механическом воздействии не изменяет величину удельной площади поверхности по сравнению с необработанным образцом, что связано с увеличением на поверхности угля количества кислородсодержащих групп кислотного характера. Результаты потенциометрического титрования подтверждают повышение сорбционной обменной емкости и содержания фенольных и карбоксильных групп в механоактивированных углях.

2. По данным ИК-спектроскопии углей, при механохимическом воздействии снижается содержание карбоксильных групп за счет связывания с ионами металлов. Подтверждением данного заключения является повышение интенсивности полос поглощения карбоксильных групп в ИК-спектрах угольных образцов после их деминерализации.

3. По результатам термогравиметрического анализа, в гуминовых кислотах и угле отмечается близость температурных интервалов разложения органического вещества. В ГК, выделенных после механохимического воздействия на уголь, высокотемпературные эффекты проявляются в интервале 480–600°С и связаны с окислением и деструкцией более устойчивых полисопряженных гетероароматических фрагментов.

Таблица 6. Потери массы образцов угля У1 и гуминовых кислот в различных температурных интервалах на стадиях разложения (по данным ДТА)

Образец	Потеря массы, %						$+\Lambda O$
	1-я стадия	2-я стадия	3-я стадия	4-я стадия	>600	β	' ^d Q
У1	7.7	38.2	54.1	—		124.3	12979
ГК1	6.5	44.4	49.1	—		121.0	14531
ГК2	6.7	35.6	57.7	—		71.9	13889
ГК3	8.1	12.5	17.1	62.3		165.2	14836
ГК4	6.8	21.3	—	65.7	6.2		

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации (НИОКТР 121031500049-8).

СПИСОК ЛИТЕРАТУРЫ

- 1. Голицын М.В., Вялов В.И., Богомолов А.Х., Пронина Н.В., Макарова Е.Ю., Митронов Д.В. // Георесурсы. 2015. Т. 61. № 2. С. 41. https://doi.org/10.18599/grs.61.2.4
- Qadeer R., Khalid N. // Separation science and Technology. 2005. V. 40. № 3. P. 845. https://doi.org/10.1081/SS-200028819
- 3. *Babu B.V., Gupta S.* // Adsorption. 2008. V. 14. № 1. P. 85.
 - https://doi.org/10.1007/s10450-007-9057-x
- 4. Юдина Н.В., Савельева А.В., Ломовский О.И. // XИВУР. 2019. Т. 29. № 4. С. 437. https://doi.org/10.15372/KhUR2019156

- 5. Юдина Н.В., Савельева А.В., Мальцева Е.В., Ломовский О.И. // ХИВУР. 2016. № 2. С. 263. https://doi.org/10.15372/KhUR20160221
- 6. *Ge Z., Zeng M., Cheng Y., Wang H., Lie X.* // Sustainability. 2019. V. 24. № 11. P. 7180. https://doi.org/10.3390/su11247180
- 7. *Wan Daud W.M.A., Houshamnd A.H.* // J. Natur. Gas Chem. 2010. V. 19. № 1. P. 267. https://doi.org/10.1016/S1003-9953(09)60066-9
- Heidarinejad Z., Dehghani M.H., Heidari M., Javedan G. // Environmental Chem. Letters. 2020. V. 18. № 2. P. 393. https://doi.org/10.1007/s10311-019-00955-0
- 9. Xiaolan Song, Hongyan Liu, Lei Cheng, Yixin Qu. // Desalination. 2010. V. 255. № 1. P. 78. https://doi.org/10.1016/j.desal.2010.01.01
- 10. Ломовский О.И., Болдырев В.В. Механохимия в решении экологических задач. Новосибирск: ГПНТБ СО РАН, 2006. 221 с.