УДК 665.64, 665.65

ИССЛЕДОВАНИЕ СОСТАВА ПРОДУКТОВ ТЕРМОЛИЗА АСФАЛЬТЕНОВ ВАКУУМНОГО ОСТАТКА УСИНСКОЙ НЕФТИ, ПОЛУЧЕННЫХ В СРЕДЕ СВЕРХКРИТИЧЕСКОЙ ВОДЫ

© 2022 г. Х. В. Нальгиева^{1,*}, М. А. Копытов^{1,**}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия

*e-mail: nalgieva@ipc.tsc.ru **e-mail: kma@ipc.tsc.ru Поступила в редакцию 19.11.2021 г. После доработки 24.11.2021 г. Принята к публикации 08.12.2021 г.

Проведен термолиз асфальтенов вакуумного остатка тяжелой нефти без воды и в присутствии сверхкритической воды (СКВ) при 450°С. Исследован состав продуктов конверсии асфальтенов. Установлено, что при проведении процесса в среде СКВ снижается выход твердых продуктов и увеличивается выход мальтенов. Выделенные из продуктов термолиза смолы, остаточные асфальтены и твердые продукты (продукты, не растворимые в хлороформе) были охарактеризованы с помощью ИК- спектрометрии.

Ключевые слова: асфальтены, смолы, крекинг, термолиз, кокс, нерастворимые продукты термолиза, сверхкритическая вода, облагораживание тяжелого нефтяного сырья, нефтяной остаток

DOI: 10.31857/S0023117722020074

введение

Введение новых экологических нормативов, а также появление концепции "зеленой химии" приводит к необходимости использовать экологически безопасные реакционные среды. Одним из таких доступных растворителей является вода в сверхкритическом состоянии.

Из-за неравномерного распределения природных запасов углеводородного сырья [1] и постоянного роста энергопотребления все более остро стоит задача вовлечения тяжелого углеводородного сырья (ТУС) в энергетику и нефтехимическое производство.

Для ТУС облагораживание сверхкритической водой (СКВ) может устранить некоторые недостатки традиционных методов переработки, такие как потребность в избыточном водороде, использование дорогостоящих катализаторов и быстрый их выход из строя из-за "отравления" и закоксовывания, что является экологически и экономически невыгодным.

В последние годы активно разрабатываются методы [2, 3], в которых используется СКВ для облагораживания ТУС. Однако на данный момент мало изучена направленность превращения отдельных компонентов тяжелого углеводородного сырья в СКВ, что затрудняет создание фундаментальных научных основ глубокой конверсии сырья в целевые продукты.

Целью данной работы являлось установление состава продуктов термолиза асфальтенов нефтяного остатка, полученных в среде СКВ.

В статье представлены результаты исследования конверсии асфальтенов вакуумного остатка тяжелой нефти в среде СКВ. Выбор объекта исследования обусловлен тем, что именно высокое содержание асфальтенов в ТУС является причиной высокого выхода побочных продуктов в традиционных термических процессах, таких как кокс и газообразные продукты. Использование СКВ может позволить снизить выход кокса и увеличить выход мальтенов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Асфальтены, используемые в работе, были осаждены добавлением избытка *н*-гексана (40 мл г⁻¹) в остаток вакуумной разгонки нефти Усинского месторождения (>360°С). После фильтрации из осажденных асфальтенов экстрагировали остатки мальтнов *н*-гексаном в аппарате Сокслета по стандартной схеме (СТО 1246-2011) и сушили при 90°С в вакуумном шкафу (*AKTAN VTSH-K64-250*) в течение 6 ч.

Параметр	Асфальтены			
	исходного мазута			
Средняя молекулярная масса, а.е.м.				
ММ	2280			
Число атомов в средней молекуле				
С	162.28			
Н	189.77			
Ν	2.08			
S	2.44			
0	2.14			
H/C	1.17			
Распределение атомов С, %				
f _a	45.0			
$f_{ m H}$	38.8			
f_{Π}	16.1			
Среднее число блоков в молекуле				
m _a	4.9			
Параметр среднего структурного блока				
K _o *	6.5			
K [*] _a	3.6			
К*	2.9			
C*	33.1			
C _a *	14.9			
С*	12.9			
C_{π}^{*}	5.3			
C^*_{α}	4.5			
C^*_{γ}	1.6			

Таблица 1. Средние структурные параметры исходных асфальтенов [4]

Характеристики исходных асфальтенов представлены в табл. 1, физико-химические показатели нефтяного остатка приводили в своей публикации [4]. Данные асфальтены содержат более 50% насыщенных структур, которые при деструкции могут образовывать дополнительное количество светлых нефтепродуктов.

Для экспериментов использовали автоклав объемом 13 см³ из коррозийно-стойкого сплава.

Соотношение асфальтены : вода выбрали равным 3:75 по массе (соответственно в автоклав загружали 0.3 г асфальтенов и 7.5 г воды). Избыток воды обусловлен тем, что асфальтены и другие полиароматические соединения плохо растворяются даже в СКВ [5]. После загрузки сырья автоклав герметизировали, продували аргоном и помещали в печь. Термолиз асфальтенов в среде СКВ проводили при температуре 450°С и продолжительности от 5 до 90 мин. Выбор температурного режима был обусловлен работами авторов, в которых было установлено, что наиболее заметно растворение тяжелого углеводородного сырья в СКВ происходит при температурах более 450°С [6, 7].

Так же для сравнения был проведен термолиз асфальтенов без добавления воды при температуре 450°С.

После термолиза автоклав извлекали из печи и охлаждали до комнатной температуры, помещая его в холодную дистиллированную воду, затем через кран производили отбор газа и выгрузку жидких и твердых продуктов термолиза из автоклава.

Для полной выгрузки продукты термолиза вымывали из автоклава хлороформом. Затем для удаления воды из продуктов термолиза в раствор добавляли ацетон и отгоняли полученную азеотропную смесь.

Схема разделения продуктов термолиза показана на рис. 1. Содержание остаточных асфальтенов, твердых продуктов, смол и масел определяли по стандартной методике, приведенной в работе [8].

Определение содержания неуглеводородных компонентов газа (водород, кислород, азот) и углеводородов (C_1-C_8) производилось по ГОСТ 31371.3 – 2008 с использованием аппаратно-программного комплекса "*Chromatek* – *Crystal 5000.2*".

ИК- спектры снимались на ИК-Фурье – спектрометре *NICOLET 5700* в области 400–4000 см⁻¹. Спектры асфальтенов и твердых продуктов получены в смеси с КВг в соотношении 2/300 (мг/мг). Образцы смол готовили в виде пленок из раствора в тетрахлорметане. Пленки сушили в вакуумном шкафу при температуре 45°С в течение 1.5 ч. Дальнейшую обработку ИК-спектров проводили с использованием программного обеспечения "OMNIC 7.2" Thermo Nicolet Corporation.

Значения нормированных оптических плотностей (Δ) рассчитывали относительно оптической плотности полосы поглощения 1460 см⁻¹, которая соответствует поглощению валентных колебаний С–Н связей в алифатических цепочках, для определенных длин волн (v), соответствующих каким-либо функциональным группам [9]:

$$\Delta = D_v / D_{1460},$$

где D_v — оптическая плотность, соответствующая длине волны v.

Рис. 1. Схема разделения продуктов термолиза.

Рис. 2. Состав продуктов термолиза асфальтенов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 2 представлен состав продуктов в зависимости от продолжительности термолиза асфальтенов.

С увеличением времени термолиза в СКВ от 5 до 90 мин происходит деструкция асфальтенов с образованием масел, смол, твердых и газообразных продуктов. Содержание твердых и газообразных продуктов в процессе термолиза увеличивается от 47.0 до 66.4 мас. % и от 1.7 до 9.5 мас. % соответственно.

Максимальный выход мальтенов (масла и смолы) наблюдается при продолжительности термолиза 15–30 мин. Снижение доли смол и масел при увеличении продолжительности термолиза более 30–60 мин свидетельствует об их участии во вторичных процессах с образованием твердых продуктов и газа.

Рис. 3. Состав газообразных продуктов термолиза асфальтенов в пересчете на общий выход продуктов.

При продолжительности термолиза более 60 мин наблюдались значительное увеличение выхода твердых продуктов и существенное снижение выхода масел и смол, поэтому для оценки роли воды в процессе термолиза была выбрана именно эта точка. Было предположено, что при данной продолжительности термолиза максимальное количество воды вступит в первичные и вторичные реакции с сырьем при относительно не существенном увеличении выхода твердых продуктов.

Для сравнения был проведен термолиз асфальтенов без воды при продолжительности термолиза 60 мин. При термолизе асфальтенов в среде СКВ в течение 60 мин, в сравнении с термолизом без воды, снижается выход твердых продуктов с 67.0 до 53.1 мас. % и увеличивается выход масел с 4.0 до 12.0 мас. %. Таким образом,

Таблица 2. Нормированные оптические плотности полос поглощения Δ для исходных и остаточных асфальтенов

Полоса поглощения	Нормированные оптические плотности Δ		
(v, см ⁻¹)	A0	AT60	ATCKB60
3400	0.61	0.33	0.30
3051	_	0.19	0.28
2920	1.89	1.82	1.48
2853	1.57	1.36	1.13
1601	0.58	0.67	0.89
1376	0.90	0.83	0.92
1317	0.69	0.74	0.83
1032	0.38	0.29	0.47
870	0.27	0.32	0.36
810	0.29	0.32	0.41
750	0.34	0.31	0.43

СКВ влияет на направленность превращения асфальтенов, препятствуя образованию твердых продуктов. Снижение выхода твердых продуктов объясняется ингибированием углеводородных радикалов, что препятствует процессам рекомбинации:

$$R-CH_3 \rightarrow R' + CH'_3,$$

 $R' + HOH \rightarrow RH + HO',$
 $RH + HO' \rightarrow R' + HOH.$

Состав газообразных продуктов термолиза асфальтенов в пересчете на общий выход представлен на рис. 3. Основными компонентами газообразных продуктов являются водород, метан, оксиды углерода и алканы C_2-C_3 .

В газообразных продуктах, полученных при термолизе асфальтенов в среде СКВ, отмечается не пропорционально более высокий выход углекислого газа, алканов и алкенов С₄. Образование СО и углекислого газа объясняется деструкцией кислородсодержащих групп в структуре асфальтенов и радикальными окислительно-восстановительными процессами, которые схематично можно представить следующим образом [10]:

$$C_mH_n + H_2O \rightarrow R-CO + H_2,$$

 $R-CO \rightarrow R + CO,$
 $CO + H_2O \rightarrow CO_2 + H_2.$

Смолы, вторичные асфальтены и твердые продукты, выделенные из термолизата, полученного в среде СКВ и без воды в течение 60 мин, были исследованы методом ИК-спектрометрии.

ИК-спектры асфальтенов представлены на рис. 4. Нормированные оптические плотности ($\Delta = D_v/D_{1460}$) представлены в табл. 2.

В ИК-спектрах исходных (А0) и остаточных асфальтенов (АТ60, АТСКВ60) присутствует по-

Рис. 4. ИК-спектры исходных и остаточных асфальтенов.

- ТПТ60 — ТПТСКВ60

Рис. 5. ИК-спектры твердых продуктов термолиза.

лоса поглощения (п.п.) ~3420 см⁻¹, которая может относиться к валентным колебаниям связей ОН-группы.

Наиболее интенсивные п.п. в области 2920 и 2853 см⁻¹ соответствуют валентным колебаниям CH₂- и CH₃-групп. Интенсивность п.п. снижает-ся в ряду A0 > AT60 > ATCKB60, что объясняется сокращением количества насыщенных заместителей ароматического ядра асфальтенов.

В области ~1680 см⁻¹ регистрируется п.п., которая относится к валентным колебаниям связей –C=О карбонильной группы. Интенсивность данной полосы возрастает в ряду A0 < AT60 < ATCKB60, это может указывать на то, что термолиз в среде СКВ приводит к внедрению атомов кислорода в структуру молекул остаточных асфальтенов.

Во всех ИК-спектрах асфальтенов наблюдается п.п. при ~1600 см⁻¹, относящаяся к симметричным продольным валентным колебаниям связей -C=C ароматических колец. Интенсивность этой п.п., а также ароматического триплета (три полосы в области ~870, 810 и 750 см⁻¹) заметно выше в остаточных асфальтенах. Интенсивность данных п.п. возрастает в ряду A0 < AT60 < ATCKB60.

Снижение интенсивности п.п., относящихся к группам CH_2 - и CH_3 -, и увеличение интенсивности п.п., относящихся к ароматическим структурам, указывает на то, что деструкция насыщенных структур исходных асфальтенов в среде СКВ протекает более интенсивно, чем без воды.

ИК-спектры твердых продуктов термолиза (ТПТ) представлены на рис. 5. Нормированные оптические плотности представлены в табл. 3. В ИК-спектрах ТПТ, выделенных из продуктов крекинга, так же как и для асфальтенов, имеется выраженная п.п. ~3420 см⁻¹. Интенсивность полосы (~3420 см⁻¹) для твердых продуктов термо-

Полоса поглощения	Нормированные оптические плотности Δ	
(v, cm^{-1})	ТПТ60	ТПТСКВ60
3400	0.56	0.72
3048	_	0.18
2920	0.23	0.24
2853	0.19	0.20
1601	0.90	0.84
1373	1.08	1.02
1032	0.91	0.86
872	0.76	0.72
811	0.80	0.70
750	0.93	0.95

Таблица 3. Нормированные оптические плотности полос поглощения Δ для твердых продуктов термолиза

Таблица 4. Нормированные оптические плотности полос поглощения Δ для смол, выделенных из продуктов термолиза

лиза, полученных в среде сверхкритической воды
(ТПТСКВ60), выше, чем для ТПТ60, полученных
без воды.

Полосы поглощения 2916 и 2852 см⁻¹, соответствующие валентным колебаниям CH₂- и CH₃групп в ТПТ60 и ТПТСКВ60, имеют заметно меньшую интенсивность, чем в исходных и остаточных асфальтенах. При этом заметно, в сравнении с асфальтенами, в ТПТ60 и ТПТСКВ60 увеличивается интенсивность п.п. в области 1600 см⁻¹ и ~862, 805, 740 см⁻¹, которые относятся к ароматическим структурам. Это указывает на то, что доля ароматических структур в ТПТ60 и ТПТСКВ60 выше, чем у асфальтенов.

Полосы поглощения низкой интенсивности в областях $1210-1150 \text{ см}^{-1}$ и $1060-1030 \text{ см}^{-1}$ в спектрах A0, AT60, ATCKB60 и ТПТ60, ТПТСКВ60 могут быть отнесены к сульфоксидным группам.

Полоса поглощения	Нормированные оптические плотности Δ		
(v, см ⁻¹)	CT60	CTCKB60	
3068	0.299	0.155	
2959	1.574	2.264	
2929	2.248	2.264	
2873	_	1.225	
2860	1.275	1.254	
1728	0.497	3.293	
1600	0.612	0.380	
1580	_	0.373	
1380	0.749	0.710	
1286	_	2.725	
1275	0.601	2.775	
1123	0.350	1.612	
1073	0.348	1.373	
1040	0.350	0.460	
961	0.237	0.338	
743	0.306	0.685	
705	0.129	0.284	

ИК-спектры смол, выделенных из продуктов термолиза, представлены на рис. 6. Нормированные оптические плотности представлены в табл. 4.

В ИК-спектрах смол, выделенных из продуктов термолиза, в отличие от асфальтенов и твердых продуктов, фактически отсутствует п.п. ~3420 см⁻¹ (относится к валентным колебаниям связей ОН-группы).

Доля ароматических структур в смолах ниже, чем у асфальтенов и твердых продуктов термоли-

Рис. 6. ИК-спектры смол, выделенных из продуктов термолиза.

за, на это указывает более низкая интенсивность п.п. 1600 см⁻¹ и "ароматического триплета" (~862, 805, 740 см⁻¹). При этом нормированные оптические плотности п.п. в области 2800– 3000 см⁻¹, соответствующие валентным колебаниям CH₂- и CH₃-групп, для смол более интенсивны, чем для асфальтенов и твердых продуктов.

Нормированная оптическая плотность поглощения в области, относящейся к кислородсодержащим соединениям п.п. ~1728, 1285—1275, 1120, 1070 см⁻¹, существенно возрастает в смолах, выделенных из продуктов термолиза, в сравнении с асфальтами и твердыми продуктами. Интенсивность этой п.п. в смолах, полученных в присутствии сверхкритической воды (СТСКВ60), выше в несколько раз, чем в смолах, полученных без воды (СТ60), что объясняется протеканием радикальных окислительно-восстановительных процессов с участием СКВ.

ЗАКЛЮЧЕНИЕ

Полученные экспериментальные данные показывают, что при термической конверсии асфальтенов в среде сверхкритической воды, в сравнении с термолизом без воды, снижается выход твердых продуктов (продукты, не растворимые в хлороформе) и увеличивается выход масел. Это объясняется ингибированием молекулами воды углеводородных радикалов, что препятствует процессам рекомбинации.

Газообразные продукты, полученные при термолизе асфальтенов в среде сверхкритической воды, характеризуются высоким содержанием оксидов углерода, что объясняется деструкцией карбонильных групп асфальтенов и радикальными окислительно-восстановительными процессами. По данным ИК-спектрометрии остаточных асфальтенов, твердых продуктов и смол, выделенных из термолизата, показано, что проведение термолиза в СКВ приводит к увеличению доли кислородсодержащих групп в получаемых продуктах.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- Castañeda L.C., Muñoz J.A.D., Ancheyta J. // Catal.Today. 2014. V. 220–222. P. 248.
- Fedyaeva O.N., Vostrikov A.A., Sokol M.Ya., Fedorova N.I. // Rus. J. Phys. Chem. B. 2013. V. 7. № 7. P. 820.
- Eletskii P.M., Sosnin G.A., Zaikina O.O., Kukushkin R.G., Yakovlev V.A. // J. Siberian Federal Univ. Chem. 2017. V. 10. №. 4. V. 545.
- Kopytov M.A., Golovko A.K. // Petroleum Chem. 2017. V. 57. № 1. P. 39.
- Sato T., Trung P.H., Tomita T., Itoh N. // Fuel. 2012. V. 95. P. 347.
- Hosseinpour M., Fatemi S., Ahmadi S.J. // Fuel. 2015. V. 159. P. 538.
- 7. Hosseinpour M., Ahmadi S.J., Fatemi S. // J. Supercritical Fluids. 2016. V. 107. P. 278.
- Бейко О.А., Головко А.К., Горбунова Л.В., Камьянов В.Ф., Лебедев А.К., Плюснин А.Н., Савиных Ю.В., Сивирилов П.П., Филимонова Т.А. Химический состав нефтей Западной Сибири. Новосибирск: Наука, 1998. 288 с.
- 9. *Миронов В.А., Янковский С.А.* Спектроскопия в органической химии: Сборник задач: Учебное пособие. М.: Химия, 1985. 232 с.
- 10. Vostrikov A.A., Dubov D.Y., Psarov S.A. // Rus. Chem. bulletin. 2001. V. 50. № 8. P. 1478.