УДК 665.642.547.9

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ АСФАЛЬТЕНОВ ПРИ КРЕКИНГЕ МОДЕЛЬНЫХ СМЕСЕЙ: АСФАЛЬТЕНЫ–МАЛЬТЕНЫ

© 2022 г. Г. С. Певнева^{1,*}, Н. Г. Воронецкая^{1,**}, Н. Н. Свириденко^{1,***}

 1 Φ ГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия

*e-mail: pevneva@ipc.tsc.ru **e-mail: voronetskaya@ipc.tsc.ru ***e-mail: dark_elf26@mail.ru Поступила в редакцию 19.11.2021 г. После доработки 21.11.2021 г. Принята к публикации 08.12.2021 г.

Изучены влияние количества асфальтенов на выход дистиллятных фракций в процессе крекинга и структурные преобразования, которые претерпевают асфальтены при термическом воздействии. Объектом исследования явились модельные смеси с содержанием асфальтенов 0, 8, 12, 16%. Крекинг проводился в реакторах автоклавах при температуре 450°C в течение 2 ч. Установлено, что в процессе термического крекинга смесей с различным количеством асфальтенов по мере увеличения их содержания увеличивается выход дистиллятных фракций НК-360 °C. Максимальный выход этих продуктов достигается при крекинге модельной смеси с 8% асфальтенов — он увеличивается в 1.7 раза по сравнению с исходной смесью. Вторичные асфальтены уменьшаются в размерах, становятся более ароматичными с гораздо меньшим количеством алкильных заместителей.

Ключевые слова: *асфальтены, мальтены, крекинг, фракционный состав, структура* **DOI:** 10.31857/S0023117722020086

введение

Из-за сложности химической структуры и агрегатного состояния асфальтенов до сих пор нет глубокого понимания направленности их превращений при переработке нефти. В молекулах асфальтенов, образованных конденсированными ароматическими и нафтеновыми ядрами с алифазаместителями, концентрируется тическими большая часть гетероатомов (серы, азота, кислорода), присутствующих в исходном сырье [1]. Высокая молекулярная масса асфальтенов предопределяет их склонность к конденсации и образованию кокса при переработке. Асфальтены оказывают отрицательное воздействие как на свойства катализаторов, так и на состояние технологического оборудования [2]. При термическом воздействии асфальтены подвергаются множеству реакций, включающих крекинг, дегидрирование, конденсацию, которые приводят к изменению их структуры [3, 4]. При этом они образуют различные радикалы, которые вовлекаются в реакции, протекающие при крекинге по свободно-радикальному механизму, и являются источником компонентов светлых дистиллятных фракций и газообразных продуктов. Для выявления особенностей термических превращений асфальтенов, смол и масел, а также для изучения их взаимного влияния был проведен ряд исследований в этом направлении [5–7]. Свойства нефтяной дисперсионной системы, ее термическая устойчивость зависят от содержания высокомолекулярных гетероатомных компонентов, в первую очередь асфальтенов. В данной работе изучены влияние количества асфальтенов на выход дистиллятных фракций и структурные преобразования асфальтенов при термическом воздействии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследования были приготовлены модельные смеси на основе деасфальтенизированной усинской нефти (мальтенов) с добавлением различных количеств асфальтенов, выделенных из этой же нефти путем осаждения н-гексаном. Количество асфальтенов в смесях составляло 0, 8, 12 и 16%. Компонентный и фракционный составы смесей представлены в табл. 1.

Методика определения содержания смол, асфальтенов и масел в продуктах крекинга описана в работе [6]. Фракционный состав жидких продуктов крекинга определяли методом газожидкостной хроматографии на хроматографе "Кристалл-2000М" [6].

Компонент	Содержание, мас. %				
асфальтены	0	8	12	16	
СМОЛЫ	19.6	18.0	17.2	16.5	
масла	80.4	73.9	70.8	67.5	
Фракционный состав, °С					
HK-200	6.2	5.0	4.4	3.8	
200-360	34.8	28.0	24.6	21.2	
HK-360	41.0	33.0	29.0	25.0	
>360	59.0	67.0	71.0	67.0	

Таблица 1. Компонентный и фракционный составы модельных смесей

Таблица 2. Материальный баланс крекинга

Содержание асфаль- тенов в смеси, мас. %	0	8	12	16
Продукт	Содержание, мас. %			
Газ	2.7	8.3	10.0	12.4
Твердые	0.3	6.6	7.4	8.5
Жидкие, в том числе:	97.0	85.1	82.6	80.8
масла	70.9	73.0	68.8	63.0
вторичные смолы	25.0	8.7	9.2	10.8
вторичные асфальтены	1.1	3.4	4.6	7.0
Фракция НК-360 °С	34.6	56.4	52.5	48.2

Крекинг образцов проводили в автоклаве объемом 12 см³ при температуре 450°C в течение 120 мин. Масса сырья, загружаемого в реактор, составляла 7 г [7].

Расчет средних структурных параметров проводили по эмпирическим формулам на основе ¹Н-ЯМР-данных, элементного анализа и значений молекулярной массы [8]. Спектры ¹Н-ЯМР регистрировали с помощью фурье-спектрометра AVANCE-AV-300 (растворитель – дейтерохлороформ, внутренний стандарт – гексаметилдисилоксан). Средние молекулярные массы асфальтенов измеряли криоскопией в нафталине. Элементный состав асфальтенов определяли на CHNS-анализаторе Vario EL Cube методом прямого сожжения при температуре 1200°С с последующим разделением газов и продуктов сгорания в трех адсорбционных колонках (газ-носитель – гелий) и идентификацией с помощью детектора по теплопроводности.

ИК-спектры асфальтенов регистрировали в области 4000–400 см⁻¹ на FT-IR-спектрометре "*NICOLET 5700*". Для расчета спектральных ко-эффициентов определены оптические плотности в максимумах полос поглощения: 720, 1380 и 1460 см⁻¹ – колебания связи С–Н-метильных и

метиленовых групп; 1710 см⁻¹ – колебания связи С=О карбонильной группы; 1600 см⁻¹ – колебания связи С=С– ароматических фрагментов; 1030 см⁻¹ – колебания связи S=О сульфоксидов. По соотношениям оптических плотностей в максимумах этих полос рассчитаны спектральные коэффициенты: ароматичности C1 = D_{1600}/D_{1460} , окисленности C2 = D_{1710}/D_{1460} , разветвленности C3 = D_{1380}/D_{1460} , алифатичности C4 = (D₇₂₀ + D_{1380}/D_{1600} и условного содержания сульфокси-дов C5 = D_{1030}/D_{1460} .

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ранее в работе [7] показано, что крекинг асфальтенов усинской нефти сопровождается образованием 4.6% газа, 57.1% твердых и 38.3% жидких продуктов, состоящих из масел (20.4%), смол (4.1%) и вторичных асфальтенов (13.8%). Твердые продукты являются продуктами уплотнения, образующимися в процессе крекинга, и нерастворимы в полярных растворителях. Суммарный выход продуктов уплотнения и вторичных асфальтенов составляет 70.9%.

Данные по материальному балансу крекинга модельных смесей представлены в табл. 2. При крекинге помимо реакций деструкции протекают и реакции конденсации с образованием нерастворимых продуктов, которые являются предшественниками кокса. Выход продуктов уплотнения возрастает с увеличением содержания асфальтенов. Эти продукты образуются и при термокрекинге смеси, в которой отсутствуют асфальтены, что, вероятно, обусловлено образованием радикалов при деструкции смол и высокомолекулярных углеводородов с дальнейшей их конденсацией. Именно наличие асфальтенов в смеси приводит к резкому увеличению выхода продуктов уплотнения при крекинге смеси с 8% асфальтенов по сравнению с продуктами крекинга смеси в отсутствие асфальтенов. При увеличении содержания асфальтенов в смесях до 12 и 16% часть асфальтенов участвует в реакциях конденсации, приводящих к образованию продуктов уплотнения, а часть преобразуется во вторичные асфальтены.

Крекинг нефтяных компонентов сопровождается образованием легких углеводородов, которые входят в состав газа, бензиновой и дизельной фракций. С увеличением содержания асфальтенов выход газа при термическом крекинге увеличивается с 2.7 до 12.4%.

В составе жидких продуктов крекинга в зависимости от количества асфальтенов изменяются фракционный и компонентный составы.

Как видно из рис. 1, в продуктах крекинга содержание дистиллятных фракций НК-200°С и

Рис. 1. Фракционный состав продуктов крекинга.

200-360°С выше по сравнению с их солержанием в исходных смесях с асфальтенами. Наибольшее количество фракций НК-200°С образуется при крекинге смесей с 8% асфальтенов (рис. 1,а). При vвеличении количества асфальтенов ло 12 и 16% выходы этих фракций снижаются, но остаются достаточно высокими и превышают содержание фракции НК-200°С в исходных смесях в 3-4 раза. Максимальный выхол фракции 200-360°С получен при крекинге смеси с 12% асфальтенов (рис. 1,б). Из табл. 2, в которой приведены данные по суммарному выходу светлых дистиллятных фракций НК-360°С, видно, что лучшие результаты получены при крекинге смеси, содержащей 8% асфальтенов. В этом случае выход фракции НК-360°С увеличивается в 1.7 раза по сравнению с исходной смесью.

Данные по компонентному составу жидких продуктов приведены в табл. 2, из которой видно, что в продуктах крекинга смеси в отсутствие асфальтенов содержание вторичных смол достигает 25.0%, тогда как в исходной смеси их количество составляет 19.6%. В остальных продуктах крекинга смесей, содержащих 8, 12 и 16% асфальтенов, количество вторичных смол ниже, чем в исходных образцах. Возможно, к образованию большего количества вторичных смол приводит деструкция крупных исходных молекул смол. При этом образуются молекулы с меньшей молекулярной массой и значением отношения Н/С, с меньшим содержанием гетероатомов, атомов углерода в алкильном обрамлении и ароматических колец по сравнению со средними молекулами исходных смол [7]. Кроме того, смолы могут образовываться и за счет реакций конденсации с участием углеводородных радикалов. Уменьшение же количества вторичных смол при крекинге смесей, содержащих 8, 12 и 16% асфальтенов по сравнению с исходными образцами, вероятно, обусловлено влиянием асфальтенов на направленность термических превращений нефтяных компонентов. По-видимому, реакции конденсации становятся преобладающими, что приводит к вовлечению

смол в образование вторичных асфальтенов, продуктов уплотнения и далее кокса.

Новообразование асфальтенов происходит и при крекинге смеси, изначально не содержащей в своем составе асфальтенов. Их образованию способствуют реакции конденсации с участием смол и ароматических углеводородов [9, 10]. Сопоставление выходов вторичных асфальтенов с количеством асфальтенов, содержащихся в исходых молельных смесях. показывает, что термическое воздействие приводит к снижению количества асфальтенов в 1.9-2.7 раза. Вероятно, что исходные асфальтены подвергаются реакциям конденсации, которые приводят к образованию продуктов уплотнения. А вторым направлением их преобразования являются реакции деструкции, в результате которых образуются вторичные асфальтены меньшего размера с измененной структурой.

Структура исходных асфальтенов меняется в процессе крекинга в результате протекания реакций деструкции, дегидрирования, деалкилирования, ароматизации и конденсации. В табл. 3 представлены структурные параметры асфальтенов исходной нефти и вторичных асфальтенов, образовавшихся при крекинге.

В процессе термического крекинга смеси при отсутствии асфальтенов происходит их образование, ММ которых и отношение H/C сопоставимы с таковыми для исходных асфальтенов. Эти асфальтены по своей структуре близки к исходным асфальтенам, о чем свидетельствуют близкие значения длины алкильных заместителей (C_{γ}), общего числа колец (K_o), фактора ароматичности (f_a) и степени замещенности водорода в ароматических системах (σ).

Вторичные асфальтены продуктов термического крекинга смесей с содержанием асфальтенов 8, 12 и 16% имеют меньшие размеры по сравнению с молекулами исходных асфальтенов и асфальтенов, образованных в процессе крекинга смеси при отсутствии асфальтенов (табл. 3). Во вторичных асфальтенах наблюдаются увеличение

Содержание асфаль- тенов в смеси, мас. % Параметр	Исходные асфальтены	0	8	12	16
Молекулярная масса	1400	1253	738	528	603
Содержание, мас. %:					
углерод	78.9	82.9	84.2	79.8	82.0
водород	7.8	7.8	5.3	5.5	5.6
cepa	3.9	4.0	3.5	3.2	3.3
азот	1.1	1.3	1.9	1.9	1.9
H/C	1.19	1.13	0.76	0.82	0.82
С	92.1	86.6	51.8	35.1	41.2
C _a	44.3	41.4	38.3	28.9	34.0
C_{γ}	3.69	3.78	2.57	2.42	2.48
Ko	16.1	16.8	14.1	9.1	10.6
Ka	9.6	11.1	11.5	7.0	8.2
K _H	6.5	5.7	2.6	2.4	2.4
f_{a}	0.48	0.50	0.74	0.72	0.71
σ	0.48	0.49	0.30	0.31	0.32

Таблица 3. Структурные параметры вторичных асфальтенов продуктов крекинга

Примечание. С – общее количество атомов углерода в средней молекуле, C_a – количество ароматических атомов углерода; C_{γ} – количество атомов углерода в терминальных метильных группах (длина алкильных заместителей); K_o – общее количество колец; K_a – количество ароматических колец; f_a – доля атомов углерода в ароматических фрагментах; σ – степень замещенности.

содержания азота и уменьшение серы общей по сравнению с исходными асфальтенами.

Вторичные асфальтены, образовавшиеся при термокрекинге смеси с 8% асфальтенов, меньше по размеру, чем исходные асфальтены, и состоят из 14.1 колец, 80% которых ароматические. Тогда как в структуре исходных молекул асфальтенов содержится 16.1 колец, из них ароматическими являются только 60%. Кроме того, они содержат в 1.4 раза меньше алкильных заместителей, чем молекулы исходных асфальтенов. Усредненные молекулы вторичных асфальтенов, образующихся при термокрекинге смесей с 12 и 16% асфальтенов, содержат 9.1 и 10.6 циклов, соответственно, из которых в среднем 78% ароматические. Алкильное обрамление практически такое же, как и у молекул вторичных асфальтенов крекинга смеси с 8% асфальтенов.

В табл. 4 приведены ИК-спектральные коэффициенты, рассчитанные для вторичных асфальтенов по соотношениям оптических плотностей в максимумах характеристичных полос поглощения. По данным ИК-спектрального анализа во вторичных асфальтенах, образовавшихся при термическом крекинге смесей с содержанием асфальтенов от 0 до 16%, происходит увеличение содержания ароматических структур и снижение содержания парафиновых структур, о чем свидетельствует возрастание значений показателя ароматичности (C1 = D_{1600}/D_{720}) при снижении значений показателя алифатичности (C4 = $(D_{720} + D_{720})$ $+ D_{1380})/D_{1600}$. Снижение интенсивности полос поглощения, характерных для алифатических структур, на спектрах вторичных асфальтенов свидетельствует о процессах деалкилирования.

ЗАКЛЮЧЕНИЕ

Показано, что изменение состава нефтяной дисперсионной среды в результате увеличения в ней содержания дисперсной фазы — асфальтенов — меняет направленность термических превращений всех нефтяных компонентов. Увеличение количества асфальтенов в смеси обеспечивает высокий выход дистиллятных фракций HK— 200 и 200—360°С при крекинге по сравнению с их содержанием в исходных смесях, снижается содержание вторичных смол и асфальтенов в жидких продуктах, но при этом увеличивается выход побочных газообразных и твердых продуктов. Оптимальное количество асфальтенов в модельной смеси — 8%, при крекинге которой достигается максимальный выход фракции HK — 360°С. Об-

Таблица 4. ИК-спектральные коэффициенты вторичных асфальтенов продуктов крекинга

Коэффициент	Исходные асфальтены	Содержание асфальтенов в смеси, %				
		0	8	12	16	
Значение						
$C1 = D_{1600} / D_{1460}$	0.53	0.54	0.68	0.75	0.80	
$C2 = D_{1710} / D_{1460}$	0.19	0.24	—	—	—	
$C3 = D_{1380} / D_{1460}$	0.74	0.80	0.86	0.89	0.92	
$C4 = (D_{720} + D_{1380}) / D_{1600}$	1.75	1.80	1.26	1.18	1.15	
$C5 = D_{1030} / D_{1460}$	0.34	0.38	0.42	0.40	0.34	

разование продуктов уплотнения при крекинге происходит и при отсутствии асфальтенов, что, вероятно, обусловлено реакциями конденсации образующихся радикалов смолистых компонентов и высокомолекулярных углеводородов.

Структура исходных асфальтенов претерпевает значительные изменения в процессе крекинга – уменьшается молекулярная масса, отношение H/C, увеличивается степень ароматичности, снижается средняя длина алкильных заместителей. Данные ИК-спектроскопии также указывают на увеличение степени ароматичности вторичных асфальтенов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Mullins O.C.* // Energy Fuels. 2010. V. 24. № 4. P. 2179. https://doi.org/10.1021/ef900975e
- Marchal C., Abdessalem E., Tayakout-Fayolle M., Uzio D. // Energy Fuels. 2010. V. 24. P. 4290. https://doi.org/10.1021/ef1000979

- Ancheyta J., Centeno G., Trejo F., Marroquin G. // Energy Fuels. 2003. V. 17. P.1233. https://doi.org/10.1021/ef030023+
- Hauser A., AlHumaidan F., Al-Rabiah H., Halabi M.A. // Energy Fuels. 2014. V. 28. P. 4321. https://doi.org/10.1021/ef401476j
- Pevneva G.S., Voronetskaya N.G., Korneyev D.S., Golovko A.K. // Petroleum Chem. 2017. V. 57. № 4. P. 479. https://doi.org/10.1134/S0965544117080126
- 6. *Pevneva G.S., Voronetskaya N.G., Sviridenko N.N.* // Petroleum Chem. 2020. V. 60. № 3. P. 410. https://doi.org/10.1134/S0965544120030160
- Voronetskaya N.G., Pevneva G.S. // Solid Fuel Chemistry. 2021. V. 55. № 3. P. 165. https://doi.org/10.3103/S0361521921030113
- Patrakov Yu.F., Kamyanov V.F., Fedyaeva O.N. // Fuel. 2005. V. 84. № 2–3. C. 189. https://doi.org/10.1016/j.fuel.2004.08.021
- 9. Korneev D.S., Pevneva G.S., Voronetskaya N.G. // Petroleum Chem. 2021. V. 61. № 2. P. 152. https://doi.org/10.1134/S0965544121020158
- 10. *Naghizada N., Prado G.H.C., de Klerk A.* // Energy Fuels. 2017. V. 31. № 7. P. 6800. https://doi.org/10.1021/acs.energyfuels.7b00661