УДК 553.97:547.91:577.117.2, 577.117.3

ПОСТПИРОГЕННОЕ ИЗМЕНЕНИЕ СОСТАВА ЛИПИДОВ ТОРФА И БОЛОТНЫХ РАСТЕНИЙ

© 2022 г. О. В. Серебренникова^{1,*}, Е. Б. Стрельникова^{1,**}, И. В. Русских^{1,***}, Д. В. Федоров^{1,****}

¹ ФГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия

*e-mail: ovs49@yahoo.com **e-mail: seb@ipc.tsc.ru ***e-mail: rus@ipc.tsc.ru **** e-mail: denilletti@gmail.com Поступила в редакцию 26.11.2021 г. После доработки 02.12.2021 г. Принята к публикации 08.12.2021 г.

Методом хромато-масс-спектрометрии исследованы состав липидов болотных растений и торфа, отобранных на фоновой и выгоревшей территориях Бакчарского болота Томской области, бассейн р. Гавриловка. Идентифицированы основные группы органических соединений: ациклические *н*-алканы, изопреноиды, жирные кислоты и их метиловые эфиры, *н*-алкан-2-оны, а также циклические соединения — токоферолы, стероиды, сескви-, ди- и тритерпеноиды, определено содержание их индивидуальных представителей. Полученные данные могут использоваться для фиксации в разрезе осадочной толщи постпирогенных слоев при палеоклиматических реконструкциях и для оценки перспектив использования растительного и торфяного сырья территорий после пожара.

Ключевые слова: пожар, торф, болотные растения, стероиды, тритерпеноиды, дитерпеноиды, сесквитерпеноиды, н-алканы, жирные кислоты, алканоны

DOI: 10.31857/S0023117722020098

Торф во многом наследует состав липидов растений, а условия торфообразования накладывают свой отпечаток на набор органических соединений в торфе [1–4]. В состав торфа входят органические соединения биогенного происхождения (*н*-алканы, сквален, стероиды, сескви-, ди- и тритерпеноиды и т.п.), поступающие из болотных растений [5, 6]. Состав этих соединений отражает естественные условия формирования торфа в заболоченных регионах [1, 7].

Повышенное или пониженное содержание отдельных органических соединений в торфе может быть следствием климатических условий [3, 7], геохимической обстановки залежи [8], высокой активности микрофлоры и более интенсивной трансформации присутствующего в торфах этого болота органического вещества [9].

Кроме соединений биогенного происхождения в состав липидов торфа и болотных вод могут входить органические компоненты антропогенного характера [4, 10]. К одному из антропогенных факторов воздействия на окружающую среду относятся пожары. С конца 20-го века на болотах Западной Сибири возросла пожарная активность, связанная с жизнедеятельностью человека [11].

Сразу после пожара болота превращаются в источник углерода, а изменения в растительности после пожара играют ведущую роль в управлении ходом постпирогенного баланса углерода, и восстановление мохового и кустарничкового покрова вновь возвращает болота к поглощению углерода [12]. Условием восстановления функции стока углерода является восстановление мхов, а появление вместо мхов деревьев и кустарников ведет к истощению запасов углерода [13].

Пожары, приводящие к деградации растительного покрова [14] и оказывающие жесткое термическое воздействие на подстилающие слои торфяных залежей, должны приводить к изменению содержания и состава органических соединений в них. В этом отношении при лесных пожарах наиболее изучен состав полициклоароматических углеводородов – широко распространенных канцерогенных и мутагенных загрязнителей [15, 16]. Изменение состава других органических соединений, способных зафиксировать реакцию растений на окислительный стресс, вызванное пожаром, менее изучено.

Краткое описание места отбора пробы	Координаты отбора пробы
Горелое болото	56°53′20,3″ с.ш. 82°40′35,9″ в.д.
Фоновый участок в 200 м от пожара, рям	56°53′25,8″ с.ш. 82°40′50,5″ в.д.

Таблица 1. Характеристика мест отбора растений и торфа сосново-кустарничково-сфагнового болота

Целью работы было оценить влияние пожара на состав липидов в растениях и торфе на территории Бакчарского болота Томской области.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

После пожара августа 2016 г. на осушенном сосново-кустарничково-сфагновом верховом болоте Бакчарского района Томской области на фоновом и выгоревшем участках (табл. 1) в 2018–2020 гг. были отобраны багульник, хамедафна, *Sphagnum fuscum* и торф. Для горелого участка характерны гибель в основном древесного яруса, выгорание надземной части травяно-кустарничкового и полное выгорание мохового яруса на всех формах микрорельефа. Торфяные залежи на выгоревшем участке встречаются как явно горелые (Γ), так и без видимых признаков горения ($T\Gamma$).

Для определения состава органического вещества (OB) липидные компоненты из высушенных

растений и торфа были выделены экстракцией 7%-ным раствором метанола в хлороформе при 60°С. Солержание и инливилуальный состав органических соединений определяли методом хромато-масс-спектрометрии с использованием магнитного хромато-масс-спектрометра Trace-DSO фирмы "Thermo Scientific" (Германия). Режим работы хроматографа: кварцевая капиллярная хроматографическая колонка фирмы "Thermo Scien*tific*" с внутренним диаметром 0.25 мм. длиной 30 м, толщина фазы 0.25 мкм, неподвижная фаза – TR-5MS; газ-носитель – гелий, температура испарителя 250°С, температура интерфейса 250°С. Индивидуальные соединения идентифицировали по масс-фрагментограммам в программе X-Calibur 10 с использованием компьютерной библиотеки масс-спектров NIST.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В образцах растений и торфа идентифицированы группы ациклических (табл. 2) и циклических (табл. 3) соединений.

Их усредненное суммарное содержание в образцах, отобранных внутри контура пожара и фоновом участке болота, находится в пределах 250– 6854 мкг/г и растет в 10 и более раз в ряду торф – *Sphagnum fuscum* – хамедафна – багульник (табл. 4). Минимальное значение зафиксировано в образцах торфа и *Sphagnum fuscum* с горелого участка, максимальное – в багульнике с горелого участка. Для всех образцов торфа и растений, за исключе-

Таблица 2. Содержание отдельных групп ациклических соединений в растениях и торфе с различных участков болота

	Участок	Содержание, мкг/г								
Индекс образца		алк	СКВ	жк	МЭ	аон	фитон	фитол	альд	сумма ациклических соединений
	-			Багу	льник		•			
БФ	Фоновый	798.8	27.9	23.5	5.7	24.9	1.5	43.3	58.2	983.8
БГ	Горелый	710.1	19.5	28.7	6.1	7.4	4.6	39.9	25.0	841.2
Хамедафна										
ΧΦ	Фоновый	160.3	3.7	28.1	35.4	32.4	2.6	36.9	21.4	320.8
ХΓ	Горелый	113.4	2.3	14.5	15.9	8.6	1.0	21.8	12.4	189.8
	•			Sphagnu	ım fuscu	m	•			•
СФ	Фоновый	138.4	2.7	38.8	3.7	24.8	3.4	29.0	5.2	246.0
СГ	Горелый	97.7	2.5	38.2	3.1	23.3	3.1	15.6	5.9	189.6
Торф										
ТΦ	Фоновый	77.6	3.3	19.1	2.6	23.1	1.2	5.2	7.2	139.4
ТΓ	Горелый	54.5	3.0	17.3	1.5	34.1	1.5	2.6	10.5	125.0
Торф горелый										
Γ	Горелый	6.6	5.8	7.9	0.2	0.7	0.3	0.9	1.3	23.8

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2022

Индекс образца	Участок	Содержание, мкг/г							
		СТ	ДТ	ПЦТ	Стероиды	ΤΦ	Сумма циклических		
Багульник									
БΦ	фоновый	2269.5	0	348.3	22.4	9.3	2649.5		
БГ	горелый	5551.3	0	436.7	18.9	5.7	6012.6		
Хамедафне									
ΧΦ	фоновый	8.0	0.5	947.7	38.2	8.0	1002.5		
ХΓ	горелый	9.8	0.1	507.5	17.1	2.4	536.9		
Sphagnum fuscum									
СФ	фоновый	2.2	1.3	80.4	34.3	3.5	121.7		
СГ	горелый	1.2	0.6	27.2	36.4	3.0	68.5		
Торф									
ТΦ	фоновый	7.9	6.9	62.1	53.2	5.0	135.1		
ТΓ	горелый	2.7	0.4	73.6	44.9	3.2	124.9		
Торф горелый									
Γ	горелый	следы	1.1	3.7	4.7	0.6	10.1		

Таблица 3. Содержание отдельных групп циклических соединений в растениях и торфе с различных участков болота

Таблица 4. Усредненное содержание органических соединений в растениях и торфе с различных участков болота

Индекс образца	БΦ	БΓ	ΧФ	ΧГ	СΦ	СГ	ΤФ	ΤГ	Г
Участок	Фоновый	Горелый	Фоновый	Горелый	Фоновый	Горелый	Фоновый	Горелый	Горелый
Общее содержание, мкг/г	3633.3	6853.8	1323.3	726.7	367.7	258.0	274.5	249.9	33.9
Циклические/ациклические	2.7	7.1	3.1	2.8	0.5	0.4	1.0	1.0	0.4

нием багульника, зафиксировано снижение суммарного содержания идентифицированных органических соединений в образцах горелого участка по сравнению с фоновым.

В образцах мха в составе идентифицированных соединений преобладают ациклические структуры, в торфяных объектах (за исключением горелого торфа) — содержание ациклических и циклических структур одинаково. В кустарничках содержание циклических структур превышает ациклические: в хамедафне и фоновом образце багульника — в 3 раза, в багульнике горелого участка болота — в 7 раз (табл. 4).

Среди идентифицированных групп ациклических органических соединений в растениях и торфе преобладают *н*-алканы (Алк), жирные кислоты (ЖК), *н*-алкан-2-оны (Аон) (табл. 2), менее распространены *н*-альдегиды (Альд), метиловые эфиры жирных кислот (МЭ), а также представители ациклических изопреноидов: сквален (Скв), фитол и фитон. Содержание ациклических соединений, идентифицированных в образцах растений и торфа, увеличивается в ряду торф – *Sphagnum fuscum* – хамедафна – багульник, причем во всех объектах оно снижено на горелом участке болота по сравнению с фоновым (табл. 2). *н*-Алканы преобладают в составе ациклических структур, их относительное содержание на горелом и фоновом участках составляет: в торфе – 43 и 56%, во мхе – 51 и 54%, в хамедафне – 58 и 50%, в багульнике – 85 и 82%. Зафиксировано снижение общего содержания *н*-алканов на 30% в торфе, мхе и хамедафне на горелом участке по сравнению с фоновым, в то время как в багульнике – только на 11% (табл. 2).

Распределение ациклических структур (*н*-алканов и *н*-алкан-2-онов) типично для верховых торфов и болотной растительности Западной Сибири [17]. Алканы в образцах растений и торфа представлены набором гомологов $C_{14}-C_{36}$ с резким преобладанием нечетных структур в кустарничках и более сглаженным — в торфе и мхе. В максимальном количестве в кустарничках присутствуют *н*-алканы $C_{27}-C_{33}$, причем в багульнике

Рис. 1. Молекулярно-массовое распределение *н*-алканов в багульнике (а), хамедафие (б), *Sphagnum fuscum* (в), торфе (г).

доминирует C_{31} , в хамедафне — C_{29} (рис. 1). Несмотря на различное суммарное содержание *н*-алканов в кустарничках горелого и фонового участков болота, их молекулярно-массовое распределение идентично.

Состав *н*-алканов торфа и мха представлен в основном нечетными гомологами $C_{21}-C_{33}$, причем во мхе преобладает гомолог C_{25} , в торфе его количество сопоставимо с C_{31} . На горелом участке болота в составе мха и торфа зафиксировано небольшое снижение количества *н*-алканов C_{29} , C_{31} и C_{33} по сравнению с образцами фонового участка, что может свидетельствовать о разрушении высокомолекулярных *н*-алканов при повышении температуры окружающей среды [18].

Состав *н*-алкан-2-онов хамедафны, *Sphagnum fuscum* и торфа фонового и пирогенно нарушенного участков одинаков: в ряду гомологов $C_{19}-C_{35}$ максимум приходится на C_{27} , на втором месте по содержанию — C_{25} и C_{29} (рис. 2). В отличие от остальных растений в багульнике состав *н*-алкан-2-онов на фоновом и пирогенно нарушенном участке различается. На фоновом участке среди них преобладает гомолог C_{29} , на выгоревшем — C_{27} и C_{31} .

Состав жирных кислот растений и торфа пирогенного и фонового участков одинаков: доминируют четные кислоты $C_{14}-C_{20}$ с преобладанием

пальмитиновой кислоты. Обнаружены также метиловые эфиры жирных кислот $C_{15}-C_{33}$ с двумя максимумами: на C_{17} и $C_{23}-C_{27}$ (рис. 3). В фоновом образце багульника преобладает гомолог C_{25} , а в горелом – C_{17} , что отличает это растение от остальных и торфа, где не зафиксирована разница в распределении метиловых эфиров жирных кислот в зависимости от пирогенной нагрузки.

Таким образом, последствием пирогенного воздействия для ациклических разностей, идентифицированных в составе липидов растений и торфа, в большинстве случаев является снижение содержания всех групп соединений. Изменения в индивидуальном составе ациклических соединений, являющиеся следствием пожара, характерны только для багульника и, возможно, объясняются специфическим соотношением в нем отдельных биосинтезированных групп соединений, обусловленным отличиями в физиологии этого растения от хамедафны и сфагнового мха.

Сопоставление распределения ациклических и циклических соединений в растениях и торфе фонового и пирогенно нарушенного участков показывает значительно более выраженное различие в содержании в растениях этих участков циклических разностей, что указывает на их большую подверженность воздействию внешних факторов.

Основными среди идентифицированных циклических органических соединений в растениях и

Рис. 2. Молекулярно-массовое распределение *н*-алкан-2-онов в багульнике (а), хамедафие (б), *Sphagnum fuscum* (в), торфе (г).

торфе являются пентациклические тритерпеноиды (ПЦТ) (табл. 3). Исключением является багульник, где количество сесквитерпеноидов (СТ) превышает содержание всех остальных групп соединений в 1.2–7.9 раза. В торфе и мхе в сопоставимом с ПЦТ количестве содержатся также стероиды. Во всех растениях и торфе в подчиненном количестве присутствуют токоферолы (ТФ) и дитерпеноиды (ДТ).

Багульник. В составе липидов багульника фонового участка в максимальном количестве присутствуют сесквитерпеноиды и *н*-алканы. Повышено также содержание ПЦТ. В багульнике с выгоревшего участка, отобранном через три и четыре года после пожара, незначительно понижено содержание большинства классов идентифицированных соединений, за исключением бициклических сесквитерпеноидов и ПЦТ, содержание которых после пожара возросло (в 2.5 и 1.3 раза соответственно).

Сесквитерпеноиды багульника с незатронутого пожаром участка на 88–90% представлены палустролом и ледолом, они включают также 5(1H)азуленон, 2,4,6,7,8,8а-гексагидро-3,8-диметил-4-(1-метилэтилиден) и аромадендрен. На фоне увеличения после пожара концентрации всех этих соединений, их относительное содержание в составе сесквитерпеноидов практически не изменились. Следовательно, последствием пожара является более интенсивный биосинтез в багульнике сесквитерпеноидов, что, тем не менее, не приводит к изменению их состава.

Набор ПЦТ в багульнике фонового участка преимущественно включает Δ^{12} урсены (63%), а также Δ^{18} (12%) и Δ^{12} (25%) олеанены, практически не меняясь во времени. На постпирогенном участке через три и четыре года после пожара (по усредненным данным) несколько увеличилась доля урсенов (64%) и олеаненов (14%) Δ^{18} , снизилась доля Δ^{12} олеаненов (22%). При этом максимальное изменение (19.8, 15.4 и 64.8%) зафиксировано через три года, а через четыре года состав приблизился к наблюдаемому в багульнике фонового участка (23.4, 13.2 и 63.4%). Все три класса ПЦТ представлены структурами, различающимися заместителем в положении 3 молекул (спиртовая или кетонная группа). На фоновом участке относительное содержание спиртов лишь незначительно превышает (65%) содержание кетонов, на постпирогенном – оно существенно выше и составляет через три года после пожара 93.7%, а через четыре года восстанавливается до 65.6%, т.е. практически совпадает с зафиксированным в багульнике фонового участка. Это указывает на существенное влияние постпирогенных условий на интенсивность, или, возможно, на пути биосинтеза в багульнике отдельных представителей ПЦТ и восстановление программы биосинтеза через четыре года после пожара.

Рис. 3. Молекулярно-массовое распределение метиловых эфиров жирных кислот в багульнике (а), хамедафие (б), *Sphagnum fuscum* (в), торфе (г).

Стероиды представлены стигмастенами (C_{29}) и ланостенами (C_{30}). Их набор и содержание меняются независимо от пирогенного воздействия, и связаны, видимо, с ростом багульника, поскольку и на фоновом, и на пирогенном участке в течение года изменения в составе стероидов багульника имеют однонаправленный характер.

Хамедафна. Развитие хамедафны на незатронутом пожаром участке в течение трех лет привело, при незначительном изменении концентрации, к увеличению в составе липидов доли большинства классов идентифицированных соединений за счет резкого снижения относительного содержания ПЦТ. На постпирогенном участке (проанализированы растения, собранные через два, три и четыре года после пожара) хамедафна содержит более низкие концентрации всех идентифицированных классов соединений по сравнению с фоновым участком. По мере роста растения на горелом участке, в отличие от фонового, зафиксированы снижение в составе липидов, наряду с ПЦТ, доли токоферолов, фитолов и жирных кислот и существенное увеличение доли н-алканов и сесквитерпеноидов.

Набор сесквитерпеноидов в хамедафне, в отличие от багульника, более широк (идентифицировано 11 разновидностей), но среди них, как и в багульнике на фоновом участке, преобладают палустрол и ледол (72–80 отн. %). Остальные сесквитерпеноиды не содержат функциональных групп. От фонового к горелому участку суммарное содержание сесквитерпеноидов в хамедафне снижается, затем, с увеличением времени, прошедшего после пожара, постепенно увеличивается. На второй год после пожара в хамедафне, произрастающей на горелом участке, не обнаружены палустрол и ледол, которые вновь зафиксированы через три и четыре года.

Концентрация дитерпеноидов и стероидов при переходе от фонового к горелому участку снижается без изменения соотношения содержания отдельных соединений. Дитерпеноиды представлены во всех образцах хамедафны абиета-8,11,13-триеном и склареном. В стероидах наряду со следовыми количествами С₂₈ подавляюще преобладают производные ситостерола (С₂₉). Среди ПЦТ, включающих преимущественно Δ^{12} олеанены и Δ^{12} урсены (86–96 отн. %), доминируют α - и β -амирины с преобладанием во всех исследованных образцах хамедафны α -амирина.

Таким образом, последствиями пожара для хамедафны явились торможение процесса биосинтеза большинства классов липидов, затем его интенсификация по мере роста растения на фоне замедления биосинтеза ПЦТ, токоферолов, фитолов и жирных кислот, не влияющее, в отличие от багульника, на избирательное образование или торможение синтеза отдельных соединений. Sphagnum fuscum. В составе липидов Sphagnum fuscum фонового участка в максимальном количестве присутствуют *н*-алканы и ПЦТ. Повышено также содержание жирных кислот и стероидов. Содержание большинства классов идентифицированных липидов в Sphagnum fuscum после пожара меняется незначительно. Заметно снижается содержание *н*-алканов, ПЦТ.

Основными представителями стероидов на фоновом и горелом участках являются стигмаст-4-ен-3-он и стигмаста-3,5-диен-7-он. В составе стероидов горелого участка на второй год после пожара резко понижено содержание стигмастерола, появился спинастерон, возросло количество стигмастан-3,6-диона, исчез 4-метил-стигмаста-4,22-диен-3-ол, который вновь появился во мхе через три и четыре года, а количество стигмастан-3,6-диона в это время снизилось.

Известно, что образование стигмастерола из ситостерола в растениях стимулирует пониженная температура окружающей среды [19], а увеличение температуры должно тормозить такой переход. Величина отношения присутствующих во мхе стигмастерола к ситостеролу на участке, незатронутом пожаром, составляет 3.1, а на горелом участке через два, три и четыре года – 1.6, 2.0 и 2.1 соответственно. Следовательно, последствием пожара явились условия, способствующие сохранению в сфагновом мхе структуры ситостерола, угнетая процесс перехода его в стигмастерол. При увеличении времени, прошедшего после пожара, соотношение стигмастерола и ситостерола приблизилось к значению, зафиксированному на незатронутом пожаром участке.

Результатом пожара явилось исчезновение в составе ПЦТ *Sphagnum fuscum* углеводородов гопенового (Δ^{21} , $\Delta^{13,18}$ и Δ^{12}), а также Δ^{14} олеаненового рядов. Состав спиртов и кетонов Δ^{12} и Δ^{14} олеаненов, Δ^{12} урсенов и $\Delta^{20,29}$ лупенов меняется незначительно. Во всех исследованных образцах преобладают тараксерон, α - и β -амирины. В составе дитерпеноидов, представленных 18-норабиета-8,11,13-триеном и метиловым эфиром дегидроабиетиновой кислоты, при переходе от фонового к пирогенно нарушенному участку снижается доля метилового эфира дегидроабиетиновой кислоты от 85–93 до 51% на второй год после пожара, затем возрастает до 64 и 77% через три и четыре года соответственно.

Сесквитерпеноиды представлены в *Sphagnum fuscum* фонового участка девятью структурными формами с максимальным содержанием палустрола. На горелом участке на второй год после пожара мхи не содержат палустрола. На этом участке палустрол появляется в *Sphagnum fuscum* через три года, фиксируется также через четыре года и преобладает в составе сесквитерпеноидов, как и на фоновом участке. *Торф.* Постпирогенные изменения в составе липидов верхнего слоя торфа первоначально связаны с термическим воздействием на торфяную залежь, контактирующую с источником огня и горением непосредственно торфа, а с течением времени – с дополнительным поступлением с болотными водами органических компонентов растений, состав липидов которых в результате пожара и впоследствии видоизменился.

Торф фонового участка, как и его основные растения-торфообразователи, — сфагновые мхи, характеризуется преобладанием в составе липидов *н*-алканов, ПЦТ и стероидов. В молекулярномассовом распределении *н*-алканов торфа повышено содержание C_{25} , но в отличие от *Sphagnum fuscum* в торфе высоко также содержание гомолога C_{31} — соединения, преобладающего среди *н*-алканов багульника (рис. 1). После пожара относительное содержание C_{31} снизилось, что может быть следствием отсутствия поступления в торфяную залежь *н*-алканов, продуцируемых частично выгоревшим кустарником.

В составе ПЦТ торфа на фоновом и горелом участках присутствуют и преобладают основные ПЦТ, присущие *Sphagnum fuscum*, тараксерен и тараксерон, но в отличие от *Sphagnum fuscum* в торфе доминирует УВ (тараксерен). Содержание после пожара тараксерена в торфе возрастает, а кетона (тараксерон) и спирта (тараксерол) – снижается (рис. 4,а).

После пожара в торфе снижается также содержание кетонов и спиртов Δ^{12} урсенов и Δ^{12} олеаненов, а также характерного для багульника кетона олеанена Δ^{18} . Возрастает содержание УВ: Δ^{21} и $\Delta^{13,18}$ гопенов и Δ^{12} олеанена. Следовательно, основными изменениями в составе ПЦТ торфа после контакта с источником огня явились снижение концентрации в нем соединений, содержащих функциональные заместители, и возрастание представителей УВ. Это может являться следствием элиминирования в результате термического воздействия кетонной и спиртовой групп в молекулах олеаненов и урсенов с образованием соответствующих УВ, а увеличение содержания гопенов - с активизацией после пожара развития в торфяной залежи бактерий, продуцирующих гопеновые структуры [20].

Как и для ПЦТ, для частично ненасыщенных стероидов C_{29} наблюдается тенденция снижения содержания соединений с функциональными заместителями и увеличения концентрации УВ (рис. 4,6). Не подчиняются этому только представители стероидов – эргоста-3,5-диен-7-он (C_{28}) и ланоста-8,24-ден-3-он (C_{30}), концентрация которых в торфе выгоревшего участка незначительно возрастает, а содержание насыщенного стигмастан-3-она не меняется.

Рис. 4. Содержание ПЦТ (а) и стероидов (б) в торфе с различных участков болота.

зафиксировано только в одном образце торфа, отобранном на горелом участке на второй год после пожара. Величина отношения стигмастерола к ситостеролу в этом торфе составляет 0.5.

В составе дитерпеноидов в исследованном торфе присутствует метиловый эфир дегидроабиетиновой кислоты, представляющий на фоновом участке до 95% дитерпеноидов, а на горелом – 56–85%, возрастая с увеличением промежутка времени после пожара. Кроме него идентифицированы УВ – 18-норабиета-8,11,13-триен, абиета-8,11,13-триен и 13-метил-17-норкаур-15-ен. Сесквитерпеноиды в торфе фонового участка представлены палустролом и ледолом. В торфе горелого участка на второй год после пожара сесквитерпеноиды исчезают, через три года появляется палустрол, а через четыре года – сесквитерпеноиды, как и на фоновом участке, они представлены палустролом и ледолом.

Горелый торф (Г) отличается от остальных исследованных образцов торфа Бакчарского болота как существенно более низкой общей концентрацией липидов, так и содержанием большинства их отдельных групп (табл. 2-4). Исключение представляют ациклический тритерпен – сквален и дитерпеноиды, содержание которых, особенно сквалена, в горелом торфе выше, чем в торфе, который только контактировал с источником огня (ТГ). В составе литерпеноидов, наряду с идентифицированными в не подвергавшемуся горению торфу фонового и горелого участков, присутствует и доминирует трахилобан (табл. 5). В то же время в горелом торфе отсутствует его изомер – 13метил-17-норкаур-15-ен, присущий остальным торфам исследованных участков. Вполне вероятно, что в процессе горения имела место трансформация этого соединения в трахилобан за счет процессов гидрирования и циклизации, а появление в горелом торфе дегидроабиетиновой кислоты может быть обусловлено частичным деметилированием ее эфира.

В процессе горения в составе стероидов резко возросла доля спиртов. Их относительное содержание в составе стероидов торфа ТГ составляет 4.8-8.1%, в торфе Г – 55.1%. Видимо, горение стимулировало гидрирование кетонной группы с образованием спиртовой. Величина отношения стигмастерола к ситостеролу в торфе Г составляет 0.13, это ниже, чем в торфе ТГ (0.5), что также может быть следствием частичного гидрирования стигмастерола в процессе горения с образованием ситостерола.

Увеличение доли стероидов C_{28} от 3% в торфе ГГ до 9% в торфе Г, в котором, кроме того, присутствует холестерол (C_{27}), указывает на возможное деметилирование в процессе горения алкильной цепи стероидов C_{29} .

Аналогично стероидам в составе ПЦТ при горении возрастает доля спиртов от 12 до 59%. Соотношение кетоны/спирты в торфах горелого участка составляет 2:1, в горелом торфе – меняется на обратное. В горелом торфе исчезли УВ, за исключением Δ^{21} гопена, а также сесквитерпеноиды – наиболее летучие среди обнаруженных циклических соединений.

По сравнению с образцом торфа ТГ, в торфе Г существенно снизилось относительное содержание алифатических структур — *н*-алканов (с 43 до 28%) и *н*-алкан-2-онов (с 26 до 3%), в то же время доля изопреноидных соединений, таких как фитол и фитон, не изменилась.

ПОСТПИРОГЕННОЕ ИЗМЕНЕНИЕ СОСТАВА ЛИПИДОВ ТОРФА

Стероиды		Дитерпеноиды			
Стигмаста 3,5-диен	0.12	Трахилобан	0.84		
Холестерол	0.05	18-Норабиета-8,11,13-триен	0.03		
Эргостерол	0.05	Абиета-8,11,13-триен	0.01		
Кампестерол	0.36	Метиловый эфир дегидроабиетиновой кислоты	0.16		
Стигмастерол	0.42	Дегидроабиетиновая кислота	0.07		
Стигмастан-3-ол	0.07	ПЦТ			
Ситостерол	3.11	Тараксерон	0.53		
Эргоста-3,5-диен-7-он	0.02	Гоп-21-ен	0.04		
Стигмастан-3-он	0.14	Тараксерол	0.94		
Ланоста-8,24-диен-3-он	0.33	Олеан-12-ен-3-ол	0.43		
Эргост-4-ен-3-он	0.06	Урс-12-ен-3-он	0.49		
Стигмаста-3,5-диен-7-он	0.19	Урс-12-ен-3-ол	0.81		
Стигмаст-4-ен-3-он	0.41	Ацетат тараксерола	0.22		
Стигмаста-4,6-диен-3-он	0.06	Метил-3-ацетоксилуп-20(29)-ен-28-оат	0.26		
Ацетат ланостерола	0.26				

Таблица 5. Содержание (мкг/г) стероидов, ди- и пентациклических терпеноидов в горелом торфе

Снижение в торфе Г общего содержания н-алканов обусловлено преимущественным разрушением как высокомолекулярных гомологов С31 и C_{33} , так и относительно низкомолекулярных C_{23} и С25, в результате чего в составе н-алканов этого торфа преобладает С₂₇ (рис. 2). Разрушение высокомолекулярных гомологов могло произойти под действием высоких температур, а низкомолекулярных – под действием бактерий, развитие которых после пожара могло активизироваться. О микробном воздействии на горелый торф может свидетельствовать также повышение, по сравнению с ТГ, доли метилового эфира пальмитиновой кислоты в составе эфиров карбоновых кислот (рис. 4), зафиксированному ранее в экспериментах по микробному окислению торфа [9].

ЗАКЛЮЧЕНИЕ

Изучен постпирогенный состав липидов в растениях и торфе на территории Бакчарского болота Томской области в течение 4-летнего периода. Термический стресс (пожар), повлиявший на особенности биосинтеза в растениях, какое-то время оказывает влияние, затем программа биосинтеза восстанавливается, растение продуцирует набор соединений, состав и соотношение которых аналогичны синтезированным без термического воздействия. Так, на второй и третий год после пожара липиды багульника, хамедафны и Sphagnum fuscum, произрастающих на постпирогенном участке, отличаются от липидов соответствующих растений фоновой территории пониженным содержанием большинства групп ациклических соединений. При этом в сфагновом мхе возрастает содержание стероидов, в багульнике и хамедафне — сесквитерпеноидов, а в багульнике, кроме того, увеличивается концентрация ПЦТ, фитона, жирных кислот и их метиловых эфиров. Перераспределение в составе ациклических структур характерно только для багульника: среди *н*-алкан-2-онов на фоновом участке доминирует C_{29} , на выгоревшем — C_{27} и C_{31} ; в ряду метиловых эфиров жирных кислот в фоновом образце багульника преобладает гомолог C_{25} , а в горелом — C_{17} . На четвертый год после пожара состав липидов растений постпирогенного участка приближается к составу тех же растений фонового.

Установлено, что основными изменениями в составе липидов торфа после контакта с источником огня явилось снижение концентрации в нем большинства групп идентифицированных соединений. Увеличение концентрации отмечено для альдегидов, *н*-алкан-2-онов, фитона и ПЦТ. В составе ПЦТ, дитерпеноидов и стероидов торфа с постпирогенного участка, по сравнению с фоновым, возрастает содержание представителей УВ и снижается концентрация соединений, содержащих функциональные заместители. В составе *н*алканов торфа фонового участка при бимодальном распределении преобладает C_{31} , на постпирогенном — C_{25} .

Исследование состава горелого торфа показало, что в отличие от остальных исследованных образцов торфа Бакчарского болота, он характеризуется существенно более низкой общей концентрацией липидов и содержанием большинства их отдельных групп, за исключением дитерпеноидов и сквалена. Появление в горелом торфе дегидроабиетиновой кислоты может быть обусловлено частичным деметилированием ее эфира, а исчезновение сесквитерпеноидов связано с их повышенной летучестью. В процессе горения резко возрастают содержание ситостерола и доля спиртов в составе стероидов и ПЦТ, что может быть следствием гидрирования кетонной группы с образованием спиртовой, и восстановление одной из ненасыщенных связей стигмастерола. В составе алканов горелого торфа преобладает C_{27} , а содержание гомологов C_{31} и C_{33} и C_{23} и C_{25} снизилось, по сравнению с остальными торфами Бакчарского болота.

Таким образом, органические соединения, идентифицированные на территории, подвергшейся пожару, могут служить биомаркерами для выявления постпирогенных слоев в разрезе торфяной залежи при палеоклиматических реконструкциях. Полученные в работе результаты можно использовать и для оценки перспектив рационального применения растительного и торфяного сырья территорий после пожара, например, для медицинских, косметических целей.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации (НИОКТР 121031500046-7).

БЛАГОДАРНОСТИ

Выражаем благодарность сотрудникам Сибирского научно-исследовательского института сельского хозяйства и торфа — филиала Сибирского федерального научного центра агробиотехнологий РАН Ю.А. Харанжевской и А.А. Синюткиной за предоставленные образцы растений и торфа.

СПИСОК ЛИТЕРАТУРЫ

- Дучко М.А. Геохимия биомаркеров в торфах юговосточной части Западной Сибири: Дис. ... канд. геол.-минерал. наук. Томск: ИХН СО РАН, 2017. 149 с.
- 2. Серебренникова О.В., Прейс Ю.И., Кадычагов П.Б., Гулая Е.В. // ХТТ. 2010. № 5. С. 40. [Solid Fuel Chemistry, 2010, по. 5, р. 324.]
- 3. Серебренникова О.В., Стрельникова Е.Б., Русских И.В., Дучко М.А. // ХТТ. 2017. № 4. С. 3. [Solid Fuel Chemistry, 2017, no. 4, p. 195. https://doi.org/10.3103/S0361521917040097] https://doi.org/10.7868/S0023117717040016
- Русских И.В., Стрельникова Е.Б., Серебренникова О.В., Воистинова Е.С., Харанжевская Ю.А. // Геохимия. 2020 Т. 65. № 4. С. 405. [Geochemistry International, 2020, v. 58, no. 4, p. 447. https://doi.org/10.1134/S0016702920040072] https://doi.org/10.31857/S001675252004007X
- 5. Серебренникова О.В., Гулая Е.В., Стрельникова Е.Б., Кадычагов П.Б., Прейс Ю.И., Дучко М.А. // Химия растительного сырья. 2014а. № 1. С. 257.

- Стрельникова Е.Б., Серебренникова О.В., Прейс Ю.И. // XTT. 2014. № 2. С. 12. [Solid Fuel Chemistry, 2014, v. 48, no. 2, p. 85. https://doi.org/10.3103/S0361521914020128]. https://doi.org/10.7868/S0023117714020121
- Серебренникова О.В., Дучко М.А., Коронатова Н.Г., Стрельникова Е.Б. // ХТТ. 2018. № 1. С. 38. [Solid Fuel Chemistry, 2018, no. 52, p. 36. https://doi.org/10.3103/S0361521918010081]. https://doi.org/10.7868/S0023117718010085
- Серебренникова О.В., Стрельникова Е.Б., Прейс Ю.И., Дучко М.А. // Изв. Томск. политехн. ун-та. 2014b. Т. 325. № 3. С. 80.
- Сваровская Л.И., Серебренникова О.В., Дучко М.А., Стрельникова Е.Б., Русских И.В. // ХТТ. 2017. № 2. С. 2. [Solid Fuel Chemistry, 2017, v. 51, по. 2, р. 67. https://doi.org/10.3103/S0361521917020094] https://doi.org/10.7868/S0023117717020098
- Серебренникова О.В., Стрельникова Е.Б., Русских И.В., Харанжевская Ю.А., Воистинова Е.С. // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 65. [Chemistry for Sustainable Development, 2019, v. 27, no. 1, p. 53. https://doi.org/10.15372/CSD20190110] https://doi.org/10.15372/KhUR20190110
- Feurdean A., Florescu G., Tanțău I., Vannière B., Diaconu A.C., Pfeiffer M., Warren D., Hutchinson S.M., Gorina N., Gałka M., Kirpotin S. // Quaternary Sci. Rev. 2020. V. 244. https://doi.org/10.1016/j.quascirev.2020.106495
- Wieder William R., Cleveland Cory, Townsend Alan R. // Ecology. 2009. V. 90. No. 12. P. 3333. https://doi.org/10.1890/08-2294.1
- Kettridge Nicholas, Turetsky M.R., Sherwood J.H., Waddington J.M. // Scientific Reports. 2015. V. 5. No. 1. P. 8063. https://doi.org/10.1038/srep08063
- 14. Benscoter B.W., Vitt D.H. // Ecosystems. 2008. V. 11. No. 7. P. 1054. https://doi.org/10.1007/s10021-008-9178-4
- Olivella M.A., Ribalta T.G., de Febrer A.R., Mollet J.M., de las Heras F.X.C. // Sci. Total Environment. 2006. V. 355. P. 156. https://doi.org/10.1016/j.scitotenv.2005.02.033
- 16. Sung-Deuk Choi // Sci. Total Environment. 2014. V. 470–471. P. 1441. https://doi.org/10.1016/j.scitotenv.2013.07.100
- 17. Стрельникова Е.Б., Русских И.В., Прейс Ю.И. // XTT. 2021. № 5. С. 56. [Solid Fuel Chemistry, 2021, v. 55, no. 5, p. 321. https://doi.org/10.3103/S0361521921050062] https://doi.org/10.31857/S0023117721050066
- Kuhn Thomas K., Krull Evelyn S., Bowater Amy, Grice Kliti, Gleixner Gerd. // Org. Geochem. 2010. V. 41. P. 88. https://doi.org/10.1016/j.orggeochem.2009.08.003
- Renkova A., Valitova J., Schaller H., Minibayeva F. // Biol. Plantarum. 2019. V. 63. P. 59. https://doi.org/10.32615/bp.2019.008
- Sáenz J.P., Grosser D., Bradley A.S., Lagny T.J., Lavrynenko O., Broda M., Simons K. // PNAS. 2015. V. 112. No. 38. P. 11971. https://doi.org/10.1073/pnas.1515607112

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2022