УДК 678.03:546.26; 677.4

ФИЗИКО-ХИМИЧЕСКИЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА КОМПОЗИТНОГО МАТЕРИАЛА НА ОСНОВЕ ПОЛУЧЕННОГО ИЗ КАМЕННОУГОЛЬНОЙ СМОЛЫ УГЛЕРОДНОГО НАНОВОЛОКНА И НАНОЖЕЛЕЗА

© 2022 г. Б. Т. Ермагамбет^{1,*}, М. К. Казанкапова^{1,**}, Б. К. Касенов^{1,***}, Ж. М. Касенова^{1,****}, А. Т. Наурызбаева^{1,****}, Е. Е. Куанышбеков^{1,*****}

¹ ТОО "Институт химии угля и технологии", 010000 Hyp-Султан, Казахстан *e-mail: bake.yer@mail.ru **e-mail: maira_1986@mail.ru ***e-mail: kasenov1946@mail.ru ****e-mail: zhanar_k_68@mail.ru *****e-mail: asemai_2296@mail.ru *****e-mail: mr.ero1986@mail.ru Поступила в редакцию 18.02.2021 г. После доработки 13.10.2021 г. Принята к публикации 26.01.2022 г.

Приведены эксперименты по получению нанокомпозитного материала из каменноугольной смолы угля месторождения "Шубарколь" и наножелеза методом электроспиннинга на лабораторной установке. Определен элементный состав, изучена морфология поверхности исследуемого образца. В результате энергодисперсионной рентгеновской спектроскопии и СЭМ-микроскопии был определен элементный состав, %: С 92.14; О 6.16; Al 0.30; Si 0.26; P 0.07; S 0.20; Cl 0.40; Fe 0.47 и диаметр углеродного нановолокна, который составил от 94.2 до 800.0 нм. Результаты ИК-спектроскопии показали увеличение интенсивности пиков в области 2920–2850 см⁻¹ и появление сигнала при 2359 см⁻¹, что объясняется разрывом нескольких химических связей в структуре образца и образованием композита с наножелезом. Впервые определены электросопротивление (R), электроемкость (c) и диэлектрическая проницаемость (ε) карбонизованного образца в интервале температур 293–483 К.

Ключевые слова: каменноугольная смола, наножелезо, композитные нановолокна, электроспиннинг, формирование, окисление, карбонизация

DOI: 10.31857/S0023117722030021

Углеродные нановолокна (УНВ) как одни из наиболее важных углеродных материалов исследованы в фундаментальных научных работах [1]. УНВ представляют собой класс материалов, в которых изогнутые графеновые слои или наноконусы сложены в форме квазиодномерной нити, внутренняя структура которых может быть охарактеризована углом α между слоями графена и осью волокна [2].

Композиционные материалы часто состоят из полимерной, металлической, углеродной или карбидной матрицы, армированной наполнителями из высокопрочных высокомодульных волокон или нитевидных кристаллов. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

Достижения последних лет в нанохимии углерода открывают весьма широкие перспективы в получении композиции на основе углеродсодержащего сырья. Благодаря уникальным свойствам: чрезвычайно высокой химической стойкости, термопрочности, термостойкости и удельной прочности, углеродные композиты нашли применение в качестве материалов для изготовления высокотемпературной техники [3, 4].

По структуре композиты делятся на несколько основных классов: волокнистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты. Небольшое содержание наполнителя в композитах приводит к появлению качественно новых механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон. Кроме того, армирование волокнами придает материалу анизотропические свойства, а за счет добавки в волокна проводников можно придать материалу электропроводность вдоль заданной оси.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, которые различаются размерами частиц. Так, в работе [5] в композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20–25% (по объему), тогда как дисперсно-упрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0.01 до 0.1 мкм. Размеры частиц, входящих в состав нанокомпозитов – нового класса композиционных материалов – еще меньше и составляют 10– 100 нм.

Углеродные нановолокна привлекают большое внимание ученых своими потенциальными термическими, электрическими, экранирующими и механическими свойствами [6]. В настоящее время, благодаря их исключительным свойствам и низкой стоимости, УНВ все чаще используются в производстве различных материалов, например, при получении нанокомпозитов. Композиты на основе УНВ могут применяться в качестве перспективных материалов в самых разных устройствах, таких как электродные материалы для производства батарей, суперконденсаторов, а также в качестве датчиков.

В настоящей работе УНВ получены из каменноугольной смолы (КУС), которая образуется при пиролизе сырья и имеет следующие характеристики: плотность при 20° C – 1070 кг/м³, вязкость при 80° C – 19.95-23.30 мПа·с, коксуемость – 2.0-3.5%, температура вспышки – $110-120^{\circ}$ C, температура размягчения – $60-70^{\circ}$ C, выход летучих веществ – 83.0%. Она неэлектропроводная и нерастворима в воде, растворяется лишь в органических растворителях (пиридине, бензоле и др.), устойчива к действию кислот.

В исследовании был использован метод электроспиннига для получения нанокомпозитных волокон в лабораторных условиях, так как этот метод в отличие от обычного механического вытягивания волокон из раствора не предъявляет высоких требований к химии процесса, не требует больших температур для затвердевания волокна, а значит, позволяет создавать волокна из длинных и сложных молекул. Несмотря на сложность физических процессов электроформования, этот метод отличается аппаратурной простотой, высокой энергетической эффективностью производства, широкой универсальностью к формируемым материалам и гибкостью в управлении параметрами процесса. Все это делает процесс электроспиннинга привлекательным для промышленного производства нановолокон [7–9].

Способ получения углеродных нанокомпозитных волокон из каменноугольной смолы методом электроспиннинга включает следующие стадии: подготовка сырья, формирование, стабилизация (окисление — для удаления низкомолекулярных продуктов деструкции и образования сшитых и циклических структур) и карбонизация (для удаления водорода и гетероатомов в виде летучих соединений, где происходит окончательное формирование углеродных волокон).

Цель данной работы — получение композитного материала на основе каменноугольной смолы и наножелезного порошка и исследование его физико-химических и электрофизических свойств.

Образцы УНВ и композитных материалов из каменноугольной смолы были получены в ТОО "Институт химии и технологии угля" (г. Нур-Султан), методом электроспиннинга в лабораторных условиях. В качестве исходного сырья использованы каменноугольная смола из угля марки Д месторождения "Шубарколь" (Казахстан) и нанопорошки железа, полученные по методике [10], которые обладают размером от 30 до 150 нм.

Для получения углеродных нанокомпозитных волокон используют каменноугольную смолу и нанопорошок железа в соотношениях 1:1, которые смешивают с 1,2-дихлорэтаном в ультразвуковой ванне при температуре 35°С, частота – 35 кГЦ, время выдержки 30 мин. В качестве связующего использовался полиметилметакрилат, который также растворяют в 1,2-дихлорэтане (массовая доля 3%) в ультразвуковой ванне при аналогичных условиях. Готовые растворы, полученные на предыдущих стадиях, смешивают в соотношении 1:1. Полученный продукт перемешивают в ультразвуковой ванне до получения однородной массы. Приготовленный раствор помещают в установку электроспиннинга со шприцом. Установленное напряжение составляет 20-25 кВ, расстояние между приемником и шприцом 20-30 см. Волокна, полученные после прядения, окисляют при температуре 300°С в потоке воздуха. Время выжержки составляет 1 ч, после окисления проводят процесс карбонизации в инертной среде аргона при температуре 800°С, скорость нагрева составляет 5°С/мин, время выдержки 60 мин [11].

Для подготовки сырья и получения углеродных нанокомпозитных волокон были использованы следующие приборы: ультразвуковая ванна, лабораторная установка электроспиннига, сканирующий электронный микроскоп *SEM (Quanta 3D 200i)* с приставкой для энергодисперсионного анализа от *EDAX*, просвечивающая электронная микроскопия (*JEM1400 PLUS*), ИК-Фурье-спектрометр (*NicoletiS 10*).

Наименование		Содержание элементов, мас. %									
		0	Na	Mg	Al	Si	Р	Fe	S	Cl	Ca
Исходный композитный материал	92.14	6.16	_	_	0.30	0.26	0.07	0.47	0.20	0.40	_
Карбонизованный композитный материал	85.88	6.02	0.44	0.21	0.09	0.78	0.13	5.66	0.28	_	0.43

Таблица 1. Элементный состав образцов

Определение электрофизических характеристик (диэлектрической проницаемости ε , электрического сопротивления R) проводилось путем измерения электроемкости C образцов на серийном приборе *LCR-7817* (измеритель L, C, R) при рабочих частотах 1, 5 и 10 кГц непрерывно, в сухом воздухе, в термостатном режиме со временем выдержки 3 мин при каждой фиксированной температуре. Данный измеритель предназначен для измерения емкости, индуктивности и сопротивления с базовой погрешностью 0.05% [12].

Предварительно изготавливали плоскопараллельные образцы в виде дисков диаметром 10 мм и толщиной 5-6 мм со связующей добавкой (~1.5%). Прессование проводили под давлением 20 кг/см². Полученные диски обжигали в силитовой печи при 473 К в течение 6 ч. Далее проводили их тщательное двухстороннее шлифование.

Диэлектрическую проницаемость определяли из электроемкости образца и электроемкости конденсатора. Для получения зависимости между электрической индукцией D и напряженностью электрического поля E использовали схему Сойера-Тауэра. Визуальное наблюдение D (E-петли гистерезиса) проводили на осциллографе C1-83 с делителем напряжения, состоящим из сопротивлений 6 мОм и 700 кОм, и эталонным конденсатором 0.15 мкФ. Частота генератора 300 Гц. Во всех температурных исследованиях образцы помещали в печь, температуру измеряли хромельалюмелевой термопарой, подключенной к вольтметру *B2-34* с погрешностью ± 0.1 мВ. Скорость изменения температуры ~10 К/мин. Величину диэлектрической проницаемости при каждой температуре определяли по формуле $\varepsilon = C/C_0$, где C_0 – емкость конденсатора без исследуемого вещества (воздушного).

Результаты проведенного элементного анализа, представленные в табл. 1, показывают, что после термической обработки композитного материала большая часть летучих компонентов удаляется в виде газообразных продуктов, соответственно, повышается концентрация минеральных составляющих. Содержание углерода значительно уменьшается.

С помощью ИК-спектроскопии в ходе экспериментов исследован функциональный состав образца исходной смолы "Шубарколь" (рис. 1). Судя по спектру, смола имеет преимущественно алифатический характер с незначительным содержанием ароматики. Об этом свидетельствуют очень интенсивные полосы поглощения при

Рис. 1. ИК-спектр каменноугольной смолы "Шубарколь".

Рис. 2. ИК-спектр композитного материала на основе КУС и наножелеза.

Рис. 3. Результаты СЭМ-изображения композитного волокна на основе КУС и наножелеза: ×10 000; ×20 000.

2900—2800 см⁻¹ и около 1400 см⁻¹, отвечающие за валентные и деформационные колебания С–Н насыщенных связей соответственно, и лишь очень слабое поглощение при 1600 см⁻¹, обусловленное валентными колебаниями ароматического углеродного каркаса. Полосы при 825 и 722 см⁻¹ могут быть связаны с деформационными колебаниями СН₂ – связей в алифатических цепочках.

В частности, полосу при 722 см⁻¹ обычно приписывают CH₂-группам в длинных алифатических цепочках, с числом атомов углерода в цепочке больше четырех. Интенсивная полоса с максимумом 3127 см⁻¹ обусловлена в основном водородосвязанными гидроксильными группами фенолов, которыми всегда богаты все угольные смолы.

На ИК-спектре композитного волокна (рис. 2) наблюдаются характеристические полосы коле-

×12000 ×2000 ×12000

Рис. 4. Результаты ПЭМ-изображения композитного волокна на основе КУС и наножелеза: ×12 000; ×20 000; ×12 000.

Рис. 5. Результаты СЭМ-изображения композитного материала после окисления при 300°С: ×2000; ×5000.

баний алифатических С–H-связей при 2830–2920 и 3025 см⁻¹. Пики между 1050 и 1200 см⁻¹ относятся к С–О, также интервал 1260–1275 см⁻¹ характеристичен для валентных колебаний С–H-связей.

(a)

Электронные снимки СЭМ и ПЭМ композитного материала на основе КУС и наножелеза представлены на рис. 3 и 4, где четко видны углеродные нано- и макроволокна с диаметром от 94.2 до 800 нм. Размеры и форма поперечного сечения волокон, полученных в процессе электроформирования (как и в некоторых других видах их сухого формования), достаточно четко взаимосвязаны. Волокна толщиной менее 1 мкм имеют круглое поперечное сечение. Однако с увеличением толщины оно постепенно переходит сначала в овальное, а затем в характерное гантелевидное, демонстрируя тенденцию неотвержденных струй прядильного раствора к расщеплению вдоль оси. На рис. 3, б можно наблюдать сферообразные частицы нанопорошка железа с размером от ~83.58 до ~190.6 нм.

Далее проводили исследования по окислению и карбонизации полученного УНВ, так как сформованное волокно, как правило, отличается низкой прочностью и повышенной хрупкостью. Как видно из электронно-микроскопических снимков окисленной формы УНВ (рис. 5), исходная форма образца не сохраняется.

На ИК-спектрах окисленной формы композитного материала (рис. 6) наблюдаются полосы колебаний алифатических С–Н-связей при 2917 и 3025 см⁻¹. Пик около 1718 см⁻¹, типичный для валентной вибрации С=О карбонильных групп кетонов (включая хиноны), карбоновых кислот.

Рис. 6. ИК-спектр окисленной формы композитного материала на основе КУС и наножелеза.

Рис. 7. Результаты СЭМ-изображения композитного материала после карбонизации при 800°С: ×10 000; ×30 000.

Кроме того, наблюдаемая частота в 1452 см⁻¹ показывает деформацию группы CH₃.

СЭМ-снимки карбонизованной формы композитного материала представлены на рис. 7, где обнаружены углеродные сферы, с размерами частиц от 179.1 до 1.08 мкм. Карбонизованная форма образца не дает никакого сигнала на ИК-Фурье-спектрометре.

Таким образом, в результате карбонизации УНВ можно получить еще один продукт — углеродные сферы (УС), которые привлекли значительный интерес исследователей из-за их потенциального применения, например в газовом разделении и в качестве молекулярных сит, кристаллов с фотонной запрещенной зоной, подложек катализаторов и материалов электродов для литий-ионных аккумуляторов. УС служат опорными подложками благодаря их высокой площади поверхности и высокой структурной стабильности, помимо других свойств. По сравнению с углем, нефтью или производными продуктами УС, полученные из устойчивого, недорогого сырья для хранения энергии, стали особенно интересными.

В табл. 4 приведены результаты измерения электрофизических характеристик карбонизованного композитного материала на основе КУС и наножелеза при 800°С в интервале 293–483 К и частотах, равных 1, 5 и 10 кГц (табл. 2).

<i>Т</i> , К	<i>С</i> , нФ (±0.5%)	<i>R</i> , Ом (±0.05%)	ε (±0.05%)	lgɛ	lg <i>R</i>	
		Частота изме	ерений 1 кГц			
293	8.1843	78 110	17671	4.25	4.89	
303	6.6642	77 170	14389	4.16	4.89	
313	181.28	12130	391407	5.59	4.08	
323	107.76	10280	232668	5.37	4.01	
333	188.62	6235	407255	5.61	3.79	
343	219.03	4407	472914	5.67	3.64	
353	272.45	3259	588254	5.77	3.51	
363	526.08	1856	1 135 874	6.06	3.27	
373	855.79	1172	1847760	6.27	3.07	
383	1204.4	888.3	2600453	6.42	2.95	
393	1669.0	671.4	3603584	6.56	2.83	
403	2143.5	621.1	4628090	6.67	2.79	
413	2723.1	586.6	5879521	6.77	2.77	
423	3563.1	639.4	7693188	6.89	2.81	
433	4193.3	702.9	9053870	6.96	2.85	
443	11872	678.6	25633164	7.41	2.83	
453	28900	569.7	62398791	7.80	2.76	
463	65435	450.2	141 282 522	8.15	2.65	
473	99999<	382.8	215910612<	8.33<	2.58	
483	99999<	251.8	215910612<	8.33<	2.40	
		Частота изме	ерений 5 кГц			
293	0.71268	91620	1539	3.19	4.96	
303	1.5016	43680	3242	3.51	4.64	
313	11.89	13690	25672	4.41	4.14	
323	17.565	8326	37925	4.58	3.92	
333	31.115	4905	67 181	4.83	3.69	
343	46.57	3582	100 5 5 1	5.00	3.55	
353	61.272	2600	132294	5.12	3.41	
363	121.76	1527	262895	5.42	3.18	
373	203.25	983.5	438843	5.64	2.99	
383	285.21	750.1	615805	5.79	2.88	
393	401.14	582.6	866 112	5.94	2.77	
403	446.15	551.9	963295	5.98	2.74	

Таблица 2. Зависимость электроемкости (*C*), электросопротивления (*R*) и диэлектрической проницаемости (ε) от температуры

Таблица 2. Окончание

Т, К	<i>С</i> , нФ (±0.5%)	<i>R</i> , Ом (±0.05%)	ε (±0.05%)	lgɛ	lg <i>R</i>			
413	527.95	536.8	1 139 911	6.06	2.73			
423	628.31	599.8	1356602	6.13	2.78			
433	695.41	672.3	1 501 479	6.18	2.83			
443	1484.9	657.6	3206089	6.51	2.82			
453	3030.9	558.1	6544100	6.82	2.75			
463	5810.1	434.8	12544748	7.10	2.64			
473	12124	313.6	26177264	7.42	2.50			
483	21 303	244.4	45995898	7.66	2.39			
Частота измерений 10 кГц								
293	0.4093	55810	884	2.95	4.75			
303	1.031	29060	2226	3.35	4.46			
313	4.9727	11 180	10737	4.03	4.05			
323	9.0316	7151	19500	4.29	3.85			
333	17.626	4229	38057	4.58	3.63			
343	22.115	3187	47 749	4.68	3.50			
353	33.573	2265	72488	4.86	3.36			
363	70.444	1325	152098	5.18	3.12			
373	109.99	893.8	237482	5.38	2.95			
383	155.83	689.3	336457	5.53	2.84			
393	214.89	546.6	463975	5.67	2.74			
403	230.28	520.6	497204	5.70	2.72			
413	259.15	519.6	559538	5.75	2.72			
423	292.37	583.0	631264	5.80	2.77			
433	308.21	660.3	665465	5.82	2.82			
443	588.22	643.0	1270042	6.10	2.81			
453	1064.5	548.4	2298391	6.36	2.74			
463	2001.4	429.2	4321278	6.64	2.63			
473	4211.9	303.9	9094030	6.96	2.48			
483	6850.3	239.6	14790673	7.17	2.38			

Результаты исследований, представленных в табл. 2, показывают, что от 293 до 453 К значения диэлектрической проницаемости (ε) окисленного и карбонизированного композитного материала имеют невысокие значения, которые убывают с увеличением частот от 1 до 10 кГц. Однако далее, при достижении 453 K, значения є плавно возрастают до 2.16 · 10⁸ (1 кГц), 4.6 · 10⁷ (5 кГц), $1.48 \cdot 10^7$ (10 кГц), которые превышают є эталонного BaTiO₃ при 483 K в 100005 раз (при 1 кГц),

Рис. 8. Зависимость диэлектрической проницаемости карбонизованного композитного материала от температуры и частоты, равных: 1, 5 и 10 кГц.

в 21882 раз (при 5 кГц) и в 7043 раз (при 10 кГц) [13]. Как видно из данных табл. 2, плавное возрастание диэлектрической проницаемости от 293 до 483 К подтверждается трехкратным измерением є при 1, 5 и 10 кГц. Материал представляет интерес в качестве конденсаторного материала в интервале 443–483 К.

Исследование зависимости электросопротивления от температуры показывает, что данный материал в интервале 293–413 К проявляет полу-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 3 2022

проводниковый, при 413—433 К — металлический и при 433—483 К — снова полупроводниковый характер проводимости. Результаты исследований показывают, что ширина запрещенной зоны данного материала при 293—413 К равна 0.71 эВ, а при 433—483 К — 1.99 эВ и его можно отнести к узкозондовым полупроводникам.

Методом наименьших квадратов выведены уравнения зависимости электросопротивления

Рис. 9. Зависимость электросопротивления карбонизованного композитного материала от температуры и частоты, равных: 1, 5 и 10 кГц.

данного материала от обратной температуры, которые описываются следующими уравнениями:

lg
$$R = -2.69 + \frac{2135}{T} (\Delta T = 293 - 413 \text{ K}),$$
 (1)

lg
$$R = -1.64 + \frac{1958}{T} (\Delta T = 433 - 483 \text{ K}),$$
 (2)

решением которых вычислены энергии активации ($E_{\text{акт}}$) проводимости, равные 40.88 кДж/моль (для интервала 293—413 К) и 37.49 кДж/моль (для

интервала 433—483 К). Значения $E_{\text{акт}}$ также показывают об увеличении проводимости с повышением температуры.

Предлагаемый способ получения композитных нановолокон построен на основе метода электроспиннинга, который является наиболее перспективным способом промышленного производства и обеспечивает получение продукта с относительно высокой однородностью фракции, что определяет достижение прочностных харак-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 3 2022

теристик, предъявляемых к конструкционным материалам.

Исследования проводились для создания экологически чистой технологии, основанной на переработке вторичного сырья (каменноугольная смола и др. отходы угледобычи) для получения углеродных волокон и композитов на их основе. Создание данной технологии позволит решить экологический аспект утилизации данного типа отходов с получением экономически рентабельного продукта.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Lichao F., Ning X., Jing Zh.* // Materials. 2014. № 7. P. 3919. https://doi.org/10.3390/ma7053919
- Melechko A.V., Merkulov V.I., McKnight T.E., Guillorn M.A., Klein K.L., Lowndes D.H., Simpson M.L. // J. Appl. Phys. 2005. № 97. P. 041301. https://doi.org/10.1063/1.1857591
- 3. *Ремпель А.А.* // Успехи химии. 2007. Т. 76. № 5. С. 474.
- 4. Пономарев А.Н. // Наука и высокие технологии. 2003. С. 99.
- 5. Кербер М.Л., Виноградов В.М., Головкин Г.С., Берлин А.А. Практическое пособие, 2008. 560 с.

6. *Tibbetts G.G., Lake M.L., Strong K.L., Rice B.P.* // Composites Sci. and Technol. 2007. T. 67. № 7–8. P. 1709.

https://doi.org/10.1016/j.compscitech.2006.06.015

- Yermagambet B.T., Kazankapova M.K., Nauryzbaeva A.T., Mansurov Z.A., Smagulova G.T., Kaidar B.B. // News Acad. Sci. Rep. Kaz. 2019. V. 4. №. 436. P. 86. https://doi.org/10.32014/ 2019.2518-170X.101
- 8. Kaidar B., Argymbaev D., Artykbayeva M., Smagulova G., Mansurov Z.A. // IX Intern. symp. "Combustion and Plasmochemistry". 2017. № 9. P. 97.
- Ermagambet B.T., Kazankapova M.K., Ermogambetov Zh.Kh., Nauryzbayeva A.T., Kanagatov K.G., Abylgazina L.D. // Reports Nat. Acad. Sci. Rep. Kaz. 2018. V. 2. № 318. P. 9.
- 10. *Пустовалов А.В.* // Изв. вузов. Физика. 2013. Т. 56. № 7/2. С. 164.
- Yermagambet B.T., Kazankapova M.K., Kassenova Zh.M., Nauryzbayeva A.T. // Reports Nat. Acad. Sci. Rep. Kaz. 2020. V. 5. № 333. P. 19. https://doi.org/10.32014/2020.2518-1483.114
- Руководство по эксплуатации. Измеритель RLC (LCR – 7816/7817/7819/7821/7826/7827/7829). М.: ЗАО "ПриСТ", 2012. С. 3.
- Yermagambet B.T., Kasenov B.K., Kazankapova M.K., Kassenova Zh.M., Kuanyshbekov E.E., Nauryzbaeva A.T. // XTT. 2021. № 1. C. 44. [Solid Fuel Chemistry, 2021, vol. 55, no. 1, p. 41. https://doi.org/10.3103/S036152192101002X]. https://doi.org/10.31857/S0023117721010023