УДК 579.22:579.66:547.912

ОБРАЗОВАНИЕ УГЛЕВОДОРОДОВ РЯДА АДАМАНТАНА ИЗ СОВРЕМЕННЫХ И ДРЕВНИХ ИСКОПАЕМЫХ СМОЛ (ЯНТАРЕЙ) ХВОЙНЫХ ДЕРЕВЬЕВ

© 2022 г. Г. А. Гаджиев^{1,*}, М. В. Гируц^{1,**}, А. В. Васильева^{1,***}, Д. С. Вылекжанина^{1,****}, Е. Ю. Макарова^{2,*****}, М. А. Большакова^{2,******}, Г. Н. Гордадзе^{1,*******}

¹ Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина, 119991 Москва, Россия ² Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия

> *e-mail: gadzhiev.g@gubkin.ru **e-mail: moxixh@yahoo.com ***e-mail: any38469323@yandex.ru ****e-mail: vylekzhanina_d@mail.ru ****e-mail: lenamakarova87@yandex.ru *****e-mail: m.bolshakova@oilmsu.ru *****e-mail: gordadze@rambler.ru Поступила в редакцию 07.12.2021 г. После доработки 28.12.2021 г. Принята к публикации 26.01.2022 г.

Проведен термолиз и термокаталитические превращения современных и древних смол (янтарей) хвойных деревьев. Установлено, что при термолизе и древних и молодых смол хвойных деревьев образуются протоадамантаны, тогда как при термокатализе – адамантаны С₁₀–С₁₄, находящиеся в нефтях. Показано, что в результате изомеризации протоадамантанов, присутствующих в смолах (как современных, так и ископаемых) хвойных деревьев преимущественно образуются термодинамически слабоустойчивые углеводороды ряда адамантана, которые затем изомеризуются в термодинамически более устойчивые изомеры. В продуктах термокатализа современных смол генерируется значительно больше ди- и триметиладамантанов (относительно монометиладамантанов) по сравнению с ископаемыми смолами.

Ключевые слова: *смолы, янтарь, термолиз, катализ, углеводороды, адамантаны, протоадамантаны* **DOI:** 10.31857/S0023117722030033

Углеводороды (УВ) алмазоподобного строения — адамантаны (трицикло[3.3.1.1^{3,7}]деканы), в небольших концентрациях содержатся во всех нефтях [1], являясь незаменимым сырьем для синтеза лекарственных препаратов, термостойких полимерных материалов, присадок к топливам и маслам, объектов наномолекулярной химии и т.д. Природный источник адамантанов это нефть или газоконденсаты. Синтетическим путем ввиду сложности процесса получены лишь низшие адамантаны. Синтез высокомолекулярных адамантанов пока не осуществлен. В связи с этим актуален поиск альтернативных источников, а также биологических предшественников адамантанов [1–3].

Известно, что в нефтях морского генезиса "в отличие от нефтей континентального генезиса" наряду с адамантанами присутствуют в довольно больших количествах протоадамантаны (предшественники адамантанов, способные под действием кислотных катализаторов изомеризоваться в углеводороды ряда адамантана), которые элюируются на масс-хроматограммах с характеристическими ионами адамантанов (m/z 135, 136, 149, 163 и 177) [4, 5]. Было высказано предположение, что отсутствие протоадамантанов в нефтях континентального генезиса обусловлено исходным органическим веществом (OB), наследованным от высших растений [5].

Ранее было показано, что УВ ряда адамантана и протоадамантаны образуются в результате термолиза смол и асфальтенов нефтей, а также нерастворимой части самых древних живых организмов на Земле — прокариотов (бактерий и архей) [6, 7]. Причем из прокариотов в результате термолиза образуются лишь протоадамантаны [8].

Номер образца	Образец	Место отбора	Характеристика					
Современные смолы								
1	Смола Араукарии	Родос, Греция	Отобрана в 2013 г.					
2	Смола Араукарии Турция Отобрана в 2021 г.							
Ископаемые смолы								
3	Янтарь	Тикси, Якутия	Отобран из угольного пласта (эоцен)					
4	Янтарь	о. Сахалин	Перемытый морем (палеоген)					
5	Янтарь	Калининградская область	Первично в морских условиях (неоген)					

Таблица 1. Список исследованных образцов

Образование протоадамантанов отмечено и в работе [9], где было исследовано строение бензольных и спирто-бензольных смол растворимого ОВ породы и нефтей путем термолиза с последующим изучением распределения УВ на молекулярном уровне. Было показано, что в результате термолиза бензольных и спирто-бензольных смол ОВ баженовской свиты наряду с протоадамантанами генерируются *н*-алканы $C_{10}-C_{40}$, *н*-алкилциклогексаны $C_{10}-C_{30}$, алкилбензолы $C_{10}-C_{30}$, стераны и терпаны, иными словами УВ, которые находятся в нефтях.

Исследования авторов статьи показали, что в нефтях континентального генезиса, в образовании которых участвовали высшие растения, в отличие от нефтей морского генезиса, находятся "чистые" адамантаны. Поскольку в образовании нефтей континентального генезиса участвовали в том числе и хвойные деревья, можно предположить, что в результате термолиза смол хвойных деревьев также могут образоваться только адамантаны при отсутствии протоадамантанов. В литературе такие данные отсутствуют. Но, как будет показано ниже, предположения не подтвердились.

В природе смолы хвойных деревьев присутствуют как в виде таковых, выделяемых деревьями, так и в виде ископаемых смол – янтарей. Как известно, ископаемые смолы и янтари являются продуктом литогенеза смолистых веществ высших растений – резинита. Эти компоненты растений, как и другие липоидные составляющие, характеризуются устойчивостью к микробиальному воздействию, поэтому хорошо сохраняются при бактериальной переработке ОВ. Они встречаются в довольно широком возрастном диапазоне осадочных пород. В работе [10] были изучены янтари разного возраста в свете проблемы оценки их вклада в образование жидких УВ при катагенезе органического вещества пород. Образцы янтаря были изучены микроскопически, выполнен изотопный анализ углерода, а также приводятся данные ИК-спектроскопии.

Янтари и ископаемые смолы образуют скопления, нередко промышленного масштаба, и используются в основном в ювелирной, медицинской и химической промышленности. Обладая повышенным содержанием водорода, они могут внести существенный вклад в образование УВ при катагенезе органического вещества пород. Кроме того, янтари могут являться источником ценных УВ [11–16].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования были отобраны образцы современных смол хвойных деревьев (образцы №№ 1, 2), а также образцы древних смол (янтарей) (образцы №№ 3–5), представленные в табл. 1.

С целью получения УВ ряда адамантана из современных и ископаемых смол (янтарей) хвойных растений был проведен их термолиз в одинаковых условиях при температуре 330°С в запаянных ампулах. Термокаталитические превращения осуществляли при той же температуре в присутствии алюмосиликатного катализатора, предварительно активированного при 420°С.

Анализ УВ в продуктах термолиза и термокаталитических превращений янтаря осуществляли методом хромато-масс-спектрометрии (ХМС) на приборе Agilent 6890N/5975C со следующими условиями: колонка HP-1MS 25 м × 0.25 мм × 0.5 мкм, начальная температура анализа 70°С, программирование температуры со скоростью подъема температуры 4°/мин до 290°С. Газ-носитель – гелий. Анализ проводили в режиме полного ионного тока, с регистрацией осколочных ионов в диапазоне m/z 50-550. Энергия ионизирующих электронов 70 эВ, ускоряющее напряжение 3500 В, температура камеры ионизации 250°С. Идентификацию соединений проводили путем добавления к исследуемым образцам предполагаемых эталонных соединений с помощью использования библиотеки масс-спектров NIST и литературных данных.

ОБРАЗОВАНИЕ УГЛЕВОДОРОДОВ РЯДА АДАМАНТАНА

Номер образца (см. табл. 1)	C ₁₁			C ₁₂			C ₁₃			C ₁₄				
	1- MA	2- MA	1,3- дМА	1,2- дМА	1,4- дМА	1- ЭА	2- ЭА	1,3,5- тМА	1,3,6- тМА	1,3,4- тМА	1-Э-3- МА	1,3,5,7- теМА	1,2,5,7- теМА	1-Э-3,5- дМА
Современные смолы														
1	68.8	31.2	30.1	17.5	40.8	5.8	5.8	10.5	32.5	45.6	11.4	7.1	52.4	40.5
2	77.5	22.5	34.0	17.4	35.8	7.3	5.5	11.3	30.2	44.3	14.2	3.7	55.6	40.7
Ископаемые смолы														
3	78.6	21.4	34.7	16.3	38.8	6.1	4.1	13.2	32.9	43.4	10.5	6.4	78.7	14.9
4	69.2	30.8	26.3	22.4	39.5	6.5	5.3	8.9	33.0	43.8	14.3	3.4	61.0	35.6
5	70.0	30.0	25.0	18.8	40.6	6.3	9.3	9.3	37.2	41.9	11.6	6.1	75.5	18.4

Таблица 2. Относительное распределение адамантанов состава C₁₁–C₁₄ в продуктах катализа с алюмосиликатом образцов современных и ископаемых смол (янтарей) хвойных деревьев

Примечание. МА – метиладамантан; ЭА – этиладамантан; дМА – диметиладамантан; тМА – триметиладамантан; теМА – тетраметиладамантан.

Таблица 3. Относительное содержание термодинамически наиболее устойчивых изомеров адамантанов C₁₁-C₁₃ в продуктах катализа с алюмосиликатом образцов современных и ископаемых смол (янтарей) хвойных деревьев и в равновесии при 300 К

Номер образца	1-MA/(1	+2-MA), %	1,3-дМА/(1,3-+1	,2-+1,4-дМА), %	1,3,5-TMA/(1,3,5-+1,3,6- +1,3,4-TMA), %				
(CM. 1405). 1)	Ι	II	I II		Ι	II			
Современные смолы									
1	69		34		12				
2	76	98	41	93	13	93			
Среднее значение	73		38		13				
Ископаемые смолы									
3	79		39		15	02			
4	69	00	30	02	10				
5	62	70	23	75	10	73			
Среднее значение	70		31		12				

Примечание. І – катализ; ІІ – в равновесии при 300К [17].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1 и 2 представлены типичные массхроматограммы адамантана, моно-, ди-, три- и тетразамещенных адамантанов (m/z 136, 135, 149, 163 и 177) состава $C_{10}-C_{14}$ продуктов термолиза и термокаталитических превращений современных и ископаемых (янтарей) смол хвойных деревьев. Видно, что в продуктах термолиза смол присутствуют только протоадамантаны, тогда как в продуктах катализа они преобразуются в УВ ряда адамантана.

В табл. 2 представлено распределение адамантанов состава $C_{11}-C_{14}$ в продуктах катализа с алюмосиликатом образцов современных и ископаемых смол (янтарей) хвойных деревьев, а в табл. 3 – распределение термодинамически наиболее устойчивых изомеров моно-, ди- и триалкилзамещенных адамантанов (у которых заместители находятся в голове моста), а также приведены их равновесные концентрации при 300 К. В равновесии относительная концентрация термодинамически наиболее устойчивых метил-, диметил- и триметилзамещенных изомеров, находящихся во главе моста (1-метиладамантан, 1,3-диметиладамантан и 1,3,5-триметиладамантан), выше 92% [17].

В табл. 3 представлено относительное распределение адамантанов состава $C_{11}-C_{14}$. Нетрудно заметить, что в результате изомеризации протоадамантанов, присутствующих в смолах (как современных, так и ископаемых) хвойных деревьев, преимущественно образуются термодинамически слабоустойчивые УВ ряда адамантана, кото-

ГАДЖИЕВ и др.

Рис. 1. Типичные масс-хроматограммы термолизатов и продуктов катализа современных смол хвойных деревьев на примере образца смолы Араукарии (Родос, 2013 г.).

рые затем изомеризуются в термодинамически более устойчивые изомеры. Особенно четко такая закономерность прослеживается в случае диметил- и триметиладамантанов. Что касается 1- и 2метиладамантанов, то, как и следовало ожидать, они быстрее изомеризуются и, следовательно, относительное содержание термодинамически наиболее устойчивого 1-метиладамантана ближе к равновесному значению (табл. 3) по сравнению с ди- и тризамещенными адамантанами.

Рис. 2. Типичные масс-хроматограммы термолизатов и продуктов катализа на примере образца янтаря (о. Сахалин).

В табл. 4 и на рис. 3 представлен групповой состав адамантанов $C_{10}-C_{14}$ в продуктах катализа с алюмосиликатом образцов современных и ископаемых смол (янтарей) хвойных деревьев. Видно, что в продуктах катализа современных смол генерируется значительно больше ди- и триметиладамантанов (относительно монометиладамантанов) по сравнению с ископаемыми смолами.

ГАДЖИЕВ и др.

Howen official (on Tofu 1)	Адамантаны											
Помер образца (см. таол. т)	$C_{10}:C_{11}:C_{12}:C_{13}:C_{14}$	C ₁₁ /C ₁₂	C ₁₁ /C ₁₃	C ₁₁ /C ₁₄	C ₁₂ /C ₁₃	C ₁₂ /C ₁₄	C ₁₃ /C ₁₄					
Современные смолы												
1	1:11:35:39:14	0.31	0.28	0.79	0.89	2.50	2.79					
2	1:15:37:38:10	0.41	0.39	1.50	0.97	3.70	3.80					
Среднее значение	1:13:36:38:12	0.36	0.34	1.15	0.93	3.10	3.30					
Ископаемые смолы												
3	1:7:26:41:25	0.27	0.17	0.28	0.63	1.04	1.64					
4	1:9:28:41:21	0.32	0.22	0.43	0.68	1.33	1.95					
5	1:7:32:41:19	0.22	0.17	0.37	0.78	1.68	2.16					
Среднее значение	1:8:18:41:22	0.27	0.19	0.36	0.70	1.37	1.92					

Таблица 4. Групповой состав адамантанов C₁₀–C₁₄ в продуктах катализа с алюмосиликатом образцов современных и ископаемых смол (янтарей) хвойных деревьев

ЗАКЛЮЧЕНИЕ

Впервые показано, что как современные, так и древние ископаемые смолы (янтари) хвойных деревьев содержат протоадамантаны, которые при катализе с алюмосиликатом изомеризуются в углеводороды ряда адамантана $C_{10}-C_{14}$. Установлено, что на начальных стадиях изомеризации образуются преимущественно слабоустойчивые изомеры адамантанов. На более поздних стадиях изомеризации, как и следовало ожидать, увеличивается относительная концентрация термодинамически более устойчивых изомеров адаманта-

нов — 1-метиладамантана, 1,3-диметиладамантана, 1,3,5-триметиладамантана, 1,3,5,7-тетраметиладамантана (т.е. тех, в которых заместители находятся в голове моста). Из протоадамантанов ископаемых смол (янтарей) образуются, преимущественно, ди- и триметилзамещенные адамантаны, по сравнению с современными смолами.

Предположение о том, что смолы хвойных деревьев могут являться источником чистых адамантанов нефтей континентального генезиса, не подтвердилось.

Рис. 3. Групповой состав адамантанов С₁₁-С₁₄ в продуктах катализа с алюмосиликатом образцов современных и ископаемых смол (янтарей) хвойных деревьев (усредненные данные).

СПИСОК ЛИТЕРАТУРЫ

- 1. Гируц М.В., Гордадзе Г.Н. Химия и геохимия углеводородов алмазоподобного строения. М.: ООО "Издательский дом Недра", 2017. 221 с.
- Mansoori G.A. Diamondoid Molecules With Application in Biomedicine, Material Science, Nanotechnology & Petroleum Science/ G.A. Mansoori. World Scientific Publishing Co. Pte. Ltd, Singapore, 2012. P. 408.
- 3. Нехаев А.И. // Нефтехимия. 2011. Т. 51. № 2. С. 97.
- Гаджиев Г.А., Бадмаев Ч.М., Гордадзе Г.Н., Гируц М.В. // Нефтехимия. 2021. Т. 61. № 2. С. 166. https://doi.org/10.31857/S0028242121020040
- 5. *Гордадзе Г.Н.* // Нефтехимия. 2008. Т. 48. № 4. С. 243. [*Gordadze G.N.* // Petroleum Chemistry. 2008. V. 48. № 4. Р. 241.]
- Гордадзе Г.Н. Углеводороды в нефтяной геохимии. Теория и практика. М.: Российский государственный университет нефти и газа имени И.М. Губкина, 2015. 559 с.
- 7. Гируц М.В., Гордадзе Г.Н., Строева А.Р., Стоколос О.А., Богатырев С.О., Кошелев В.Н. // Химия и технология топлив и масел. 2014. № 4. С. 15.
- Гордадзе Г.Н., Гируц М.В., Пошибаева А.Р., Пошибаева В.В., Гаянова А.А., Постников А.В., Постникова О.В. // Нефтехимия. 2019. Т. 59. № 6. С. 618. https://doi.org/10.1134/S0028242119060042
- Гордадзе Г.Н. Термолиз органического вещества в нефтегазопоисковой геохимии. Москва, 2002. С. 336.

- 10. Макарова Е.Ю., Маслова Е.Е., Марек Я. // Георесурсы. Спецвыпуск. 2017. Ч. 2. С. 249.
- 11. Dorothé van der Werf I., Monno A., Fico D., Germinario G. // Environ. Sci.and Pollution Res. 2017. № 24. P. 2182. https://doi.org/10.1007/s11356-016-6963-z
- Fischer T.C., Sonibare O.O., Aschauer B., Klein-Benne E., Braun P., Meller B. // Paleontology. 2017. № 60(5). P. 743. https://doi.org/10.1111/pala.12313
- 13. Chen D., Zeng Q., Yuan Y., Cui B., Luo W. // Spectrochemical Acta Part A: Molecular and biomolecular spectroscopy. 2019. № 222. https://doi.org/10.1016/j.saa.2019.117270
- Pereira R., Jorge de Lima F., Simbras F.M., Maria Bretas-Bittar S., Kellner A.W.A., Saraiva A.A.F., Bantim R.A.M., Sayão J.M., Oliveira G.R. // J. South Amer. Earth Sci. 2020. № 98. https://doi.org/10.1016/j.jsames.2019.102413
- 15. Simoneit B.R.T., Oros D.R., Karwowski L., Szendera L., Smolarek-Lach J., Goryl M., Bucha M., Rybicki M., Marynowski L. // Intern. J. Coal Geology. 2020. № 221. https://doi.org/10.1016/j.coal.2020.103430
- Grimalt J.O., Simoneit B.R.T., Hatcher P.G., Nissenbaum A. // Adv. organ. geochem. 1988. V. 13. № 4. P. 677.
- 17. Багрий Е.И. Адамантаны. М.: Наука, 1989. 264 с.
- Петров Ал.А. Углеводороды нефти. М.: Наука, 1984. 264 с.