УДК 662.73

## ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕАКЦИЙ ОБРАЗОВАНИЯ ГУМАТОВ ЖЕЛЕЗА И МАГНИЯ В ВОДНОМ РАСТВОРЕ

© 2023 г. Т. А. Яркова<sup>1,\*</sup>, А. М. Гюльмалиев<sup>2,\*\*</sup>

<sup>1</sup> ФГБОУ ВО МИРЭА – Российский технологический университет, 119571 Москва, Россия <sup>2</sup> ФГБУН Институт нефтехимического синтеза им. А.В. Топчиева РАН, 119071 Москва, Россия

\*e-mail: tat772003@list.ru \*\*e-mail: gyulmaliev@ips.ac.ru Поступила в редакцию 18.09.2022 г. После доработки 29.09.2022 г. Принята к публикации 05.10.2022 г.

С применением методов химической термодинамики и диаграмм Пурбе определена термодинамическая устойчивость ионов железа и магния при различной кислотности водной среды. Проведен расчет температурной зависимости термодинамических функций соответствующих реакций. Установлена термодинамическая разрешенность протекания реакций замены ионов калия и натрия в водных растворах солей гуминовых кислот, содержащих карбоксильные и гидроксильные функциональные группы на ионы железа и магния. Образующиеся водорастворимые гуматы железа и магния могут иметь высокий потенциал практического использования.

Ключевые слова: гуминовые кислоты, водорастворимые гуматы железа и магния, термодинамическая устойчивость катионов, диаграмма Пурбе, электродный потенциал **DOI:** 10.31857/S0023117723010103. **EDN:** VVJPFE

Гуминовые вещества (ГВ) – соединения природного происхождения, являющиеся основным компонентом органического вещества почв, торфов, углей, обладают уникальными биохимическими свойствами. По мнению Д.С. Орлова [1, 2], ГВ – это сложные смеси устойчивых к биодеструкции высокомолекулярных темноокрашенных органических соединений природного происхождения, образующихся при разложении растительных и животных остатков под действием микроорганизмов и абиотических факторов среды. Вопросы строения ГВ все больше привлекают внимание исследователей, поскольку присутствие в их составе функциональных групп различного характера позволяет целенаправленно менять биохимические свойства этих соединений с помощью окислительно-восстановительных реакций [3].

В настоящее время ГВ находят широкое применение в различных областях: сельском хозяйстве в качестве активных удобрений, ингредиента комбикормов для животных, адсорбентов — для очистки вод от ионов тяжелых металлов; гуматы калия и аммония имеют ростостимулирующий эффект и являются аналогами фитогормона гетероауксина. Использование модифицированных гидроперитом и полиэтиленгликолем гуматов натрия приводит к увеличению их комплексообразующей способности по отношению к солям двухвалентных металлов [4]. При использовании ГВ в качестве удобрений наилучший эффект достигается при применении водорастворимых солей гуминовых кислот (гуматов), увеличение урожайности при этом достигает 30% [5].

Хорошо зарекомендовавшим себя и простым в применении методом получения гуматов является выделение ГВ из ископаемого сырья в присутствии щелочи [6]. Наибольшее количество активного (способного к химическим взаимодействиям) кислорода гуминовых кислот приходится на фенольные (до 38%), карбоксильные (18–28%) и спиртовые (10–15%) группы, порядка 5–8% – на карбонильные [7]. Благодаря наличию перечисленных реакционноспособных групп и ароматическим фрагментам, ГК вступают в ионные, донорно-акцепторные и гидрофобные взаимодействия [8].

Как известно, для нормальной жизнедеятельности живых организмов необходимы минеральные вещества, присутствующие в макро- (сотые доли процента) и микро- (менее 0.01%) количествах. Для живых организмов железо является важным микроэлементом, который катализирует процессы обмена кислорода, его недостаток вызывает патологические состояния живых организмов: анемию у животных и хлороз у растений.



Рис. 1. Зависимость электродного потенциала от кислотности среды при температуре 25°С для системы железо-вода.

Причиной хлороза может стать и недостаток магния, который, помимо того, входит в состав хлорофилла, участвует в процессе аккумуляции и выработки энергии, усвоения глюкозы и образования полисахарилов. синтезе растительных белков, способствует накоплению аскорбиновой кислоты в растениях, усиливает мобильность фосфатов почвы, стабилизирует коллоидные системы растений [9]. Атомы металлов могут вступать в химические взаимодействия с функциональными группами гуминовых кислот, образуя сложные комплексы, подобные гемоглобину и хлорофиллу. В этой связи представляет интерес изучение возможности внедрения катионов железа и магния в структуру нативных гуминовых кислот для получения модифицированных гуминовых препаратов, обогащенных этими элементами. Экспериментальные работы по получению гуматов железа и магния проводились, но многие теоретические вопросы, связанные с модификацией структуры и свойствами полученных гуминовых препаратов, остаются не исследованными.

В данной работе рассмотрен теоретический аспект условий получения гуматов железа и магния. Для этого определяли области термодинамической устойчивости соединений железа и магния в водной среде с использованием диаграммы Пурбе, отображающей устойчивые с термодинамической точки зрения формы существования ионов металлов в водном растворе при различных значениях водородного показателя pH и окислительно-восстановительного потенциала *Eh*. На рис. 1 и 2 приведены результаты расчета зависимости электродного потенциала от кислотности среды для водных растворов металлов Fe, Mg, Na, K с использованием компьютерной программы [10]. Диаграммы состоят из трех типов линий:

 горизонтальные линии, которые представляют реакции, не связаны с электронами, протонами H<sup>+</sup> и гидроксил-анионами OH<sup>-</sup>;

 диагональные линии с положительной или отрицательной крутизной, которые представляют реакции, связаны с электронами, протонами Н<sup>+</sup> гидроксил-анионами OH;

 вертикальные линии, которые представляют реакции, проходящие с участием протонов H<sup>+</sup> или гидроксил-анионов OH<sup>-</sup>, но не зависящие от электродного потенциала. Другими словами, в этих реакциях не участвуют электроны.

Пунктирными линиями на диаграммах показана область химической стабильности воды. Верхний предел стабильности воды основан на электродном потенциале при генерации кислорода на аноде:

$$2H_2O = 4H^+ + O_2 + 4\overline{e}.$$

Нижний предел устойчивости основан на формировании водорода на катоде:

$$2H^+ + 2\overline{e} = H_2$$

Значения свободной энергии Гиббса  $\Delta G^0$  вычисляются из стандартных потенциалов по уравнению:

$$\Delta G^0 = -nFE^0$$

где n — число электронов, участвующих в окислительно-восстановительных процессах, F —постоянная Фарадея (1 Фарадей =  $N_A e = 96500$  Кл/моль)



Рис. 2. Зависимость электродного потенциала от кислотности среды при температуре 25°С для системы магний-вода.

и  $E^0$  — стандартный электродный потенциал, вольт (B) при 25°C.

Значения стандартных электродных потенциалов ионов  $Fe^{+2}$ ,  $Fe^{+3}$  и  $Mg^{+2}$  в водных растворах приведены в табл. 1.

Области термодинамической устойчивости ионов железа и магния определяются по диаграммам Пурбе, приведенным на рис. 1 и 2. Области стабильности ионов находятся внутри сплошных линий. Согласно рис. 1, в области при рН < 7 и E = -0.5 - 0.7 В ион Fe<sup>+2</sup> термодинамически стабилен, а ион Fe<sup>+3</sup> стабилен при E > 0.7 В в кислой среде. При E < -0.5 В ион железа восстанавливается до Fe<sup>0</sup>. При высоких значениях рН ионы железа взаимодействуют с водой с образованием гидроксида железа (II):

$$Fe^{2+} + 2H_2O = Fe(OH)_2 + 2H^+,$$

$$Fe^{3+} + 3H_2O = Fe(OH)_3 + 3H^+$$
.

Гидроксид железа (III) с брутто-формулой Fe(OH)<sub>3</sub> представляет собой неустойчивое соединение из-за наличия неспаренного электрона и является радикалом с дублетной мультиплетностью. Ион магния  $Mg^{+2}$  (рис. 2) термодинамически устойчив в широкой области: при E = -1 - 1/9 В и pH = 0-8.2. При pH > 8.2 ионы  $Mg^{+2}$  взаимодействуют с водой, образуя гидроксид магния.

На рис. 3 и 4 приведены диаграммы зависимости электродного потенциала от кислотности среды при температуре  $25^{\circ}$ С для систем натрий вода (рис. 3) и калий—вода (рис. 4). Как видно из рисунков, области термодинамической устойчивости ионов натрия совпадают с областью термодинамической устойчивости воды. Ионы калия при pH > 9.5 образуют гидроксид калия. Из приведенных данных по диаграммам зависимости электродных потенциалов от кислотности среды металлов Fe, Mg, K, Na следует, что ионы железа (III) и магния устойчивы при любых значениях кислотности среды, а ионы железа (II) устойчивы в кислой среде.

Температура является важным фактором, влияющим на термодинамическую устойчивость ионов в водном растворе. В табл. 2 и 3 приведены

| Катионы              | Процесс восстановления на катоде | $E^0$ , B | $\Delta H^0$ , ккал/моль | $\Delta G^0$ , ккал/моль |
|----------------------|----------------------------------|-----------|--------------------------|--------------------------|
| Fe <sup>+3</sup> /Fe | $Fe^{+3} + 3\overline{e} = Fe$   | -0.036    | -4.28                    | -2.49                    |
| Fe <sup>+2</sup> /Fe | $Fe^{+2} + 2\overline{e} = Fe$   | -0.440    | -21.00                   | -20.30                   |
| Mg <sup>+2</sup> /Mg | $Mg^{+2} + 2\overline{e} = Mg$   | -2.370    | -110.36                  | -109.32                  |

Таблица 1. Стандартные электродные потенциалы ионов  $Fe^{+2}$ ,  $Fe^{+3}$  и  $Mg^{+2}$  в водных растворах [8]

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 4 2023

## ЯРКОВА, ГЮЛЬМАЛИЕВ



Рис. 3. Зависимость электродного потенциала от кислотности среды при температуре 25°С для системы натрий-вода.



Рис. 4. Зависимость электродного потенциала от кислотности среды при температуре 25°С для системы калий-вода.

температурные зависимости термодинамических функций: энтальпии  $\Delta H$ , энтропии  $\Delta S$ , свободной энергии Гиббса  $\Delta G$ , а также логарифмы констант равновесия lg(K) для следующих реакций:

$$Fe(OH)_{2} + 2H^{+} = Fe^{+2} + 2H_{2}O(I),$$
$$Mg(OH)_{2} + 2H^{+} = Mg^{+2} + 2H_{2}O(II),$$
$$KOH = K^{+} + OH^{-}(III),$$

$$NaOH = Na^+ + OH^-$$
 (IV).

Как видно из данных табл. 3 и 4, в кислой среде с ростом температуры свободная энергия Гиббса  $\Delta G$  обеих реакций растет:

$$\Delta G = \Delta H - T \Delta S.$$

Судя по величине lg(K) до температуры 200°С и первая, и вторая реакция направлены в сторону образования ионизированных форм железа и магния. Аналогичная картина наблюдается при

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 4 2023

| $Fe(OH)_2 + 2H^+ = Fe^{+2} + 2H_2O$ |                           |                                  |                           | $Mg(OH)_2 + 2H^+ = Mg^{+2} + 2H_2O$ |                   |                                           |                           |          |
|-------------------------------------|---------------------------|----------------------------------|---------------------------|-------------------------------------|-------------------|-------------------------------------------|---------------------------|----------|
| <i>Т</i> ,<br>°С                    | $\Delta H$ ,<br>ккал/моль | Δ <i>S</i> , кал/моль<br>(273+Т) | $\Delta G$ ,<br>ккал/моль | lg(K)                               | $\Delta H$ , ккал | Δ <i>S</i> , кал/моль<br>(273+ <i>T</i> ) | $\Delta G$ ,<br>ккал/моль | $\lg(K)$ |
| 0                                   | 24.360                    | 23.367                           | -17.977                   | 14.385                              | -30.274           | -25.448                                   | -23.323                   | 18.662   |
| 20                                  | -21.513                   | -12.947                          | -17.718                   | 13.210                              | -27.304           | -14.595                                   | -23.026                   | 17.168   |
| 40                                  | -21.399                   | -12.573                          | -17.462                   | 12.188                              | -27.042           | -13.729                                   | -22.742                   | 15.873   |
| 60                                  | -21.264                   | -12.155                          | -17.215                   | 11.294                              | -26.754           | -12.840                                   | -22.477                   | 14.746   |
| 80                                  | -21.141                   | -11.794                          | -16.976                   | 10.506                              | -26.482           | -12.045                                   | -22.228                   | 13.757   |
| 100                                 | -21.054                   | -11.555                          | -16.742                   | 9.807                               | -26.252           | -11.411                                   | -21.994                   | 12.883   |
| 120                                 | -21.024                   | -11.475                          | -16.512                   | 9.180                               | -26.085           | -10.976                                   | -21.770                   | 12.103   |
| 140                                 | -21.072                   | -11.594                          | -16.282                   | 8.614                               | -26.007           | -10.780                                   | -21.553                   | 11.402   |
| 160                                 | -21.225                   | -11.953                          | -16.047                   | 8.097                               | -26.043           | -10.865                                   | -21.337                   | 10.767   |
| 180                                 | -21.508                   | -12.593                          | -15.802                   | 7.622                               | -26.223           | -11.270                                   | -21.116                   | 10.185   |
| 200                                 | -21.953                   | -13.551                          | -15.541                   | 7.179                               | -26.578           | -12.034                                   | -20.884                   | 9.647    |

**Таблица 2.** Температурная зависимость термодинамических функций реакций образования ионов Fe<sup>+2</sup> и Mg<sup>+2</sup> в кислой среде

**Таблица 3.** Температурная зависимость термодинамических функций реакций образования ионов  $K^+$  и  $Na^+$  в водном растворе

| $KOH = K^+ + OH^-$ |                           |                                           |                           | $NaOH = Na^+ + OH^-$ |                           |                                           |                           |                |
|--------------------|---------------------------|-------------------------------------------|---------------------------|----------------------|---------------------------|-------------------------------------------|---------------------------|----------------|
| <i>Т</i> ,<br>°С   | $\Delta H$ ,<br>ккал/моль | Δ <i>S</i> , кал/моль<br>(273+ <i>T</i> ) | $\Delta G$ ,<br>ккал/моль | lg( <i>K</i> )       | $\Delta H$ ,<br>ккал/моль | Δ <i>S</i> , кал/моль<br>(273+ <i>T</i> ) | $\Delta G$ ,<br>ккал/моль | lg( <i>K</i> ) |
| 20                 | -13.526                   | 7.508                                     | -14.303                   | 11.445               | -10.444                   | -3.332                                    | -9.467                    | 7.059          |
| 40                 | -14.421                   | 2.995                                     | -14.404                   | 10.740               | -11.147                   | -5.655                                    | -9.376                    | 6.544          |
| 60                 | -15.206                   | 0.040                                     | -14.433                   | 10.074               | -11.731                   | -7.464                                    | -9.244                    | 6.065          |
| 80                 | -15.963                   | -2.392                                    | -14.409                   | 9.453                | -12.281                   | -9.068                                    | -9.079                    | 5.619          |
| 100                | -16.745                   | -4.597                                    | -14.339                   | 8.875                | -12.855                   | -10.649                                   | -8.882                    | 5.202          |
| 120                | -17.589                   | -6.751                                    | -14.226                   | 8.332                | -13.493                   | -12.313                                   | -8.652                    | 4.810          |
| 140                | -18.534                   | -8.954                                    | -14.069                   | 7.821                | -15.529                   | -17.386                                   | -8.346                    | 4.415          |
| 160                | -19.622                   | -11.298                                   | -13.867                   | 7.336                | -16.425                   | -19.504                                   | -7.977                    | 4.025          |
| 180                | -20.895                   | -13.868                                   | -13.615                   | 6.870                | -17.522                   | -21.977                                   | -7.563                    | 3.648          |
| 200                | -22.395                   | -16.738                                   | -13.310                   | 6.420                | -18.869                   | -24.883                                   | -7.095                    | 3.278          |

образовании ионов  $K^+$  и Na<sup>+</sup> в водной среде, термодинамические данные которых приведены в табл. 3. Следовательно, можно утверждать, что если в указанном температурном интервале гуматы щелочных металлов будут находиться в растворе в ионизированной форме, то замена иона щелочного металла на ионы железа (II) и магния является термодинамически разрешенной.

Интересно отметить, что свободная энергия Гиббса  $\Delta G$  реакций образования ионов Fe<sup>+2</sup> и Mg<sup>+2</sup>, а также реакций образования ионов K<sup>+</sup> и Na<sup>+</sup> в

Таблица 4. Зависимость термодинамических функций равновесной системы, состоящей из водного раствора гумата калия и ионов железа (II) от температуры

| T, °C | $\Delta H$ ,<br>ккал/моль | $\Delta S$ , кал/моль<br>(273+ <i>T</i> ) | $\Delta G$ ,<br>ккал/моль | $\lg(K)$ |
|-------|---------------------------|-------------------------------------------|---------------------------|----------|
| 0     | -2.685                    | 6.495                                     | -4.460                    | 3.568    |
| 20    | -1.603                    | 10.331                                    | -4.631                    | 3.453    |
| 40    | -0.809                    | 12.951                                    | -4.865                    | 3.396    |
| 60    | -0.085                    | 15.195                                    | -5.147                    | 3.377    |
| 80    | 0.636                     | 17.296                                    | -5.472                    | 3.387    |
| 100   | 1.402                     | 19.404                                    | -5.839                    | 3.420    |
| 120   | 2.248                     | 21.611                                    | -6.249                    | 3.474    |
| 140   | 3.215                     | 24.009                                    | -6.704                    | 3.547    |
| 160   | 4.349                     | 26.688                                    | -7.211                    | 3.639    |
| 180   | 5.697                     | 29.728                                    | -7.774                    | 3.750    |
| 200   | 7.310                     | 33.209                                    | -8.403                    | 3.882    |

 $K(CH_3COO)_2(-a) + 2Fe(+2a) =$ = 2Fe(CH\_3COO)(+a) + K(+a)

Таблица 5. Зависимость термодинамических функций равновесной системы, состоящей из водного раствора гумата калия и ионов магния от температуры

 $K(CH_3COO)_2(-a) + 2Mg(+2a) =$ = 2Mg(CH\_3COO)(+a) + K(+a)

| <i>T</i> , ℃ | ∆ <i>Н</i> ,<br>ккал/моль | $\Delta S$ , кал/моль<br>(273 + <i>T</i> ) | $\Delta G$ ,<br>ккал/моль | $\lg(K)$ |
|--------------|---------------------------|--------------------------------------------|---------------------------|----------|
| 0            | -4.749                    | -3.070                                     | -3.910                    | 2.910    |
| 20           | -3.356                    | 1.867                                      | -3.903                    | 2.773    |
| 40           | -2.424                    | 4.946                                      | -3.973                    | 2.688    |
| 60           | -1.633                    | 7.397                                      | -4.097                    | 2.641    |
| 80           | -0.888                    | 9.569                                      | -4.267                    | 2.624    |
| 100          | -0.126                    | 11.668                                     | -4.479                    | 2.632    |
| 120          | 0.696                     | 13.811                                     | -4.734                    | 2.663    |
| 140          | 1.620                     | 16.103                                     | -5.033                    | 2.715    |
| 160          | 2.693                     | 18.637                                     | -5.380                    | 2.788    |
| 180          | 3.960                     | 21.496                                     | -5.781                    | 2.884    |
| 200          | 5.471                     | 24.756                                     | -6.242                    | 3.129    |

высокой степени линейно коррелируют ( $R^2 = 1$ ). Можно предположить, что обе реакции идут по химически активным карбоксильным и гидроксильным группам гуминовых кислот.

На примере этановой кислоты, моделирующей фрагмент гумата как карбоксильной функции, связанной с углеводородным фрагментом, рассмотрим вопрос приемлемого температурного режима реакций замены ионов калия и натрия в карбоксильных группах на ионы Fe<sup>+2</sup> и Mg<sup>+2</sup>. В табл. 4 и 5 приведены зависимости термодинамических функций следующих реакций от температуры:

$$K(CH_{3}COO)_{2}(-a) + 2Fe(+2a) =$$
  
= 2Fe(CH\_{3}COO)(+a) + K(+a) (V),  
$$K(CH_{3}COO)^{2}(-a) + 2Mg(+2a) =$$
  
= 2Mg(CH\_{3}COO)(+a) + K(+a) (VI).

Положительные значения логарифма константы равновесия lg(K) показывают, что с ростом температуры направление процессов смещается вправо, т.е. в сторону образования гуматов железа и магния. Эта тенденция обеспечивает возможность при выборе температуры получения гуматов железа и магния руководствоваться только термостабильностью гуминовых кислот. Для общих выводов в случае железа необходимо оценить температурную зависимость термодинамических функций реакции восстановления ионов Fe<sup>+3</sup> ло Fe<sup>+2</sup>:

$$Fe^{+3} + e^{-} = Fe^{+2}$$
 (VII).

Результаты расчетов, приведенные в табл. 6, показывают, что в рассмотренном температурном интервале по знаку энергии Гиббса  $\Delta G$  можно сделать вывод о направлении течения процесса в сторону образования восстановленной ионной формы железа.

В заключение рассмотрим реакцию осаждения модельной структуры гуминовой кислоты в кислой среде:

$$(CH_{3}COO)_{2}K^{-} + 2H^{+} = K^{+} + 2CH_{3}COOH$$
 (VII).

В табл. 7 приведена зависимость термодинамических функций реакции (VII) от температуры. Анализ данных показывает, что с ростом температуры энергия Гиббса реакции уменьшается, другими словами, при повышении температуры гуминовые кислоты в кислой среде будут в молекулярной форме, что является экспериментально подтвержденным фактом [11]. Следует особо отметить, что результаты фундаментальных исследований ионообменных процессов в зависимости от pH среды [12], где обсуждаются и свойства гу-

**Таблица 6.** Температурная зависимость термодинамических функций реакции образования ионов  $Fe^{+3} + e^{-} = Fe^{+2}$ 

| _     | $Fe^{+3} + e^{-} = Fe^{+2}$ |                                            |                           |                |  |  |  |
|-------|-----------------------------|--------------------------------------------|---------------------------|----------------|--|--|--|
| T, °C | $\Delta H,$ ккал/моль       | $\Delta S$ , кал/моль<br>(273 + <i>T</i> ) | $\Delta G$ ,<br>ккал/моль | lg( <i>K</i> ) |  |  |  |
| 0     | -10.440                     | 24.538                                     | -17.143                   | 0.744          |  |  |  |
| 20    | -10.237                     | 25.258                                     | -17.641                   | 0.766          |  |  |  |
| 40    | -10.098                     | 25.716                                     | -18.151                   | 0.788          |  |  |  |
| 60    | -9.961                      | 26.140                                     | -18.670                   | 0.810          |  |  |  |
| 80    | -9.807                      | 26.590                                     | -19.197                   | 0.833          |  |  |  |
| 100   | -9.619                      | 27.107                                     | -19.734                   | 0.856          |  |  |  |
| 120   | -9.383                      | 27.723                                     | -20.282                   | 0.880          |  |  |  |
| 140   | -9.080                      | 28.473                                     | -20.844                   | 0.904          |  |  |  |
| 160   | -8.690                      | 29.395                                     | -21.422                   | 0.930          |  |  |  |
| 180   | -8.188                      | 30.527                                     | -22.021                   | 0.956          |  |  |  |
| 200   | -7.549                      | 31.906                                     | -22.645                   | 0.983          |  |  |  |

Таблица 7. Температурная зависимость термодинамических функций реакции осаждения модельной структуры гуминовой кислоты в кислой среде

| <i>T</i> , ℃ | <i>Н</i> ,<br>ккал/моль | $\Delta S$ , кал/моль<br>(273 + <i>T</i> ) | $\Delta G$ ,<br>ккал/моль |
|--------------|-------------------------|--------------------------------------------|---------------------------|
| 0            | 25.322                  | 100.409                                    | -4.113                    |
| 20           | 23.335                  | 93.842                                     | -6.052                    |
| 40           | 21.750                  | 88.930                                     | -7.877                    |
| 60           | 20.413                  | 85.030                                     | -9.616                    |
| 80           | 19.240                  | 81.797                                     | -11.283                   |
| 100          | 18.196                  | 79.072                                     | -12.891                   |
| 120          | 17.263                  | 76.755                                     | -14.449                   |
| 140          | 16.431                  | 74.787                                     | -15.963                   |
| 160          | 15.701                  | 73.139                                     | -17.442                   |
| 180          | 15.080                  | 71.797                                     | -18.891                   |

$$(CH_{3}COO)_{2}K^{-} + 2H^{+} = K^{+} + 2CH_{3}COOH$$

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 4 2023

миновых кислот, не могут быть учтены в квантовохимическом расчете ввиду отсутствия данных по термодинамическим функциям гуминовых кислот в программном модуле [10]. Это обстоятельство ограничивает расчеты алкилпроизводными функциональных групп, присутствующих в ГВ.

Таким образом, проведенные термодинамические исследования реакций образования ионов калия, натрия, железа (III) и магния показывают, что ионы этих металлов в водной среде устойчивы при определенных значениях рН среды. Железо (II) может образовываться путем восстановления железа (III). Результаты термодинамических расчетов показывают, что замена ионов калия и натрия на ионы железа и магния является термодинамически возможной и может быть осуществлена при добавлении в раствор, содержащий ионы  $Fe^{+2}$ ,  $Fe^{+3}$ ,  $Mg^{+2}$ , эквивалентного количества гумата щелочного металла. Отрицательные значения энергии Гиббса такого ионообменного процесса, имеющие слабую зависимость от температуры, позволяют считать такую замену термодинамически возможной. Образующиеся гуматы железа и магния оказываются термодинамически более устойчивыми, чем гуматы щелочных металлов. Следовательно, для практического использования гуматов железа и магния их получение необходимо вести в условиях, определяемых свойствами ГК: при температуре, позволяющей избежать их деструкции и кислотности среды, обеспечивающей их существование в ионной форме. Вероятно, что растворимость образовавшихся гуматов железа и магния будет несколько ниже растворимости исходных гуматов щелочных металлов.

Отметим, что в реакциях типа  $Fe^{+3} + e^- = Fe^{+2}$  могут использоваться электроны, образующиеся в результате химических процессов, протекающих в органической массе ГВ. Примером такого процесса может служить восстановление хинона в гидрохинон:

$$O = O \xrightarrow{+2\bar{e}, +2H^{\oplus}} HO - OH.$$

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Попов А.И*. Гуминовые вещества: свойства, строение, образование. СПб.: Изд-во СПбУ. 2004. 248 с.
- 2. *Орлов Д.С.* Химия почв. М.: Изд-во МГУ. 1992. 259 с.
- Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ. 1990. 325 с.
- Stevenson F.J. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley&Sons, 1982. p. 443.

- 5. *Хилько С.Л., Таперко Г.В., Рогатко М.И. //* Вестн. НовГУ. Сер.: Технические науки. 2021. № 4 (125). С. 68.
  - https://doi.org/10.34680/2076-8052.2021.4(125).68-71
- Мишустин А.О., Щукин В.Б., Павлова О.Г., Ильясова Н.В. // Изв. Оренбургского гос. аграрн. ун-та. 2022. № 1 (93). С. 9.
  https://doi.org/10.27670/2073.0852.2021.03.1.0.14

https://doi.org/10.37670/2073-0853-2021-93-1-9-14

- Perdue E.M. // Geochim. Cosmochim. Acta. 1984.
  V. 48. № 7. P. 1435.
- Яркова Т.А., Гюльмалиев А.М. // ХТТ. 2018. № 2. С. 17. [Solid Fuel Chemistry. 2018. V. 52. № 2. Р. 73. https://doi.org/10.3103/S036152191802012X] https://doi.org/10.7868/S0023117718020044

- Перминова И.В. Анализ, классификация и прогноз свойств гумусовых кислот. Дис. ... д-ра хим. наук. М.: МГУ, 2000. 359 с.
- 10. Биохимия. / Под ред. Северина Е.С. 2004. 784 с.
- 11. HSC Chemistry 6. http://www.hsclchemistry.net/
- 12. Лиштван И.И., Круглицкий Н.Н., Третинник В.Ю. Физико-химическая механика гуминовых веществ. Мн.: Наука и техника, 1976. 264 с.
- 13. Гамаюнов Н.И., Косов В.И., Масленников Б.И. Ионообменные процессы и электрокинетические явления в набухающих природных и синтетических ионитах. Тверь: Изд-во ТГТУ, 1999. 155 с.