УДК 532.61544.77.03:665.7.032.54

ВЛИЯНИЕ МЕХАНОХИМИЧЕСКОЙ МОДИФИКАЦИИ ГУМИНОВЫХ КИСЛОТ НА ФОРМИРОВАНИЕ КОЛЛОИДОВ В РАСТВОРЕ

© 2023 г. Н. В. Юдина^{1,*}, А. В. Савельева^{1,**}

 1 Φ ГБУН Институт химии нефти СО РАН (ИХН СО РАН), 634055 Томск, Россия

*e-mail: natal@ipc.tsc.ru **e-mail: anna@ipc.tsc.ru Поступила в редакцию 17.03.2023 г. После доработки 17.03.2023 г. Принята к публикации 07.06.2023 г.

Проведены исследования коллоидно-химических свойств гуминовых кислот (ГК) в зависимости от механохимической модификации их структуры. Повышение количества кислых ионогенных групп и гидрофильных фрагментов в составе модифицированных ГК способствует уменьшению избыточной энергии поверхностных молекул. В щелочном растворе с увеличением концентрации ГК формируется 2 типа коллоидов, характеризующихся снижением энергии адсорбции и константы адсорбционного равновесия.

Ключевые слова: *бурый уголь, механоактивация, гуминовые кислоты, коллоидные свойства* **DOI:** 10.31857/S0023117723050079, **EDN:** HAIBOG

введение

Гуминовые кислоты (ГК) являются природными органическими коллоидами, строение которых представлено ароматическим каркасом, замещенным кислородсодержащими, азотсодержащими группами, включает также полисахаридные и пептидные фрагменты. Макромолекулы ГК обладают комплексообразующими, адсорбционными, солюбилизирующими и детоксицирующими свойствами, что позволяет им выполнять роль природного фильтра в окружающей среде [1, 2]. Способность ГК связывать токсичные вещества (пестициды, ПАУ, тяжелые металлы) обусловлена структурными особенностями природных коллоидов [3–7]. Поверхностно-активные свойства ГК определяются наличием гидрофобного ароматического каркаса, алифатических цепей и гидрофильных полисахаридных, пептидных фрагментов и функциональных групп различной природы, что позволяет им вступать в ионные, донорно-акцепторные, гидрофобные взаимодействия. Рядом авторов установлена зависимость поверхностной активности, сорбционных и солюбилизирующих свойств ГК от их структуры, диссоциации кислых групп, концентрации, рН водной среды, природы противоиона [8-13].

Ввиду сложности состава макромолекул, их стохастического характера важной задачей является установление взаимосвязи поверхностноактивных свойств ГК с их структурой и агрегатным состоянием. Для решения этой задачи требуются структурная модификация макромолекулы и оценка гидрофобно-гидрофильного баланса молекулярного ансамбля. Один из способов подобной модификации структуры природного коллоида ГК — метод механоактивации (МА) твердых каустобиолитов.

Механохимическое воздействие заключается обработки бурого угля в присутствии окислительно-щелочных реагентов, направленная на модификацию структуры ГК с целью увеличения количества фенольных и карбоксильных групп.

Цель работы — исследование поверхностноактивных свойств гуминовых кислот, выделенных из бурых углей, механоактивированных в окислительно-щелочных условиях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования являлись гуминовые кислоты, выделенные из окисленного бурого угля (ОУ) месторождения Чуй-Кэнул (Китай) и бурого угля (БУ) месторождения Чинг-Чай (Китай), характеризующиеся зольностью 16.7 и 29.9 мас. % и влажностью – 16.8 и 6.7 мас. %, соответственно.

Уголь предварительно измельчался в дезинтеграторе *Nossen* 8255 до размера частиц 1–3 мм (частота вращения измельчающих частей 3000 об/мин). Механообработку (МО) углей проводили в мельнице планетарного типа АГО-2 в присутствии 8 мас. %. NaOH (ОУ1 и БУ1) и окислительно-щелочного комплекса, включающего –

Рис. 1. Изотермы поверхностного натяжения: $1 - \Gamma K$ из необработанного ОУ, 2 - из необработанного БУ (a); 1 - MA ОУ с 8 NaOH, 2 - MA ОУ с комплексом реагентов, 3 - MA БУ с 8% NaOH; 4 - MA БУ с комплексом реагентов (б).

5% NaOH, 2% Na₄P₂O₇, 3% Na₂CO₃·1.5·H₂O₂ (OУ2 и БУ2), в следующем режиме: частота вращения барабанов 1820 об/мин, центробежное ускорение 600 м/c², время 2 мин. Мелющими телами являлись стальные шары диаметром 8-10 мм.

Методом обратного потенциометрического титрования определяли содержание кислых ионогенных групп на лабораторном pH-метре "Анион 4100" (Россия). Во время титрования ГК ионную силу раствора поддерживали на постоянном уровне насыщенным раствором хлорида натрия. На полученных кривых титрования выделяли три четких перегиба в области pH 10–11 ед. (фенольные гидроксилы $C_{Ar}OH$), pH 6.5–9.5 ед. (карбоксильные группы при ароматическом кольце $C_{Ar}COOH$), pH 2.5–6.5 ед. (карбоксильные группы при углеводородных цепочках $C_{Alk}COOH$). Расчет точки эквивалентности проводили с помощью численной интерполяции.

Исследование структурно-группового состава проводили на ЯМР-спектрометре *Avance* 400 фирмы *Bruker* с рабочей частотой для ядер ¹³С 100 МГц. Навеску ГК растворяли в NaOD/D₂O.

Поверхностное натяжение растворов измеряли на цифровом тензиометре K20 (*EasyDyne*) методом отрыва кольца Дью Нуи при температуре 24°С. Точность измерения поверхностного натяжения для растворов составляет 0.08%. Ионную силу поддерживали добавлением 2 М раствора KCl. Ра бочие растворы с концентрациями от 0.01 до 2.0 г/л получали растворением образца ГК в гидроксиде натрия (pH 8).

Критическую концентрацию (ККМ) определяли по точке перегиба кривой $\sigma = f(\lg C)$ [11].

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 5 2023

Стандартную энергию Гиббса ΔG_M^0 , отнесенную к одному молю функциональной группы, рассчитывали по формуле

$$\Delta G_M^0 = RT \cdot LnC_{\rm KKM},\tag{3.1}$$

где $C_{\rm KKM}$ — концентрация функциональных групп в точке критической концентрации; R — универсальная газовая постоянная (8.314 Дж/(моль K)); T — температура, K.

Предельную адсорбцию на границе газ-жидкость Γ_{max} определяли, построив графическую зависимость $C/\Gamma = f(C)$. Константы адсорбционного равновесия (K_a л/г) рассчитывали на основании полученных изотерм мономолекулярной адсорбции образцов ГК [2, 18].

Площадь *S*, приходящаяся на одну молекулу в адсорбционном слое, определяли по формуле:

$$S = \frac{1}{\Gamma_{\max}} \cdot N_a, \tag{3.2}$$

где N_a – число Авогадро (6.02 × 10²³ моль⁻¹).

Толщину адсорбционного слоя δ рассчитывали по формуле

$$\delta = \frac{\Gamma_{\text{max}}}{K \cdot C_{\text{KKM}}}.$$
(3.3)

Свободную энергию адсорбции $-\Delta G_{\rm agc}$, кДж/моль определяли по формуле

$$\Delta G_{\text{agc}} = -\Delta G_M^0 - (0.6022 \cdot \Delta \delta \cdot S), \qquad (3.4)$$

где $\Delta \sigma = \sigma_{\rm B} - \sigma_{\rm KKM} - эффективность снижения поверхностного натяжения; <math>\sigma_{\rm B}$ – поверхностное натяжение воды; $\sigma_{\rm KKM}$ – поверхностное натяжение при KKM.

Образец	КК, г/дм ³		$C_{\rm kk} \times 10^3$, моль/дм ³		$-\Delta G^{o},$ кДж/моль		$-\Delta G_{ m adc}$, кДж/моль	
	1C	2C	1C	2C	1C	2C	1C	2C
ГКОУ	0.2	20	3.40		14.1		20.4	
ГКБУ	0.	17	3.18		14.3		20.9	
ГК1ОУ	0.22	1.32	4.75	28.50	12.9	8.7	16.0	11.1
ГК2ОУ	0.32	1.15	4.92	26.22	12.0	8.7	14.2	11.5
ГК1БУ	0.25	1.15	5.70	26.22	12.6	8.9	16.2	11.1
ГК2БУ	0.30	1.05	6.18	21.63	12.4	9.3	14.4	11.2

Таблица 1. Критические концентрации образования гуминовых коллоидов, энергия Гиббса и энергия адсорбции

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Гуминовые кислоты в водных растворах в зависимости от pH среды, концентрации могут существовать в различной форме — отдельных макромолекул, ассоциатов, надмолекулярных структур и мицелл [8, 17]. Ассоциаты ГК при домицеллярных концентрациях выше 5 мг/дм³ относят к надмолекулярным структурам [18, 19]. Поведению гуминовых коллоидов в водных растворах в зависимости от концентрации и структуры молекулярного ансамбля посвящено незначительное количество исследований, хотя этим определяются многие процессы в экосистемах [8, 18, 19].

Коллоидные свойства ГК определяют их склонность концентрироваться на поверхности раздела фаз вода—воздух, и при этом ориентироваться: неполярная часть направлена к неполярной фазе, полярная часть направлена в воду. В результате уменьшается разница между полярностями фаз, что, по правилу Ребиндера, снижает значение поверхностного натяжения **б**. Из-за увеличения взаимодействия ГК с водой снижается результирующая сила, направленная внутрь фазы, что приводит к уменьшению избыточной энергии поверхностных молекул.

Полученные изотермы поверхностного натяжения, приведенные на рисунке, показывают зависимость от структурных изменений макромолекул ГК после МА углей. Для ГК, выделенных из ОУ и БУ, изотермы поверхностного натяжения идентичны (рис. 1, б). Снижение величины σ с 70×10^{-3} до 56 × 10⁻³ кДж/м² свидетельствует о невысокой поверхностной активности ΓK. При определенном значении критической концентрации ГК 0.17 – 0.2 г/дм³ в щелочном растворе формируются определенного типа коллоиды из макромолекул ГК, не обладающих поверхностной активностью. Дальнейшее повышение концентрации ГК в растворе не приводит к снижению σ на границе раздела фаз, значения которого остаются постоянными.

На рис. 1, а представлены изотермы σ водных растворов ГК, выделенных из ОУ и БУ после МА с 8% NaOH и комплексом реагентов. На кривых

зависимости $\sigma = f(C)$ выделяются две ступени, характеризуемые разными значениями ККМ. Если в системе присутствует несколько поверхностноактивных веществ, резко различающихся по поверхностной активности, то изотерма поверхностного натяжения в ряде случаев имеет ступенчатый вид, что объясняется присутствием двух типов коллоидов и двумя значениями ККМ.

После математической обработки полученных изотерм σ ГК с учетом функциональных групп, участвующих в формировании ККМ, рассчитана свободная энергия Гиббса, ΔG° , свободная энергия адсорбции $\Delta G_{\text{адс}}$, отнесенные к одному молю функциональной группы (табл. 1). Критические концентрации для механообработанных ГК1ОУ, ГК2ОУ. ГК1БУ и ГК2БУ возрастают на первой ступени в 1.4-1.9 раза и в 7-9 раз на второй ступени по сравнению с ККМ для исходных ГК. Процесс формирования коллоидов первого типа в механообработанных и исходных ГК характеризуется близкими значениями энергии Гиббса. Второй тип коллоидов формируется при более высоком значении ККМ и более низкой энергии Гиббса и энергии адсорбции. Для механообработанных образцов ГК наблюдается снижение энергии адсорбции по сравнению с исходными ГК. Энергия адсорбции для всех образцов ГК выше, чем энергия Гиббса, что свидетельствует о предпочтении процесса адсорбции.

В табл. 2 приведены значения адсорбционных параметров ГК в зависимости от условий механообработки. Максимальная адсорбция ГКОУ и ГКБУ в мономолекулярном слое в расчете на элементарное звено цепи, составляющая 0.3×10^{-5} и 0.2×10^{-5} г/м², достигается при концентрации растворов 0.20 и 0.17 г/дм³ соответственно. В ГК1ОУ, ГК2ОУ, ГК1БУ и ГК2БУ формирование коллоидов первого типа характеризуется снижением величины адсорбции Г_{тах} до 0.1×10^{-5} г/м² в тех же концентрационных интервалах. Максимальная адсорбция коллоидов второго типа в механообработанных ГК достигает значений, аналогичных образцам ГКОУ и ГКБУ, но при концентрациях в растворе 1.05-1.32 г/дм³.

Образец	$Γ_{\rm max} \times 10^5$, г/м ²		<i>S</i> , нм ²		$\delta imes 10^7$, м		<i>K</i> _a , дм ³ /г	
	1C	2C	1C	2C	1C	2C	1C	2C
ГКОУ	0.	.3	0.	55	15	0.0	9	.9
ГКБУ	0.	.2	0.	80	11	.0	10	0.5
ГК1ОУ	0.1	0.3	1.7	0.55	4.5	9.4	4.0	2.4
ГК2ОУ	0.1	0.3	1.7	0.55	7.6	9.3	4.1	2.8
ГК1БУ	0.1	0.25	1.7	0.50	6.4	8.4	6.2	4.0
ГК2БУ	0.1	0.18	1.7	0.55	5.9	9.5	6.7	1.4

Таблица 2. Адсорбционные параметры гуминовых кислот

Площадь *S*, занимаемая сегментом молекул ГК1ОУ, ГК2ОУ, ГК1БУ и ГК2БУ на первой ступени формирования коллоидов, возрастает в 3 раза, по сравнению с ГКОУ и ГКБУ. Это может быть связано с увеличением размеров структурного звена за счет замещения атомов водорода на карбоксильные и гидроксильные группы, что хорошо согласуется с результатами определения функциональных групп.

В табл. 3 приведено содержание в ГК кислых ионогенных групп. Карбоксильные группы в гуминовых кислотах, выделенных из необработанных углей, частично находятся в форме устойчивых комплексов, которые не полностью диссоциируют в водном растворе и не реагируют с гидроксидом натрия для обмена на ионы водорода.

Механохимическая обработка в присутствии кислотно-основных, окислительно-восстановительных реагентов приводит к изменению выхода и качественных характеристик основных компонентов углей. В составе гуминовых кислот, выделенных из углей после МА с NaOH 8 мас. % и комплексом окислительно-щелочных реагентов, возрастает содержание гидроксильных и карбоксильных групп (табл. 3).

Увеличение количества полярных функциональных групп способствует горизонтальному расположению молекул, тем самым уменьшая их

Таблица 3. Содержание кислых ионогенных групп (мгэкв/г) в гуминовых кислотах

Образец С _{Аг} ОН		C _{Ar} COOH	C _{Alk} COOH	
ГКОУ	9.1 ± 0.1	7.5 ± 0.1	1.6 ± 0.1	
ГК1ОУ	11.8 ± 0.1	8.0 ± 0.1	2.4 ± 0.1	
ГК2ОУ	12.1 ± 0.2	8.4 ± 0.2	2.9 ± 0.2	
ГКБУ	10.5 ± 0.1	6.1 ± 0.2	2.4 ± 0.1	
ГК1БУ	12.1 ± 0.2	8.3 ± 0.2	2.5 ± 0.2	
ГК2БУ	13.0 ± 0.3	7.0 ± 0.2	2.6 ± 0.4	

концентрацию в поверхностном слое (табл. 2). За счет этого снизилась в 2-3.5 раза расчетная толщина слоя δ для механообработанных образцов ГК на первой ступени.

Близкие значения площади S, занимаемой сегментом молекул механообработанных образцов ГК на второй ступени изотерм σ , и ГКОУ и ГКБУ, свидетельствуют о снижении роли функциональных групп по сравнению с первой ступенью формирования коллоидов. В результате этого возрастает толщина адсорбционного слоя (табл. 2).

Более высокие значения констант адсорбшионного равновесия для молекул ГК механообработанных образцов отмечаются на первой ступени изотерм σ, но ниже в 1.5-2.0 раза, чем для ГКОУ и ГКБУ, что объясняется структурными различиями в результате механохимической модификации. Характеристика структуры всех образцов ГК дана на основании результатов ¹³С ЯМР (табл. 4). Для оценки гидрофобно-гидрофильного баланса молекулярного ансамбля ГК использовали отношение содержания гидрофобных ароматических и алифатических фрагментов $\Sigma C_{Ar} + C_{Ar}O + C_{Alk}$ к содержанию гидрофильных фрагментов Σ Ссоон+С_{Аlk}О, в составе которых превалируют углеводы, пептиды. Гидрофобная составляющая молекул механоактивированных ГК снизилась по сравнению с ГКОУ и ГКБУ, что привело к уменьшению энергии Гиббса, энергии адсорбшии и констант адсорбшионного равновесия.

ЗАКЛЮЧЕНИЕ

Следует отметить, что в щелочном растворе гуминовые кислоты, выделенные из необработанных углей, образуют ассоциаты с минимальным средним радиусом частиц, возрастанием диссоциации кислотных групп и поверхностной активности на границе газ — жидкость. Формирующиеся коллоиды характеризуются более высокими значениями энергии адсорбции и констант адсорбционного равновесия по сравнению с механообработанными образцами ГК.

Образец	СООН-С=О	C _{Ar} O	C _{Ar} CH	C _{Alk} O	C _{Alk}	$\frac{\Sigma C_{Ar} + C_{Ar}O +}{+ C_{Alk}/\Sigma C_{COOH} + C_{Alk}O}$
ГКОУ	16.9	12.9	37.1	13.3	19.8	2.31
ГК1ОУ	17.8	12.0	37.8	15.2	17.2	2.03
ГК2ОУ	19.2	11.6	38.2	14.9	16.1	1.93
ГКБУ	11.6	13.0	31.5	16.0	27.9	2.62
ГК1БУ	13.1	12.0	34.0	16.5	24.4	2.37
ГК2БУ	12.9	11.2	33.9	16.8	25.2	2.36

Таблица 4. Фрагментный состав ГК по данным ЯМР ¹³С

При структурной механохимической модификации гуминовых кислот повышается количество кислых ионогенных групп и гидрофильных фрагментов, в составе которых превалируют углеводы, пептиды, снижаются гидрофобность молекул и результирующая сила, направленная внутрь фазы, что способствует уменьшению избыточной энергии поверхностных молекул. С увеличением концентрации ГК в растворе формируется второй тип коллоидов, характеризующихся снижением энергии Гиббса, энергии адсорбции и константы адсорбционного равновесия по сравнению с исходными ГК.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- Dmitrieva E., Efimova E., Siundiukova K., Perelomov L. // Environmental Chem. Lett. 2015. V. 13. P. 197. https://doi.org/10.1007/s10311-015-0497-3
- https://doi.org/10.1007/s10311-015-0497-3
 2. *Gamboa C., Olea A.F.* // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2006. V. 278. P. 241. https://doi.org/10.1016/j.colsurfa.2005.12.026
- 3. Мальцева Е.В., Филатов Д.А., Юдина Н.В., Чайковская О.Н. // XTT. 2011. № 1. С. 65. [Solid Fuel Chemistry, 2011, vol. 45, p. 62. https://doi.org/10.3103/S0361521911010071].
- Perminova I.V., Grechishcheva N.Yu., Kovalevskii D.V., Kudryavtsev A.V., Petrosyan V.S., Matorin D.N. // J. Environ Sci. Tech. 2001. V. 35. P. 3841. https://doi.org/10.1021/es001699b
- 5. Wang H.B., Zhang Y.J. // J. Environ Sci. Health A. Tox. Hazard Subst. Environ Eng. 2014. V. 49. P. 78.
- Plaza C., Brunetti G., Senesi N., Polo A. // Anal. Bioanal. Chem. 2007. V. 386. P. 2133. https://doi.org/10.1007/s00216-006-0844-0
- 7. Панкратов Д.А., Анучина М.М., Константинов А.И., Перминова И.В. // ЖФХ. 2019. Т. 93. № 7. С. 992. [Russian Journal of Physical Chemistry A, 2019, vol. 93, no. 7, p. 1235. https://doi.org/10.1134/S0036024419070203]. https://doi.org/10.1134/S0044453719070203
- 8. Тарасевич Ю.И., Доленко С.А., Трифонова М.Ю. Алексеенко Е.Ю. // Коллоидный журнал. 2013.

T. 75. № 2. C. 230. [Colloid Journal, 2013, vol. 75, no. 2, p. 207. https://doi.org/10.1134/S1061933X13020166].

https://doi.org/10.7868/S0023291213020171

- 9. Рябова И.Н., Мустафина Г.А., Акулова З.Г., Сатымбаева А.С. // Коллоидный журнал. 2009. Т. 71. № 5. С. 716. [Colloid Journal, 2009, vol. 71, no. 5, p. 729. https://doi.org/10.1134/S1061933X09050226].
- Панкратов Д.А., Анучина М.М., Борисова Е.М., Воликов А.Б., Константинов А.И., Перминова И.В. // ЖФХ. 2017. Т. 91. № 6. С. 1042. [Russian Journal of Physical Chemistry A. 2017, vol. 91, no. 6, p. 1109. https://doi.org/10.1134/S0036024417060176.] https://doi.org/10.7868/S0044453717060206
- Terashima M., Fukushima M., Tanaka S. // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004. V. 247. P. 77. https://doi.org/10.1016/j.colsurfa.2017.02.075
- El-Bayaa A.A., Al-Amir Asmaa // Al-Azhar Bulletin of Scie. – Basic Science Sector. (ABSB). 2017. V. 28. № 3. P. 17.

https://doi.org/10.21608/ABSB.2017.8174

- Линкевич Е.В., Юдина Н.В., Савельева А.В. // ЖФХ. 2020. Т. 94. № 4. С. 568–573. https://doi.org/10.31857/S0044453720040093. [Russian Journal of Physical Chemistry, 2020, vol. 94, no. 4, p. 742. https://doi.org/10.1134/S0036024420040093.].
- 14. *Мальцева Е.В., Шеховцова Н.С., Шиляева Л.П., Юдина Н.В. //* ЖФХ. 2017. Т. 91. № 7. С. 1174. [Rus. J. Phys. Chem. A, 2017, vol. 91, no. 7, p. 1273.]. https://doi.org/10.7868/S0044453717070238
- 15. Скрипкина Т.С., Бычков. А.Л., Тихова. В.Д., Ломовский О.И. // ХТТ. 2018. № 6. Р. 16. [Solid Fuel Chemistry, 2018, vol. 52, no. 6, p. 356. https://doi.org/10.3103/S0361521918060101]. https://doi.org/10.1134/S0023117718060117
- Skripkina T.S., Bychkov A.L., Tikhova V.D., Smolyakov B.S., Lomovsky O.I. // Environ. Technol. Innov. 2018. V. 11. P. 74. https://doi.org/10.1016/j.eti.2018.04.010
- Gerke J. // Agronomy. 2018. V. 8. № 5. P. 76. https://doi.org/10.3390/agronomy8050076
- 18. Лаврик Н.Л., Муллоев Н.У. // Химия в интересах устойчивого развития. 2006. № 4. С. 379.
- Sutton R., Sposito G. // Environ. Technol. Innov. 2005.
 V. 39. № 23 P. 9009. https://doi.org/10.1021/es050778q

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 5 2023