УДК 544.4

ВЛИЯНИЕ ФАЗОВОГО СОСТАВА КАТАЛИЗАТОРА Fe/БИОУГОЛЬ НА СОСТАВ ПРОДУКТОВ СИНТЕЗА ФИШЕРА—ТРОПША: ТЕОРИЯ БИФУНКЦИОНАЛЬНЫХ КАТАЛИТИЧЕСКИХ ЦЕНТРОВ А.Л. ЛАПИДУСА

© 2023 г. М. И. Иванцов^{1,*}, К. О. Крысанова¹, А. А. Грабчак^{1,***}, М. В. Куликова¹

¹ФГБУН Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН), 119991 Москва, Россия

*e-mail: ivantsov@ips.ac.ru **e-mail: kristinakrysanova@gmail.com ***e-mail: ale.grabchak@ips.ac.ru ****e-mail: m_kulikova@ips.ac.ru Поступила в редакцию 17.07.2023 г. После доработки 17.07.2023 г. Принята к публикации 19.07.2023 г.

Исследованы нанесенные железные катализаторы на основе углеродосодержащего материала, представляющего собой биоуголь, полученный методом гидротермальной карбонизации биополимеров (целлюлозы и лигнина). Каталитические системы показали высокую активность в синтезе Фишера–Тропша. Зафиксирован не характерный для железосодержащих катализаторов состав жидких продуктов С₅₊, отличающийся высоким содержанием изоалканов (до 55%). Данный факт продискутирован в ключе теории о бифункциональных центрах, предложенной А.Л. Лапидусом с сотрудниками. Высказано предположение, что активные центры исследованных катализаторов могут рассматриваться как бифункциональные (карбидная фаза, оксидная фаза). Показана корреляция данных синтеза Фишера–Тропша на исследованных катализаторах с данными, полученными А.Л. Лапидусом с сотрудниками на кобальтсодержащих катализаторах.

Ключевые слова: синтез Фишера-Тропша, Fe/биоуголь, гидротермальная карбонизация, лигнин, целлюлоза

DOI: 10.31857/S0023117723060026, EDN: BJLART

введение

Синтез Фишера-Тропша (синтез углеводородов из оксида углерода и водорода) – вторая, основная стадия современной технологии переработки органического сырья в ценные продукты, прежде всего жидкие углеводороды, которые могут быть использованы в качестве компонентов моторных топлив, растворителей и сырья для производства целого ряда химических соединений. Изучение синтеза Фишера-Тропша проводится уже более ста лет, но поиск эффективных и активных каталитических систем остается чрезвычайно важной задачей. Повышенный интерес к этой реакции обусловлен тем, что синтез-газ (смесь оксида углерода и водорода) может быть произведен из различного углеродосодержащего сырья – от природного газа и угля до биомассы и бытовых отходов [1-3]. Кроме того, оксид углерода может быть получен из диоксида углерода, являющегося одним из основных "парниковых" газов [4–7], что делает исследования в области химического превращения СО важными и актуальными для решения проблемы уменьшения углеродного следа и, как следствие, снижения антропогенного влияния на окружающую среду.

Традиционными катализаторами синтеза Фишера—Тропша являются металлы VIII группы, нанесенные на носители [8, 9], в качестве которых в основном используют оксиды с развитой удельной поверхностью, такие как SiO₂, Al₂O₃ и т.д. При этом реализуются следующие реакции [10, 11]:

основная

$$\mathrm{CO} + \mathrm{H}_2 \to (-\mathrm{CH}_2 -)_n + \mathrm{H}_2 \mathrm{O}, \tag{1}$$

побочные

$$CO + H_2 \rightarrow CH_4 + H_2O$$
("метанирование CO"), (2)

 $2CO \rightarrow C + CO_2$ (реакция Белла-Будуара), (3)

$$CO + H_2O \rightarrow CO_2 + H_2$$
 (4) ("реакция водяного газа").

В основе процесса лежит реакция поликонденсации с образованием углеводородов парафинового и олефинового рядов. Целевыми продуктами синтеза Фишера—Тропша как реакции полимеризации являются линейные углеводороды [12].

В России исследования процессов каталитического гидрирования монооксида углерода неразрывно связаны с именем чл.-корр. РАН профессора Лапидуса Альберта Львовича, долгие годы возглавлявшего лабораторию каталитических реакций оксидов углерода. Под его руководством было совершено много выдающихся открытий, связанных с природой протекающих взаимодействий между монооксидом углерода, водородом и активным каталитическим центром [13].

Одним из основных направлений работы А.Л. Лапидуса и его сотрудников было исследование влияния оксидных носителей на свойства кобальтовых катализаторов синтеза Фишера—Тропша [14, 15]. При этом было установлено, что оксидные носители обладают рядом недостатков — в процессе получения катализатора могут формироваться трудно восстанавливаемые смешанные оксиды.

Также А.Л. Лапидус с сотрудниками установили, что, изменяя кислотность и структуру активного центра катализатора, можно влиять на длину образующейся в процессе синтеза углеводородной цепи и групповой состав продуктов. В частности, в работах [16, 17] описаны каталитические системы, в присутствии которых получаются жидкие углеводороды, обогащенные изоалканами. В традиционных процессах производства синтетических топлив из альтернативного сырья из синтез-газа получают длинноцепочечные углеводороды (ФТ-воски), которые затем подвергают гидрокрекингу/гидроизомеризации для увеличения доли изопарафинов.

Однако изопарафины могут быть получены непосредственно на стадии синтеза Фишера—Тропша. В этом случае используют "бифункциональные катализаторы" [18—20], содержащие компонент, на котором происходит образование длинноцепочечных молекул, и компонент, на котором эти продукты потом претерпевают изомеризацию. Было показано [21], что второй компонент должен обладать заметной кислотностью.

Чаще всего в качестве кислотного компонента бифункциональных катализаторов синтеза Фишера—Тропша используют цеолиты [16]. Однако цеолитные носители зачастую снижают активность кобальтовых катализаторов в образовании длинноцепочечных углеводородов, что обусловливает образование побочных продуктов, прежде всего метана.

Велись активные работы по поиску альтернативных носителей активной фазы катализатора, которые привели к использованию углеродных материалов [22–26]. Преимуществом углеродных систем является отсутствие значительного взаимодействия активной фазы с носителем, а также легкость функционализации поверхности.

Биоугли — углеродосодержащие материалы, полученные гидротермальным синтезом, характеризуются высокой степенью насыщения поверхностными активными группами, что позволяет эффективно производить нанесение прекурсоров активного компонента на поверхность носителя [27, 28]. Синтез таких носителей осуществляется термообработкой углеродосодержащего сырья в присутствии субкритической воды. В качестве сырья возможно использование вторичной биомассы или ее отдельных компонентов, что делает исследования углеродных носителей актуальными для решений проблем, связанных с переработкой природных, возобновляемых источников сырья.

Цель данной работы — создание катализаторов с заданными свойствами, в частности селективностью по изоалканам на основании опыта А.Л. Лапидуса и сотрудников.

Ранее было показано [29], что в присутствии катализатора на основе железа, нанесенного на биоуголь, приготовленный гидротермальной карбонизацией лигнина, содержание изопарафинов в жидких продуктах составляло 48%.

В настоящей работе проведено конструирование катализаторов на основе прекурсора железа и биоуглей, полученных методом гидротермальной карбонизации природного полимера (лигнина и целлюлозы). Сопоставлены результаты, полученные на синтезированных катализаторах с положениями теории А.Л. Лапидуса о влиянии структуры катализаторов на продукты реакции в синтезе Фишера–Тропша.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве сырья для получения катализаторов были использованы гидролизный лигнин (ТУ 64-11-05-87, ООО "Промышленная группа") и целлюлоза (*CAS* 9004-34-6, РусХим).

Гидротермальную карбонизацию сырья (лигнина и целлюлозы) проводили в стальном реакторе автоклавного типа объемом 0.5 л, снабженном механической мешалкой, термопарой, манометром, трубчатой печью, и изотермическим регулятором. Сырье массой 30 г смешивали с водой в массовом отношении 1/4 на сухое сырье и помещали в реактор. Реактор нагревали до 190°С и выдерживали в изотермическом режиме в течение 24 ч, затем охлаждали до комнатной температуры. Полученную суспензию разделяли на фильтре на твердый остаток и жидкость (размер пор фильтровальной бумаги 3–5 мкм). Фильтрацию проводили естественным образом, без дополнительных воздействий. Сушку твердого остатка осуществляли при 105°С в течение 24 ч. Полученный углеродный материал (биоуголь) на основе лигнина и целлюлозы маркируется как БУ-Л, БУ-Ц соответственно.

Катализаторы были получены методом пропитки по влагоемкости. Для этой цели биоуголь массой 3.54 г пропитывали водно-спиртовым раствором нитрата железа, приготовленного следующим образом: 5.11 г Fe(NO₃)₃·9H₂O (о.ч., *Scharlau Chemie S.A*), растворяли в 6.4 г водноспиртового растворителя (1 : 1 об.). Полученный образец подвергали сушке на водяной бане. После полного высыхания образец прокаливали в реакторе с неподвижным слоем в инертной атмосфере при 400°C в течение 1 ч. Катализаторы, приготовленные из биоуглей, полученных на основе лигнина и целлюлозы, маркируются как Fe/БУ-Л и Fe/БУ-Ц.

Синтез Фишера-Тропша осуществляли в проточной каталитической системе со стационарным слоем катализатора. Для снижения сопротивления каталитического слоя газовому потоку и предотвращения спекания катализатор разбавляли кварцем в объемном соотношении 5:3 соответственно. Синтез проводили в непрерывном режиме при давлении 20 атм и объемной скорости исходного синтез-газа 1000 ч⁻¹ (мольное соотношение $CO: H_2 = 1: 1)$ в диапазоне температур от 240 до 300°С. Повышение температуры осуществляли ступенчато (на 20°С каждые 12 ч). В конце каждого изотермического режима выполняли отбор проб газа и жидких продуктов. Перед каталитическими испытаниями образцы предварительно активировали монооксидом углерода при температуре 400°С, давлении 20 бар и объемной скорости СО 1000 ч⁻¹.

Исходный синтез-газ и газообразные продукты синтеза анализировали на хроматографе "Кристаллюкс-4000 М" (Россия) с двумя хроматографическими колонками. В качестве газа-носителя применялся гелий, а в качестве детектора – катарометр. Для разделения газовых смесей использовали колонку, заполненную молекулярным ситом *CaA* (3 мм × 3 м) и колонку *HayeSep R* (3 м × 3 мм). Анализ проводили в режиме: изотермический 50°C, 5 мин, 50–200°C термопрограммируемый режим – 8°C мин⁻¹.

Жидкие углеводороды анализировали методом газожидкостной хроматографии (ГЖХ) на хроматографе "Кристаллюкс-4000 М" (Россия), детектор – пламенно-ионизационный, газ носитель – гелий. Для разделения смеси углеводородов использовали капиллярную колонку 50 м × × 0.32 мм, заполненную *OV-351*. Температурнопрограммный режим: 50°С (2 мин); 50–260°С, 6°С/мин; 260–270°С, 5°С/мин; 270°С (10 мин).

Рентгенофазовый анализ (РФА) проводили на дифрактометре *Rotaflex-Ru200-D/max-RC* (Япо-

ния) с использованием CuK_{α} (длина волны 0.154 нм) излучения. Исследования проводились при следующих параметрах съемки — 100 мА и 50 кВ.

Активность катализатора оценивали по следующим показателям: конверсия СО (K_{co} , %) – СО (процентное соотношение массы прореагировавшего оксида углерода к массе СО, поступившего в зону реакции), удельная активность катализатора (количество прореагировавших молей СО на грамм Fe в секунду).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В процессе приготовления каталитической системы происходит формирование наночастиц, как в случае нанесения на БУ-Л, так в случае БУ-Ц (рис. 1).

Как на рентгенограмме образца Fe/БУ-Л, так и на рентгенограмме образца Fe/БУ-Ц зафиксированы рефлексы Fe₃O₄ (2 θ -30.08; 35.43; 43.05; 56.94; 62.52° (JCPDS-79-0419)), на основе чего можно сделать вывод о протекании процесса восстановления Fe(III) до Fe(II) при термической обработке прекурсора катализатора. Отдельно стоит отметить, что образец Fe/БУ-Л имеет более кристалличную структуру, чем образец Fe/БУ-Ц. Данный факт может быть связан с тем, что в процессе нанесения активной фазы на носитель в случае БУ-Ц происходит более равномерное распределение по поверхности ионов Fe(III), что приводит к формированию меньших по размеру кристаллитов магнетита.

В процессе каталитических испытаний происходит формирование смеси магнетита ($2\theta - 30.08$; 35.43; 43.05; 56.94; 62.52° (JCPDS-79-0419)) и нестехиометрических карбидов – χ – Fe₅C₂ (2 θ – 39.31; 40.83; 41.15; 43.40; 44.07; 47.18 (JCPDS-51-0997)) и Fe₇C₃ (20 – 39.98; 42.60; 44.90; 50.04; 50.50 (JCPDS-75-1499)). Формирование фазы карбидов характерно для синтеза Фишера-Тропша, и может свидетельствовать о протекании процесса роста углеводородной цепи. Отдельно стоит отметить, что из рентгеноаморфного на сталии приготовления катализатора образца Fe/БУ-Ц формируется более кристаллический образец, чем в случае Fe/БУ-Л. Это может указывать на то, что у образца Fe/БУ-Л происходит более сильная фиксация активных в процессе гидрирования монооксида углерода частиц на поверхности.

Образцы катализаторов испытали в процессе каталитического гидрирования монооксида углерода (рис. 2).

Образец Fe/БУ-Л проявил большую каталитическую активность на всем исследуемом диапазоне температур, что может быть связано с меньшим размером активной фазы. Образец Fe/БУ-Л достиг 100% конверсии, что свидетельствует о

Рис. 1. Рентгенограмма образцов катализаторов на основе углеродных материалов: Fe/БУ-Л (a); Fe/БУ-Ц (б): *I* – до катализа; *2* – после катализа.

высокой активности катализатора: 80 мкмоль-СО/гМе/с для Fe/БУ-Л, 45 мкмольСО/гМе/с.

Состав образующихся в процессе синтеза углеводородов тоже сильно зависел от природы биополимера. Так, продукты, формирующиеся в присутствии Fe/БУ-Л, преимущественно состоят из бензиновой и дизельной фракций, с преобладанием дизельной фракции. Тогда как углеводороды, формирующиеся в присутствии Fe/БУ-Ц, обогащены фракцией C_{19+} , на долю которой приходится 23% (рис. 3, а).

В присутствии катализатора Fe/БУ-Л происходит значительное образование изопарафинов (рис. 3, б), на долю которых приходится 55%. Тогда как на катализаторе Fe/БУ-Ц содержание изопарафинов не превышало 25%, а основными компонентами были н-парафины – 51%. Можно предположить, что образующаяся в процессе приготовления катализатора фаза магнетита может выполнять роль кислотного центра, на котором происходит образование изопарафинов. В работе [17] показано, что изомеризующая способность катализаторов линейно зависит от обшей кислотности поверхности. Для магнетита характерно то, что кислотность его поверхности зависит от размера частиц [30], из чего можно заключить, что формирующиеся в процессе синтеза Фишера-Тропша частицы магнетита, зарегистрированные в образце Fe/БУ-Л, предположительно меньшего размера (рис. 1, а), вследствие чего их изомеризующая способность выше, чем в образце Fe/БУ-Ц.

Рис. 2. Конверсия монооксида углерода в присутствии катализаторов на основе углеродных материалов: *1* – Fe/БУ-Л; 2 – Fe/БУ-Ц.

Рис. 3. Фракционный и групповой состав углеводородов, полученных в присутствии катализаторов на основе биоуглей при температуре синтеза 280°С: фракционный состав углеводородов (а), групповой состав углеводородов (б).

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 6 2023

ЗАКЛЮЧЕНИЕ

Таким образом, в присутствии катализатора на основе гидротермально карбонизированого лигнина фиксируются не характерные для железосодержащих систем продукты синтеза Фишера-Тропша: в жидких продуктах реакции наблюдалось значительное содержание изоалканов, что характерно для бифункциональных катализаторов, на которых происходит как рост цепи углеводорода, так и протекающая изомеризация. А.Л. Лапидусом и сотрудниками выдвинута теория о протекании процесса изомеризации на кислотном центре, что показано на кобальтнанесенных цеолитных катализаторах. Для железосодержащего контакта фиксируется схожая зависимость, в которой роль кислотных центров выполняют частицы магнетита. что еще раз доказывает правомочность теории А.Л. Лапидуса и сотрудников.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках проекта РНФ № 22-23-00900. Исследования выполнялись с использованием оборудования ЦКП "Аналитический центр проблем глубокой переработки нефти и нефтехимии" ИНХС РАН.

СПИСОК СОКРАЩЕНИЙ

Fe/БУ-Л — катализатор, полученный нанесением нитрата железа (III) на биоуголь, полученный из лигнина.

Fe/БУ-Ц — катализатор, полученный нанесением нитрата железа (III) на биоуголь, полученный из целлюлозы.

БУ-Л — биоуголь, полученный из лигнина методом гидротермальной карбонизации.

БУ-Ц — биоуголь, полученный из целлюлозы методом гидротермальной карбонизации.

СПИСОК ЛИТЕРАТУРЫ

- Luque R., de la Osa A.R., Campelo J.M., Romero A.A., Valverde J.L., Sanchez P. // Energy Environ Sci. 2012. V. 5. № 1. P. 5186.
- Roddy D.J. // Interface Focus. 2013. V. 3. № 1. P. 20120038.
- Aasberg-Petersen K., Christensen T.S., Dybkjaer I., Sehested J., Østberg M., Coertzen R.M., Keyser M.J., Steynberg A.P. // Stud. Surf. Sci. Catal. 2004. V. 152. P. 258.
- 4. Lavoie J.J. // Rev. des Sci. Relig. 2014. V. 88. № 1. P. 1.
- Najera M., Solunke R., Gardner T., Veser G. // Chem. Eng. Res. Des. 2011. V. 89. № 9. P. 1533.
- Sumrunronnasak S., Tantayanon S., Kiatgamolchai S., Sukonket T. // Int. J. Hydrogen Energy. 2016. V. 41. № 4. P. 2621.
- Buelens L.C., Galvita V.V., Poelman H., Detavernier C., Marin G.B. // Science. 2016. V. 354. № 6311. P. 449.

- 8. *Park J.Y., Lee Y.J., Khanna P.K., Jun K.W., Bae J.W., Kim Y.H.* // J. Mol. Catal. A Chem. 2010. V. 323. № 1– 2. P. 84.
- 9. Jahangiri H., Bennett J., Mahjoubi P., Wilson K., Gu S. // Catal. Sci. Technol. 2014. V. 4. № 8. P. 2210.
- 10. *Van Der Laan G.P., Beenackers A.A.C.M.* // Catal. Rev. 1999. V. 41. № 3–4. P. 255.
- 11. James O.O., Chowdhury B., Mesubi M.A., Maity S. // RSC Adv. 2012. V. 2. № 19. P. 7347.
- Gholami Z., Gholami F., Tišler Z., Hubáček J., Tomas M., Bačiak M., Vakili M. // Catalysts. 2022. V. 12. № 2. P. 174.
- 13. Лапидус А.Л., Крылова А.Ю. // Рос. жим. журн. 2000. Т. 44. № 1. С. 43.
- 14. Крылова А.Ю., Ием Чонг Хоанг, Лапидус А.Л. // Нефтехимия. 1983. Т. 23. № 6. С. 779.
- 15. Ием Чонг Хоанг, Лапидус А.Л., Крылова А.Ю., Кондратьев Л.Т., Миначев Х.М. // XTT. 1983. № 6. С. 7.
- Лапидус А.Л., Крылова А.Ю. // Успехи химии. 1998. Т. 67. № 11. С. 1032.
- 17. Лапидус А.Л., Елисеев О.Л., Волков А.С., Будцов В.С., Гущин В.В., Кули Т.Е., Давыдов П.Е. // ХТТ. 2007. № 3. С. 16.
- Wang M., Han Y., Liu S., Liu Z., An D., Zhang Z., Cheng K., Zhang Q., Wang Y. // Chinese J. Catal. 2021. V. 42. № 12. P. 2197.
- Ding Y., Jiao F., Pan X., Bao X. // J. Energy Chem. 2022. V. 73. P. 416.

- Zhao N., Chen Y., Li X., Zhang J., Dai L., Jiang X., Liu C., Li Z. // Int. J. Hydrogen Energy. 2022. V. 47. № 35. P. 15706.
- Крылова А.Ю., Куликова М.В., Лапидус А.Л. // XTT. 2014. № 4. С. 18.
- Valero-Romero M.J., Rodríguez-Cano M.Á., Palomo J., Rodríguez-Mirasol J., Cordero T. // Front Mater. 2021. V. 7.
- 23. Wang A., Luo M., Lü B., Song Y., Li M., Yang Z. // Mol. Catal. 2021. V. 509. P. 111601.
- Teimouri Z., Abatzoglou N., Dalai A.K. // Renew Energy. 2023. V. 202. P. 1096.
- 25. Tang Z.E., Lim S., Pang Y.L., Shuit S.H., Ong H.C. // Renew Energy. 2020. V. 158. P. 91.
- Kulikova M.V., Zemtsov L.M., Sagitov S.A., Efimov M.N., Krylova A.Y., Karpacheva G.P., Khadzhiev S.N. // Solid Fuel Chem. 2014. V. 48. № 2. Р. 105. [Химия твердого топлива, 2014. № 2. С. 32. https://doi.org/10.7868/S0023117714020078]. https://doi.org/10.3103/s0361521914020074
- 27. Hu B., Wang K., Wu L., Yu S.H., Antonietti M., Titirici M.M. // Adv Mater. 2010. V. 22. № 7. P. 813.
- Ramos R., Abdelkader-Fernández V.K., Matos R., Peixoto A.F., Fernandes D.M. // Catalysts. 2022. V. 12. № 2. P. 207.
- 29. Ivantsov M.I., Krysanova K.O., Grabchak A.A., Kulikova M.V. // Eurasian Chem J. 2022. V. 24. № 4. P 303.
- Bennett J.A., Parlett C.M.A., Isaacs M.A., Durndell L.J., Olivi L., Lee A.F., Wilson K. // Chem. Cat. Chem. 2017. V. 9. № 9. P. 1648.