УДК 542.941.7:546.172.6-31:546.171.1:546.655.621-31

ПРОМОТИРУЮЩИЙ ЭФФЕКТ НИОБИЯ В СЕЛЕКТИВНОМ КАТАЛИТИЧЕСКОМ ВОССТАНОВЛЕНИИ NO АММИАКОМ НА КАТАЛИЗАТОРЕ CeAlo_x, МОДИФИЦИРОВАННОМ Nb

© 2019 г. R. Shi^{1, 2, 3, *}, Y. Zhang³, B. Yuan³, Z. Zheng³, L. Ni³, R. Feng^{1, 2, 3}, X. Lin^{1, 3}, L. Dai^{1, 2, 3}

¹Fujian Indoor Environmental Engineering Technology Research Center, Fuzhou 350118, China ²Chemical Safety Institute of Fujian University of Technology, Fuzhou 350118, China ³College of Ecological Environmental and Urban Construction, Fujian University of Technology, Fuzhou 350118, China

**E-mail: shironghui@fjut.edu.cn* Поступила в редакцию 24.07.2018 г. После доработки 14.10.2018 г. Принята к публикации 19.10.2018 г.

В гидротермальных условиях приготовлена серия катализаторов CeAlO_x, модифицированных Nb, и исследовано поведение этой системы в селективном каталитическом восстановлении NO аммиаком. Наиболее высокую активность и повышенную устойчивость к отравлению серой показал катализатор с мольным отношением Nb/Al = 1 : 1. Катализаторы охарактеризованы методоми БЭТ, PCA, TПВ-H₂, TПД-NH₃, PФЭС и диффузной отражательной спектроскопии (ДОС) *in situ*. Полученные результаты показывают, что введение Nb увеличивает окислительно-восстановительную способность и поверхностную кислотность катализатора. Одновременно возрастает количество атомов O_α и ионов Ce³⁺, адсорбированных на поверхности катализатора. Кроме того, с применением ДОС *in situ* установлено, что допирование ниобием увеличивает адсорбционную емкость по аммиаку, но снижает способность адсорбировать смесь NO + O₂. Все эти факторы способствуют улучшению каталитического поведения катализаторов в селективном восстановлении NO аммиаком.

Ключевые слова: селективное каталитическое восстановление, модифицирование ниобием $CeAlO_x$, NH₃, NO_x

DOI: 10.1134/S0453881119020126

Оксиды азота (NO and NO₂), образующиеся при сжигании ископаемого топлива, являются причиной многих экологических проблем, таких как кислотные дожди, фотохимический смог, истощение озонового слоя и тепличные эффекты [1]. Селективное каталитическое восстановление NO_x аммиаком (NH_3 -CKB) зарекомендовало себя как наиболее распространенный метод борьбы с выбросами оксидов азота угольными тепловыми электростанциями. Широкое применение в качестве катализаторов этого процесса нашли системы V_2O_5 -WO₃(MoO₃)/TiO₂, которые с высокой эффективностью удаляют NO_x и устойчивы к отравляющему действию SO₂. Однако ванадиевые системы обладают рядом недостатков, среди которых можно назвать узкий температурный интервал реакции (300-400°С), низкую селективность по азоту, а также биологическую токсичность V₂O₅ по отношению к окружающей среде и организму человека [2]. Отсюда понятна необходимость разработки альтернативных экологически безопасных каталитических систем.

В последнее время внимание исследователей привлекла разработка цериевых катализаторов процесса NH₃-CKB, для которых характерны необычайно мощная окислительно-восстановительная способность, большая емкость по кислороду и устойчивость к соединениям серы. В литературе появились сообщения о том, что цериевые катализаторы, такие как CeO_2/TiO_2 [3], α -MnO₂, допированный церием [4], смешанная оксидная система Ce-Cu-Zr [5] и CeZrO_x, модифицированный Sb [6], проявили высокую активность в модельных реакциях NH₃-CKB. Было показано, что введение Nb способствует увеличению активности катализаторов в NH₃-CKB и селективности по N₂. Промотирующее влияние Nb на активность в NH₃-CKB наблюдали в присутствии катализаторов CeO₂-Nb₂O₅ [7], Cu/Ti-Nb [8], Mn-Nb [9] и NbO_{r} -CeO₂-ZrO₂ [10]. Насколько нам известно, исследования поведения катализаторов CeAlO_x, допированных Nb, в реакции NH₃-CKB пока не проводились.

В данной работе описано приготовление серии катализаторов CeAlO_x, модифицированных Nb, в гидротермальных условиях и их поведение в NH₃-CKB. Для характеристики катализаторов использовали следующие методы: определение поверхности по адсорбции азота (БЭТ), рентгенофазовый анализ (РФА), температурно-программируемое восстановление водородом (ТПВ-H₂), температурно-программируемая десорбция аммиака (ТПД-NH₃), рентгеновская фотоэлектронная спектроскопия (РФЭС) и диффузная отражательная спектроскопия (ДОС) *in situ*.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализаторов

Серию катализаторов CeAlO_x, модифицированных Nb с эквимолярным отношением Ce/Al и различным мольным отношением Nb/Al, готовили в гидротермальных условиях. Навески Ce(NO₃)₃ · 6H₂O, NbCl₅ и Al(NO₃)₃ · 9H₂O растворяли в деионизованной воде и перемешивали при комнатной температуре в течение 1 ч. В приготовленный таким образом раствор добавляли водный раствор аммиака. Когда значение pH увеличивалось до 10, водную суспензию помещали в тефлоновый автоклав. После герметизации реакционную смесь выдерживали в автоклаве при 150°C в течение 24 ч. Затем осадок собирали на

фильтре, промывали деионизованной водой, высушивали при 110°С в течение 12 ч и прокаливали при 500°С в течение 5 ч.

Исследование каталитической активности в NH₃-CKB

Каталитическую активность в реакции NH₃-СКВ исследовали в реакторе с неподвижным слоем катализатора, через который пропускали реакционную смесь следующего состава: NO – 500 м. д., NH₃ – 500 м. д., O₂ – 5 об. %, SO₂ – 100 м. д. (в ряде экспериментов), H₂O – 5 об. % (в ряде экспериментов) и N₂ для поддержания баланса системы. Навеска катализатора составляла 0.6 мл, объемная скорость 500 мл/мин. Концентрацию газа определяли непрерывно с помощью ИК-Фурьеспектрометра Nicolet Nexus 670 ("Nicolet Instrument Corp.", США). Конверсию NO_x и селективность по N₂ рассчитывали по следующим уравнениям:

NO конверсия =
$$\frac{[NO_x]_{BX} - [NO_x]_{BMX}}{[NO_x]_{BX}} \times 100\%,$$
$$[NO_x] = [NO] + [NO_2],$$

$$N_{2} \text{ селективность} = \frac{[NO_{x}]_{BX} + [NH_{3}]_{BX} - [NO_{x}]_{BHX} - [NH_{3}]_{BHX} - 2[N_{2}O]_{BHX}}{[NO_{x}]_{BX} + [NH_{3}]_{BX} - [NO_{x}]_{BHX} - [NH_{3}]_{BHX}}.$$

Здесь нижний индекс "вх" означает концентрацию газа на входе в реактор, а "вых" — на выходе из реактора.

Характеризация катализатора

Изотермы адсорбции—десорбции N_2 на катализаторах были измерены при 77 К на установке Місготегіtics Tristar-3000 ("Місготегіtics", США). Перед адсорбционными измерениями, катализаторы вакуумировали при 300°С в течение 5 ч. Удельные поверхности катализаторов определяли методом БЭТ по данным, полученным в интервале относительных давлений 0.05–0.3. Общий объем пор рассчитывали по десорбционной ветви изотерм адсорбции N_2 по уравнению ВЈН.

Порошковый рентгенофазовый анализ (РФА) катализаторов проводили на дифрактометре Rigaku D/max 2200 ("Rigaku", Япония), используя Cu K_{α} -излучение. Образцы сканировали в области 20 от 10° до 90° со скоростью 5°/мин с шагом 0.07°.

Эксперименты по ТПВ-Н2 и ТПД-NН3 проводили в хемосорбционном анализаторе Micromeritics Auto Chem II 2920 ("Micromeritics"). В каждом опыте по ТПВ-Н₂ в кварцевый реактор загружали навеску катализатора (100 мг), затем через реактор, нагретый до 400°С, пропускали гелий (50 мл/мин), содержащий 20 об. % O₂. Через 1 ч реактор охлаждали до комнатной температуры в токе Не. После этого температуру со скоростью 10°С/мин поднимали от 30 до 800°С в токе гелия, содержащего 10% Н₂. Количество поглощенного водорода определяли с помощью детектора по теплопроводности. Перед каждым опытом по ТПД-NH₃ в реактор загружали навеску катализатора (100 мг) и обрабатывали ее при 400°С в течение 1 ч в токе гелия, содержащего 20 об. % О2. После охлаждения до 30°С катализаторы насыщали в токе NH₃, который подавали со скоростью 40 мл/мин в течение 1 ч. На заключительном этапе температуру поднимали до 600°С в токе Не при скорости нагревания 10°С /мин.

Для экспериментов, выполненных с применением диффузионной отражательной спектроскопии (ДОС) in situ использовали ИК-Фурье-спектрометр Nicolet Nexus 670 ("Nicolet Instrument Corp."), оборудованный интеллектуальным коллектором и МСТ-детектором, охлаждаемым жидким азотом. Перед каждым экспериментом катализатор обрабатывали при 500°С в течение 1 ч в токе N₂, содержащего 20 об. % О₂ и затем охлаждали до 200°С. Спектр фона, зарегистрированный в токе N₂, автоматически вычитали из спектра образца. Реакцию проводили при следующем составе реакционной смеси: NH₃ - 500 м. д., NO -500 м. д., O₂ – 5 об. % и N₂ – для поддержания баланса системы. Спектры регистрировали с разрешением 4 см $^{-1}$ и накоплением 100 сканов.

Измерения методом РФЭС проводили на спектрометре ESCALab 220i-XL ("VG Scientific", Великобритания) мощность 300 Ватт, MgK_{α} -из-лучение). В полученных спектрах шкалу Ce3d калибровали по энергии связи линии Cls (энергия связи 284.8 эВ), которую использовали в качестве репера.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При исследовании поведения катализаторов CeAlO_x в реакции СКВ-NH₃ в присутствии и отсутствие в них модифицирующей добавки Nb были получены результаты, приведенные на рис. 1. Как видно на рис. 1а, значения конверсии NO на катализаторе CeAlO_x невелики и максимальная степень превращения даже при 400°С составляет ~83%. Однако после допирования ниобием конверсия NO на трех катализаторах превышает 90% в области температур 200-400°С. Согласно данным рис. 16, катализатор CeAlO_x проявляет низкую селективность по N_2 при температурах выше 300°С. С увеличением мольного отношения Nb/Al от 0.5 до 1.0 селективность по азоту для катализаторов CeAlO_x, модифицированных ниобием, в высокотемпературной области значительно возрастает. Однако при дальнейшем увеличении мольного отношения Nb/Al до 1.5 заметного улучшения селективности по N_2 не наблюдается. Когда температура реакции превышает 300°С, на поверхности катализатора может протекать неполное окисление аммиака, что, возможно, снизит селективность по N₂. Подобное наблюдение ранее уже было описано в литературе [9]. Отсюда можно сделать вывод, что наилучшие показатели в реакции CKB-NH₃ проявляет катализатор CeNbAlO_r c эквимольным отношением Nb/Al.

Присутствие H₂O и SO₂ в отходящих газах обычно приводит к отравлению катализаторов и снижению активности в реакции CKB-NH₃. Поэтому было интересно проследить за влиянием

Рис. 1. Температурная зависимость активности (а) и селективности по N_2 (б) в реакции СКВ-NH₃ в присутствии катализаторов CeAlO_x и CeAlO_x, модифицированных Nb.

 H_2O/SO_2 на активность катализаторов CeNbAlO_x в реакции CKB-NH₃. На рис. 2 приведены данные, которые показывают, как продолжительность реакции влияет на активность катализаторов CeNbAlO_x при 250°C в присутствии добавок чистой H₂O или добавок смеси H₂O с SO₂. Видно, что конверсия NO несколько снижается при введении чистых добавок H₂O или SO₂. Однако активность в CKB-NH₃ можно вновь вернуть на прежний уровень, если прекратить напуск H₂O или SO₂. Подача смеси, содержащей 100 м. д. SO₂ и 5 об. % H₂O, вызывает постепенное снижение конверсии NO_x при 250°C. После того как подача SO₂ и H₂O прекращается, конверсия NO восста-

Рис. 2. Активность катализатора CeNbAlO_x в реакции CKB-NH₃ в присутствии 100 м. д. SO₂ или/и 5 об. % H₂O при 250°С.

навливается от 78.2 до 96.2%. Можно предположить, что потеря активности в реакции CKB-NH₃ вызвана осаждением на поверхности катализаторов NH₄HSO₄ или (NH₄)₂SO₄ [6].

В табл. 1 сведены данные о размере поверхности, объему пор и среднему диаметру пор, полученные для образцов катализатора $CeAlO_x$, содержащего и не содержащего модифицирующую добавку Nb. По сравнению с немодифицированным образцом модифицированный ниобием катализатор $CeAlO_x$ отличается большими значениями объема пор и среднего диаметра пор. Таким образом, адсорбционные данные указывают на то, что допирование Nb вызывает определенные изменения пористой структуры.

Таблица 1. Размер поверхности $S_{\text{BЭT}}$, объем пор и средний диаметр пор катализаторов CeAlO_x и допированного ниобием CeAlO_x

Образец	S _{ВЭТ} , м²/г	V _{пор} , см ³ /г	Средний размер пор, нм
CeAlO _x	155	0.15	4.2
$CeNb_{0.5}AlO_x$	132	0.21	5.4
CeNbAlO _x	110	0.29	7.8
$CeNb_{1.5}AlO_x$	104	0.24	6.2

На рис. 3 приведены рентгенограммы катализатора CeAlO_x и образцов CeAlO_x, модифицированных ниобием. На этих рентгенограммах отчетливо видны отражения при значениях 20, равных 28.8°, 33.2°, 47.8°, 56.5°, 70.2°, 76.9°, 79.6° и 88.7°, соответствующих дифракционной картине СеО₂ со структурой церионита [11]. Ни на одной рентгенограмме не обнаружены максимумы, характерные для соединений Al или Nb. Это можно объяснить либо тем, что эти соединения присутствуют в аморфном состоянии, либо тем, что образованные ими кристаллиты очень малы. По мере увеличения мольного отношения Nb/Al от 0.5 до 1.5 интенсивность максимумов, относящихся к СеО₂, постепенно ослабевает. Очевидно, при введении Nb размер кристаллитов CeO₂ в модифицированных образцах катализаторов CeAlO_x уменьшается.

Для определения адсорбционной емкости катализаторов CeAlO_x и CeNbAlO_x по аммиаку использовали метод TПД-NH₃. Соответствующие кривые термодесорбции регистрировали в области 50–600°С (рис. 4). На термодесорбционных кривых катализатора CeAlO_x заметны два максимума: при 142 и 365°С. Пик при 142°С можно отнести к слабо адсорбированному аммиаку, а пик при 365°С – к аммиаку, прочно удерживаемому на поверхности катализатора. Общую кислотность катализатора CeAlO_x можно оценить вели-

Рис. 3. Рентгенограммы катализаторов $CeAlO_x$ и $CeNbAlO_x$.

чиной 423.1 мкмоль/г. На кривых, полученных на образцах, модифицированных Nb, положения десорбционных максимумов NH₃ сдвигается в область низких температур, а величина общей кислотности увеличивается до 612.4 мкмоль/г. Можно предположить поэтому, что допирование ниобием усиливает кислотность катализатора CeAlO_x.

Также важную роль в реакции СКВ-NH₃ играют окислительно-восстановительные свойства катализатора. Эксперименты по ТПВ-Н₂ преследовали цель выяснить окислительно-восстановительную способность катализаторов CeAlO_x и CeNbAlO_x (рис. 5). На кривой ТПВ для катализатора CeAlO_x пик с максимумом при 527°C, по-видимому, отражает восстановление иона Ce4+ до Се³⁺ на поверхности катализатора [12]. На кривой. полученной для Nb-содержащего образца CeNbAlO_x, обнаружены два восстановительных пика с максимами при 498 и 691°С. Первый пик при 498°C, который можно отнести к процессу восстановления на поверхности CeO₂, сдвинут в область более низких температур по сравнению с аналогичным пиком для катализатора CeAlO_x. Второй пик при 691°С можно отнести к восстановлению массивного СеО₂ [13]. Полученные результаты указывают, что добавки Nb усиливают окислительно-восстановительную способность катализатора CeNbAlO_x.

Для анализа состояния церия и кислорода на поверхности был использован метод РФЭС. Спектры Ce3*d*-электронов на поверхности катализаторов CeAlO_x и CeNbAlO_x приведены на рис. 6а. Положение линий Ce3*d* найдено путем подбора

КИНЕТИКА И КАТАЛИЗ том 60 № 2 2019

Интенсивность

Рис. 4. Кривые ТПД-NH₃ для катализаторов CeAlO_x и CeNbAlO_x.

оптимальной комбинации гауссовых полос. Подуровни, обозначенные как и' и v', представляют исходное электронное состояние $3d^{10}4f^{4}$ -электронов, соответствующее окислительному состоянию ионов Ce³⁺, а подуровни u, u", u", v, v" и v"" отвечают $3d^{10}4f^{0}$ -электронам иона Ce⁴⁺ [6]. Отношение Ce³⁺/(Ce³⁺ + Ce⁴⁺) для образца CeNbAlO_x (34.1%) было выше, чем для катализатора CeAlO_x (27.2%). Это указывает на обогащение поверхности катализатора CeNbAlO_x кислородными вакансиями.

Рис. 5. Кривые ТПВ- H_2 для катализаторов CeAlO_x и CeNbAlO_x.

Рис. 6. РФЭ-спектры Ce3d- (a) and O1*s*-электронов (б) для катализаторов CeAlO_x и CeNbAlO_x.

На рис. 66 приведены РФЭ-спектры O1s-электронов. Подбор оптимального сочетания гауссовых полос позволяет описать эти спектры двумя подуровнями. Подуровень при 529.4-530.0 эВ можно отнести к атомам кислорода решетки (O_{β}) , а подуровень при 531.0-531.6 эВ – к атомам кислорода, адсорбированным на поверхности (O_{α}) [14]. Поверхностный кислород более подвижен и поэтому обладает более высокой реакционной способностью, чем кислород решетки. Поскольку отношение $O_{\alpha}/(O_{\alpha} + O_{\beta})$ в катализаторе CeNbAlO_x (55.3%) выше, чем у образца CeAlO_x (44.6%), можно предположить, что после допирования ниобием часть ионов Ce⁴⁺ превращается в ионы Се³⁺. Это может вызвать образование кислородных вакансий и повысить содержание кислорода,

адсорбированного на поверхности. Таким образом, увеличение доли поверхностного кислорода O_{α} усиливает процесс окисления NO до NO₂ и поэтому способствует протеканию реакции CKB-NH₃.

ДОС in situ

Спектры диффузионной отражательной спектроскопии адсорбированного NH_3 и адсорбированной смеси $NO + O_2$ были зарегистрированы *in situ* при 200°С, чтобы с помощью адсорбции выяснить свойства поверхности катализаторов CeAlO_x и CeNbAlO_x (рис. 7).

Как видно на рис. 7а, после напуска NH_3 на поверхности катализатора $CeAlO_x$ аммиак находится в различных формах. Полоса при 1271 см⁻¹ относится к симметричным и антисимметричным колебаниям NH_3 адсорбированных на льюисовских кислотных центрах [15]. Полоса при 1307 см⁻¹ обусловлена ножничными колебаниями NH_2 -групп [16], а полосу при 1455 см⁻¹ можно приписать симметричным и антисимметричным деформа-

ционным колебаниям ионов NH₄⁺, адсорбированных на бренстедовских кислотных центрах [17]. Присутствие полосы при 1625 см⁻¹ вызвано антисимметричными деформационными колебаниями ионов NH₃, координационно-связанных с поверхностью катализатора [18]. Полосы при 3360 и 3282 см⁻¹ соответствуют валентным колебаниям групп NH [19], а еще две полосы при 3660 и 3705 см⁻¹ можно приписать валентным колебаниям поверхностных ОН-групп [20, 21]. Допирование ниобием приводит к появлению в спектре полосы при 1367 см⁻¹, которая обусловлена присутствием адсорбированных частиц в окисленном состоянии [22]. Можно заметить, что полосы при 1282 и 1620 см⁻¹, отнесенные к льюисовским кислотным центрам, и полосы при 1445 и 1676 см⁻¹. соответствующие бренстедовским кислотным центрам, значительно сильнее на допированных катализаторах, чем на катализаторе CeAlO_x [11, 23, 24]. Более того, на поверхности катализатора CeNbAlO_x появляются более интенсивные полосы при 3178, 3266 и 3366 см⁻¹, отнесенные к валентным колебаниям NH-групп [19].

На рис. 76 показаны результаты исследования адсорбции смеси NO + O₂ при 200°С, полученные методом диффузионной отражательной спектроскопии *in situ*. После адсорбции NO + O₂ и последующей продувки N₂ в спектре катализатора CeAlO_x появляется ряд полос, отнесенных к монодендатным нитратам (1434 см⁻¹) [25], бидендатным нитратам (1280 и 1564 см⁻¹) [26, 27], мостиковым нитратам (1617 см⁻¹) [28] и M–NO₂-нитрогруппам (1355 см⁻¹) [29]. При увеличении

Рис. 7. Спектры диффузионной отражательной спектроскопии адсорбированного NH₃ (а) и адсорбированной смеси NO + O₂ (б), зарегистрированные *in situ* при 200°С для катализаторов CeAlO_x и CeNbAlO_x.

содержания добавки Nb полосы, соответствующие нитрогруппам $M-NO_2$ и монодендатным нитратным лигандам, полностью исчезли. Полосы адсорбированных нитратов не только стали менее интенсивными, но и сместились (1379 и 1580 см⁻¹ бидендатные нитраты и 1604 и 1625 см⁻¹ мостиковые центры) [30–33]. Отсюда можно сделать вывод, что введение Nb значительно ограничивает количество адсорбированных нитратов, а также изменяет их формы. Очевидно, введение Nb увеличивает содержание льюисовских и бренстедовских кислотных центров, что сопровождается снижением концентрации осно́вных центров. Все это улучшает процесс СКВ-NH₃.

выводы

Исследована реакция селективного каталитического восстановления NO_x аммиаком на катализаторе CeAlO,, допированном ниобием в гидротермальных условиях. В условиях, выбранных для модельной реакции, наиболее высокую активность, селективность по N₂ и устойчивость к присутствию SO₂/H₂O проявил катализатор CeNbAlO_r с эквимольным отношением Nb/Al. Изучение катализаторов показало, что добавка Nb улучшает кислотность поверхности, окислительно-восстановительные свойства и повышает содержание поверхностных атомов кислорода О_а и ионов Ce³⁺. Введение ниобия усиливает адсорбцию аммиака и ослабляет адсорбцию NO_r. Все упомянутые качественные особенности способствуют улучшению поведения промотированных ниобием катализаторов в реакции CKB-NH₃.

БЛАГОДАРНОСТИ

Авторы благодарят за финансовую поддержку Фонд поддержки научных исследований провинции Фуджиан (№№ 2017J01568 и 2017J01673), Проект департамента образования провинции Фуджиан (№№ JAT160327 и JAT170386) и Фонд поддержки научных исследований Технологического университета провинции Фуджиан (грант № GY-Z14007).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bosch H., Janssen F. // Catal. Today. 1988. V. 2. P. 369.
- Shan W., Liu F., He H., Shi X., Zhang C. // Catal. Today. 2012. V. 184. P.160.
- Yao X., Zhao R., Chen L., Du J., Tao C., Yang F., Dong L. // Appl. Catal. B. Environ. 2017. V. 208. P. 82.
- 4. Wei Y., Liu J., Su W., Sun Y., Zhao Y. // Catal. Sci. Technol. 2017. V. 7. P. 1565.
- Ali S., Chen L., Yuan F., Li R., Zhang T., Leng X., Niu X., Zhu Y. // Appl. Catal. B. Environ. 2017. V. 210. P. 223.
- Shi R., Lin X., Zheng Z., Feng R., Liu Y., Ni L., Yuan B. // React. Kinet. Mech. Catal. 2018. V. 124. P. 217.
- Stosic D., Bennici S., Rakic V., Auroux A. // Catal. Today. 2012. V. 192. P. 160.
- Wang X., Shi Y., Li S., Li W. // Appl. Catal. B. Environ. 2018. V. 220. P. 234.
- Lian Z., Liu F., He H., Shi X., Mo J., Wu Z. // Chem. Eng. J. 2014. V. 250. P. 390.
- Ding S., Liu F., Shi X., He H. // Appl. Catal. B. Environ. 2016. V. 180. P. 766.
- 11. *Li X., Li Y. //* J. Mol. Catal. A. Chem. 2014. V. 386. P. 69.
- 12. Li X., Li Y. // Catal. Lett. 2014. V. 144. P. 165.

- 13. *Gao X., Jiang Y., Fu Y., Zhong Y., Luo Z., Cen K. //* Catal. Commun. 2010. V. 11. P. 465.
- Shan W., Liu F., He H., Shi X., Zhang C. // Appl. Catal. B. Environ. 2012. V. 115. P. 100.
- 15. *Liu K., Liu F., Xie L., Shan W., He H. //* Catal. Sci. Technol. 2015. V. 5. P. 2290.
- Zhang X., Wang H., Wang Z., Qu Z. // Appl. Surf. Sci. 2018. V. 447. P. 40.
- 17. Wang P., Zhao H., Sun H. // RSC. Adv. 2017. V. 4. P. 48912.
- Xie G., Liu Z., Zhu Z., Liu Q., Ge J., Huang Z. // J. Catal. 2004. V. 224. P. 42.
- 19. Larrubia M.A., Arrighi L., Ramis G. // Catal. Today. 2005. V. 107. P. 139.
- 20. *Wang L., Li W., Qi G., Weng D.* // J. Catal. 2012. V. 289. P. 21.
- 21. Li X., Li Y., Deng S., Rong T.A. // Catal. Commun. 2013. V. 40. P. 47.
- 22. Cao F., Xiang J., Su S., Wang P., Hu S., Sun L. // Fuel Process. Technol. 2015. V. 135. P. 66.

- 23. Sultana A., Nanba T., Haneda M., Sasaki M., Hamada H. // Appl. Catal. B. Environ. 2010. V. 101. P. 61.
- 24. Liu F., He H. // Catal. Today. 2010. V. 153. P. 70.
- Liang H., Gui K., Zha X. // Can. J. Chem. Eng. 2016. V. 94. P. 1668.
- Schraml-Marth M., Wokaun A., Baikert A. // J. Catal. 1992. V. 138. P. 306.
- Qu R., Peng Y., Sun X., Li J., Gao X., Cen K. // Catal. Sci. Technol. 2016. V. 6. P. 2136.
- Zhu L., Zhong Z., Yang H., Wang C. // J. Environ. Sci. 2017. V. 56. P. 169.
- 29. *Liu Z., Liu Y., Chen B., Zhu T., Ma L. //* Catal. Sci. Technol. 2016. V. 6. P. 6688.
- Chen Y., Zhang Z., Liu L., Mi L., Wang X. // Appl. Surf. Sci. 2016. V. 366. P. 139.
- 31. *Liu Z., Liu Y., Li Y., Su H., Ma L. //* Chem. Eng. J. 2016. V. 283. P. 1044.
- Liu K., Liu F., Xie L., Shan W., He H. // Catal. Sci. Technol. 2015. V. 5. P. 2290.
- 33. Zhang P., Li D. // Catal. Lett. 2014. V. 144. P. 165.