УДК 541.128-022.532

Посвящается академику РАН Илье Иосифовичу Моисееву в связи с его юбилеем

НАНОКАТАЛИЗАТОРЫ ПАЛЛАДИЯ НА КОМБИНИРОВАННЫХ МАТРИЦАХ-НОСИТЕЛЯХ ДЛЯ ПОРТАТИВНЫХ ИСТОЧНИКОВ ТОКА

© 2019 г. М. В. Лебедева^{1, *}, Н. А. Яштулов¹, В. Р. Флид¹

¹ФГБОУ ВО МИРЭА – Российский Технологический Университет, Институт Тонких Химических Технологий им. М.В. Ломоносова, просп. Вернадского, 86, Москва, 119571, Россия

> **E-mail: lebedevamv@mitht.ru* Поступила в редакцию 14.01.2019 г. После доработки 14.01.2019 г. Принята к публикации 16.01.2019 г.

Синтезированы нанокомпозиты палладия на комбинированных матрицах-носителях (Нафион-углеродные нанотрубки (УНТ)). Функциональные характеристики материалов исследованы методами циклической вольтамперометрии и атомно-силовой микроскопии. Проведено сопоставление физико-химических характеристик нанокомпозитов палладий/Нафион-УНТ, полученных химическим восстановлением при использовании анионного и неионогенного ПАВ. Сформированные нанокатализаторы продемонстрировали высокую активность в реакции окисления муравьиной кислоты. Показано влияние условий проведения синтеза на каталитическую активность нанокомпозитов.

Ключевые слова: наночастицы палладия, Нафион-углеродные нанотрубки, каталитическая активность, ЦВА, АСМ

DOI: 10.1134/S0453881119020199

введение

Проблемы синтеза, исследования строения, реакционной способности и каталитических свойств координационных соединений металлов крайне актуальны для конструирования химических источников тока нового поколения с повышенными удельными характеристиками. Для разработки высокоэффективных нанокатализаторов окисления водорода и других водородсодержащих кислот и спиртов (муравьиная кислота, метанол, этанол и т.д.) в химических источниках энергии используют палладиевые и платиновые нанокомпозиты [1-23]. Предложенные академиком Моисеевым И.И. с сотрудниками методы и подходы привели к созданию активных катализаторов и технологических процессов, позволили расширить сырьевую базу производства продуктов крупнотоннажного синтеза, сушественно улучшить технико-экономические показатели и создать экологически приемлемые технологии для современной энергетики [1-3].

В работах авторского коллектива [15, 16, 19-22] было показано, что наночастицы платины и палладия, нанесенные на подложки из пористого кремния (**ПК**). полимерных и углеродных нанотрубок, являются эффективными электрокатализаторами для топливных элементов. Для формирования наноэлектрокатализаторов использовали синтез наночастиц металлов в растворах обращенных микроэмульсий [10-14] с последующей их адсорбцией на функциональных носителях [15, 16, 19-22]. Обратные мицеллы представляют собой сферические микрокапли воды (пулы), стабилизированные поверхностно-активными веществами (ПАВ) в органическом растворителе [10–14]. Мольное отношение воды к ПАВ (ш) определяет размер образующихся наночастиц металла при восстановлении ионов металлов в мицеллах [10, 14]. Увеличение этого соотношения способствует образованию более крупных наночастиц [15, 16, 19-22].

В качестве протонообменной мембраны в химических источниках тока, а также основного типа носителя при создании электрокатализаторов применяется коммерческая перфторированная мембрана, разработанная компанией "DuPont" – Nafion (Nf). В последнее время интенсивно развивается направ-

Английская версия статьи Лебедевой М.В. и др. будет опубликована в № 3-2019 "Kinetics and Catalysis".

ление, связанное с модификацией протонной полимерной мембраны неорганическими добавками [4–8]. Введение неорганических компонентов позволяет повысить эксплуатационные характеристики полимерных мембран. Осаждение металлического катализатора не только на поверхности, но и внедрение его в объем матрицы-поддержки стимулирует дополнительное каталитическое окисление топлива.

Ранее были исследованы нанокомпозиты с платиной и палладием на полимерной мембране Nafion [15, 21]. Установлено, что полимерные нанокомпозиты проявляют высокую каталитическую активность в реакциях окисления водорода и муравьиной кислоты при эксплуатации топливных элементов. Можно ожидать, что использование комбинированной матрицы-носителя, содержащей как полимерную, так и углеродную основу, позволит разрабатывать электродные материалы с повышенными удельными характеристиками [17, 19, 22].

Цель данной работы состояла в создании нанокомпозитов на основе комбинированных мембран (Нафион—углеродные нанотрубки), модифицированных наночастицами палладия, и в оценке каталитической активности и стабильности электродных материалов в реакции окисления муравьиной кислоты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Наночастицы палладия синтезированы методом химического восстановления ионов палладия в растворах обращенных микроэмульсий [15, 16, 19–22] полиэтиленоксида (**Тритон X-100**) ("Acros Organics", США) – неионогенного ПАВ, и бис(2-этилгексил)сульфосукцината натрия (**AOT**) ("Sigma Aldrich", США) – анионного ПАВ. Микроэмульсии на основе 0.15 М растворов Тритон X-100 в гексане или АОТ в изооктане, содержащие водные растворы соли палладия [Pd(NH₃)₂Cl₂] ("Sigma Aldrich", США), смешивали с раствором тетрагидробората натрия NaBH₄ (98%, "Merck", Германия) в качестве восстановителя. Степень солюбилизации ω – мольное соотношение вода/ПАВ – изменяли от 1.5 до 8.

Металлополимерные пленки мембран Нафион с наночастицами палладия синтезированы по методике, описанной нами ранее [15, 21]. Образцы мембран Нафион помещали в водноорганический раствор с наночастицами палладия, раствор подвергали УЗ-обработке в течение 3–5 мин. Солюбилизацию растворов проводили на ультразвуковом диспергаторе Ultrasonis Cleaner UD150SH-6L ("Eumax", Германия). Затем модифицированную металлополимерную мембрану промывали от остатков ПАВ и органического растворителя. Для получения комбинированных металлополимерных пленок с углеродными нанотрубками модифицированную мембрану с фиксированным содержанием палладия растворяли в водном растворе пропанола-2 ("Merck", Германия) и глицерола ("Merck", Германия) и добавляли водный раствор с углеродными нанотрубками (УНТ) при УЗ-воздействии в течение 4 мин при температуре $25 \pm 1^{\circ}$ С. В работе применяли одностенные (ОУНТ) и многостенные (MУНТ) углеродные нанотрубки ("Sigma Aldrich", США). Диаметр одностенных нанотрубок составлял 1.3-2.3 нм, многостенных - 110-170 нм. С целью очистки электродов от следов ПАВ и растворителя образцы УНТ с наночастицами промывали в изооктане, этаноле и дистиллированной воде. Приготовленную суспензию подвергали УЗ-обработке в течение 10-15 мин и высушивали на стеклянной подложке при 70°С в атмосфере аргона в течение 30-40 мин.

Размеры наночастиц, синтезированных в водно-органических растворах, определяли методом атомно-силовой микроскопии (АСМ) на сканирующем микроскопе NTegra Prima ("NT MDT", Россия). Исследование проводили в полуконтактном режиме на стандартной подложке из слюды. Каталитическую активность и стабильность сформированных комбинированных нанокомпозитов Pd/Nf-УНТ оценивали методом циклической вольтамперометрии (ЦВА). Потенциодинамические зависимости методом ЦВА регистрировали на приборе IPC-PRO M ("Техноприбор", Россия). Плотность тока i = I/S ((A/м²), где *I* – сила тока, *S* – площадь поверхности электрода), которая пропорциональна скорости электродной реакции, является основным показателем каталитической активности композитов [15–17, 19-22]. По величине электрокаталитически активной области (*ECSA*) (M^2/Γ), которая соответствует интегральной площади пика окисления муравьиной кислоты, рассчитывали размеры (d)наночастиц катализатора [15–17, 19–22]. Загрузку палладия m_s (Pd) (мг/см²) варьировали от 0.2 до 0.45 мг/см². Скорость сканирования изменяли от 10 до 50 мВ. Погрешность в измерении величин тока не превышала 2-4%. Точность оценки размеров наночастиц составляла $\pm 5-7\%$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящей работе для формирования наночастиц палладия использовали метод химического восстановления ионов металлов в водно-органических растворах обратных мицелл в присутствии анионного ПАВ (АОТ) и неиногенного ПАВ (Тритон X-100). Формирование наночастиц Рd происходило при смешении двух обратно-мицеллярных растворов – с водным раствором соли палладия в одном, и раствором восстановителя – тетрагидробората натрия NaBH₄ — в другом. Для оценки влияния ПАВ и условий синтеза на размеры и форму наночастиц палладия в водно-органических растворах обращенных микроэмульсий был использован метод АСМ.

На рис. 1 представлен пример ACM-изображения наночастиц Pd, полученных методом химического восстановления с использованием неионогенного ПАВ при $\omega = 1.5$. Наночастицы палладия, сформированные при значениях коэффициента солюбилизации (ω) от 1.5 до 8, имеют эллипсовидную форму. Наименьший размер частиц — продольное сечение 5–8 нм и высота до 2 нм — наблюдается при минимальном коэффициенте солюбилизации $\omega = 1.5$. При увеличении ω до 8 размеры наночастиц возрастают до 10–13 нм.

Были определены размеры наночастиц (**HY**) палладия, синтезированных методами химического восстановления с использованием анионного и неионогенного ПАВ [13, 14] (табл. 1). Как видно из данных табл. 1, наименьший размер НЧ наблюдается в случае химического восстановления с неионогенным ПАВ – Тритон X-100.

В химических источниках тока с твердыми полимерными электролитами типа Нафион окисление НСООН на аноде может быть выражено следующей суммарной реакцией:

$$\text{HCOOH} \to \text{CO}_2 + 2\text{H}^+ + 2\bar{\text{e}}.$$
 (1)

Согласно общепринятому механизму протекание реакции электроокисления НСООН возможно по двум направлениям [9, 22, 23] — прямого окисления НСООН без промежуточного образования монооксида углерода (СО):

$$\text{HCOOH} - 2\bar{\text{e}} \rightarrow \text{CO}_2 + 2\text{H}^+,$$
 (2)

и непрямого окисления с образованием адсорбированного СО:

$$\text{HCOOH} - 2\bar{e} \rightarrow \text{CO}_{a\pi c} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2\text{H}^+$$
. (3)

Методом ЦВА в настоящей работе было проведено исследование каталитической активности композитов на основе комбинированных мембран Nf-УНТ с наночастицами палладия, полученных химическим восстановлением ионов металлов при помощи тетрагидробората натрия NaBH₄ с анионным ПАВ – АОТ. Величина плотности тока (или величина тока І на единице поверхности электрода) и электрокаталитически активная область являются основными показателями каталитической активности нанокомпозитных электродов. На рис. 2 приведен пример потенциодинамических кривых (ЦВА) нанокомпозитов Pd/Nf–УНТ в стандартных 0.5 М растворах H_2SO_4 при коэффициенте солюбилизации $\omega =$ = 1.5. Стоит отметить отсутствие характерного пика окисления монооксида углерода СО с потенциалом окисления в области 0.9-1.1 В. В реак-

Рис. 1. АСМ-изображение наночастиц Pd, полученных методом химического восстановления с использованием неионогенного ПАВ (Тритон X-100) при $\omega = 1.5$.

ции прямого окисления в присутствии нанокомпозитов Pd/Nf–УНТ на вольтамперограммах идентифицируется единственный интенсивный пик с максимумом в интервале 0.3–0.45 В.

В табл. 2 представлены результаты оценки влияния содержания наночастиц палладия на функциональные характеристики нанокомпозитов, полученных с использованием анионного АОТ и неионогенного ПАВ: электрокаталитическую площадь поверхности (ECSA), плотность тока (j) и средний диаметр (d) наночастиц на комбинированных матрицах-носителях (МУНТ и ОУНТ). Повышение содержания палладия до 0.43 мг/см²: а) приволит к сушественному увеличению размеров наночастиц Pd до 30-40 нм; б) вызывает снижение функциональных показателей нанокомпозитов. При проведении ресурсных испытаний (многократном циклировании более 50 ч) наблюдается выделение наночастиц из состава нанокомпозитов и их последующая агломерация в растворе, в результате чего каталитическая активность нанокомпозитов Pd/Nf-УНТ падает. Нанокомпозиты Pd/Nf–УHT, полученные при $\omega = 8$, менее активны и имеют больший размер наночастиц.

Таблица 1. Размеры наночастиц Pd, полученных методом химического восстановления с анионным (AOT) и неионогенным ПАВ (Тритон X-100)

ПАВ	<i>d</i> , нм				
	$\omega = 1.5$	$\omega = 3$	$\omega = 5$	$\omega = 8$	
АОТ	5.0-6.5	6.3-7.7	7.9–9.1	9.3-10.7	
Тритон Х-100	4.5-5.7	5.3-6.6	6.1–7.2	6.9-8.1	

Рис. 2. Потенциодинамические кривые нанокомпозитов Pd/Нафион–УНТ в 0.5 M растворе HCOOH ($\omega = 1.5$) при m_S (Pd) = 0.35 мг/см²: Тритон X-100, МУНТ (*1*), Тритон X-100, ОУНТ (*2*), АОТ, МУНТ (*3*), АОТ, ОУНТ (*4*).

Сравнивая данные настоящего и более ранних исследований [15, 16, 19–22], можно прийти к следующему заключению. Химический метод синтеза с использованием неионогенного ПАВ – Тритон Х-100 — позволяет не только избежать трудностей, связанных с дополнительной отмыв-

Таблица 2. Каталитическая активность нанокомпозитов Pd/Нафион–МУНТ, полученных химическим восстановлением с анионным и неионогенным ПАВ

ПАВ	<i>m_S</i> (Pd), мг/см ²	ω	<i>ECSA</i> , м²/г	<i>j</i> , A/м ²	<i>d</i> , нм
AOT	0.26	1.5	53.6	12.1	9.3
		3	49.7	8.8	10.0
		5	45.9	6.6	10.9
		8	41.6	5.3	11.9
Тритон X-100		1.5	57.6	17.0	8.7
		3	54.2	13.8	9.2
		5	51.0	9.9	9.8
		8	48.7	8.3	10.2
AOT	0.35	1.5	56.4	16.2	8.8
		3	53.1	11.7	9.4
		5	50.8	9.3	9.8
		8	46.2	7.5	10.8
Тритон X-100		1.5	61.8	18.6	8.1
		3	58.3	17.5	8.5
		5	55.1	14.7	9.1
		8	52.4	10.4	9.5

Рис. 3. Хроноамперометрические кривые для реакции окисления HCOOH ($\omega = 1.5$) в присутствии образцов, полученных с использованием неионогенного ПАВ (Тритон X-100) при m_S (Pd) = 0.35 мг/см²: Pd/Nf–MУHT (*1*), Pd/Nf–OУHT (*2*), Pd/MУHT (*3*), Pd/Nf (*4*).

кой от остатков ПАВ при синтезе, сопровождающейся значительной потерей наночастиц, но и повысить удельные характеристики нанокомпозитов — каталитическую активность и стабильность.

Для синтезированных образцов Pd/Nf-УНТ при содержании металла 0.35 мг/см² были проведены ресурсные испытания стабильности каталитической активности в ходе амперохронометрического анализа изменения плотности тока во времени при фиксированном потенциале окисления (рис. 3). Для сравнения приведены данные для палладия на одностенных и многостенных нанотрубках (кривые 1 и 2), чистых МУНТ (кривая 3) и мембране Нафион (кривая 4). Из рис. 3 видно, что Pd/MУНТ (кривая 3), несмотря на более низкую плотность тока, проявляет стабильность, схожую с таковой для образца Pd/Nf-УНТ с комбинированной матрицей-носителем (кривая 1). Наименьшая стабильность характерна для Pd на чистой мембране Нафион (кривая 4), которая за 6 ч тестирования уменьшается почти на 50%.

ЗАКЛЮЧЕНИЕ

Таким образом, в настоящей работе синтезированы нанокомпозитные катализаторы с наночастицами палладия на комбинированных матрицах Нафион–УНТ при восстановлении ионов палладия в растворах обращенных микроэмульсий с применением анионного и неионогенного ПАВ. Исследована каталитическая активность и стабильность композитов состава палладий/Нафион–УНТ при варьировании условий синтеза (типа УНТ, мольного соотношения ω) в реакции окисления муравьиной кислоты. Продемонстрировано, что наилучшими каталитическими параметрами обладают нанокомпозиты, полученные с использованием многостенных углеродных нанотрубок и при степени солюбилизации $\omega = 1.5$.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке РНФ (№ 18-79-00017).

СПИСОК ЛИТЕРАТУРЫ

- 1. Чистяков А.В., Цодиков М.В., Мурзин В.Ю., Яндиева Ф.А., Зубавичус Я.В., Козицына Н.Ю., Гехман А.Е., Кривенцов В.В., Моисеев И.И. // Кинетика и катализ. 2011. Т. 52. № 2. С. 266.
- Якушев И.А., Гехман А.Е., Клягина А.П., Марков А.А., Варгафтик М.Н., Столяров И.П., Черкашина Н.В., Корнев А.Б., Моисеев И.И. // Координационная химия. 2016. Т. 42. № 9. С. 563
- 3. Чистяков А.В., Губанов М.А., Мурзин В.Ю., Жарова П.А., Цодиков М.В., Кривенцов В.В., Гехман А.Е., Моисеев И.И. // Изв. АН. Сер. Хим. 2014. Т. 63. № 1. С. 88.
- 4. *Liu Z., Tian Z.Q., Jiang S.P.* // Electrochim. Acta. 2006. V. 52. № 3. P. 1213.
- Liang H., Su H., Pollet B.G., Linkov V., Pasupathi S. // J. Power Sources. 2014. V. 266. P. 107.
- Stolten D., Emonts B. Fuel cell science and engineering: materials, processes, systems and technology. Wiley-VCH, 2012. V. 1–2. 1268 p.
- 7. *Gandia L.M., Arzamedi G.* Renewable hydrogen technologies: production, purification, storage, applications and safety. Amsterdam: Elsevier, 2013. 472 p.
- Moghaddam R.B., Easton E.B. // Electrochim. Acta. 2018. V. 292. P. 292.

- Winjobi O., Zhang Z., Liang C., Li W. // Electrochim. Acta. 2010. V. 55. P. 4217.
- Wang X., Chen Z., Shen W. // J. Chem. Thermodyn. 2019. V. 130. P. 129.
- Rahdar A., Almasi-Kashi M., Aliahmad M. // J. Mol. Liquids. 2017. V. 233. P. 398.
- Suwanchawalit C., Buddee S., Wongnawa S. // J. Environ. Sci. 2017. V. 55. P. 257.
- Holmberg K., Jonsson B., Kronberg B., Lindman B. Surfactants and polymers in aqueous solution. Wiley-VCH, 2002. 562 p.
- 14. *Kumar P., Mittal K.L.* Handbook of microemulsion science and technology. N.Y.: CRC Press. 1999. 849 p.
- Яштулов Н.А., Ревина А.А., Лебедева М.В., Флид В.Р. // Кинетика и катализ. 2013. Т. 54. № 3. С. 336.
- 16. Яштулов Н.А., Патрикеев Л.Н., Зенченко В.О., Смирнов С.Е., Лебедева М.В., Флид В.Р. // Российские нанотехнологии. 2015. Т. 10. № 11–12. С. 91.
- Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A. // Int. J. App. Eng. Res. 2018. V. 13. № 24. P. 16770.
- 18. *Гуэррини Е., Трасати С. //* Электрохимия. 2006. Т. 42. № 10. С. 1131.
- Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A. // Int. J. App. Eng. Res. 2018. V. 13. № 24. P. 16774.
- 20. Яштулов Н.А., Лебедева М.В., Пестов С.М. // Тонкие химические технологии. 2016. Т. 11. № 5. С. 59.
- 21. Лебедева М.В., Яштулов Н.А., Флид В.Р. // Кинетика и катализ. 2016. Т. 57. № 6. С. 850.
- 22. Лебедева М.В., Яштулов Н.А., Флид В.Р. // Кинетика и катализ. 2018. Т. 59. № 4. С. 482
- Caglar A., Sahan T., Cogenli M.S., Yurtcan A.B., Aktas N., Kivrak H. // Int. J. Hydr. En. 2018. V. 43. № 24. P. 11002.