УДК 547.57:541.128:541.65:547.31

МЕТАЛЛОКОМПЛЕКСЫ ЖЕЛЕЗА КАК КАТАЛИЗАТОРЫ РАДИКАЛЬНО ИНИЦИИРУЕМОЙ ГОМО- И СОПОЛИМЕРИЗАЦИИ МЕТАКРИЛАТОВ

© 2019 г. Н. Н. Сигаева^{1, *}, Р. Р. Галимуллин¹, Е. А. Глухов¹, Л. В. Спирихин¹, С. В. Колесов¹

 1 Φ ГБУН Уфимский институт химии РАН, просп. Октября, 71, Уфа, 450054 Россия

**E-mail: gip@anrb.ru* Поступила в редакцию 06.07.2018 г. После доработки 29.01.2019 г. Принята к публикации 29.01.2019 г.

В работе приводятся данные о влиянии металлокомплексов железа: ферроцена, дикарбонил димера циклопентадиенил железа на гомо- и сополимеризацию метилметакрилата и бутилметакрилата, инициированных пероксидом бензоила. Показано, что в присутствии металлокомплексов изменяется вид кинетических зависимостей, составы сополимеров и исходных смесей мономеров практически совпадают, т.е. образуется сополимер азеотропного состава. Значения констант сополимеризации близки единице. Присутствие металлоценов оказывает влияние на микроструктуру сополимеров и их молекулярно-массовые характеристики. Эти изменения объясняются образованием макромолекул как с участием свободных радикалов, так и формирующихся в присутствии металло-комплексов координационных активных центров.

Ключевые слова: металлоцены, микроструктура, механизм реакции, сополимеризация **DOI:** 10.1134/S0453881119030146

введение

Интенсивные исследования, проводящиеся во всем мире в течение последних десятилетий, показали, что многие задачи контролируемого синтеза полимеров могут быть решены с помощью нетрадиционных радикальных процессов. К ним относятся реакции полимеризации и сополимеризации, протекающие в присутствии новых регуляторов роста цепи, включающих радикальный инициатор и металлорганические комплексные соединения, способные влиять на кинетические закономерности, а, следовательно, и на свойства синтезируемых материалов.

В ряду металлокомплексов как каталитических добавок в полимеризационных системах особое внимание привлекают металлоцены (**МЦ**) в связи со значительными успехами их применения в каталитических системах ионно-координационной полимеризации. Интерес к МЦ в радикальной полимеризации также велик [1–7]. Экспериментальные и теоретические исследования влияния МЦ на кинетические закономерности и молекулярные характеристики получаемых полимеров в процессах гомополимеризации виниловых мономеров выявили целый ряд особенностей, объяснение которых хорошо укладывается в рамки представлений о механизме радикальнокоординационной полимеризации [7]. Ключевой момент этого механизма — образование в присутствии металлоценов, наряду с радикальными, координационно-ненасыщенных активных центров полимеризации, на которых реализуется не радикальный, а координационный рост цепи [7].

В ряду этих исследований неизменно высоко внимание к реакциям сополимеризации, которые являются одним из эффективных способов модификации полимеров, позволяющими посредством изменения структуры образующихся полимеров расширить сферу их применения. Однако работы по радикальной сополимеризации виниловых мономеров в присутствии МЦ весьма немногочисленны и противоречивы. Поэтому изучение сополимеризационных процессов на металлоценовых каталитических системах остается актуальным.

В связи с этим цель настоящей работы заключалась в установлении влияния и выявления роли металлокомплексов железа в процессе радикально инициированной гомо- и сополимеризации метилметакрилата и бутилметакрилата. Выбор мономеров основан на том, что их обычная радикальная гомо- и сополимеризация хорошо исследованы, полимеризации этих мономеров посвящено значительное количество публикаций. Вместе с тем, полученные к настоящему времени результаты гомо- и сополимеризации вышеуказанных мономеров в присутствии металлоценов отвечают далеко не на все вопросы о механизме процесса. Поэтому представляет интерес изучение сополимеризации мономеров, близких по реакционной способности, и выявление влияния на их активность регуляторов роста цепи на основе комплексных соединений железа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Были использованы следующие мономеры: метилметакрилат (MMA) (000)"MMA", г. Дзержинск, Россия) и бутилметакрилат (БМА) ("РЕАХИМ", Ереванский завод химреактивов, г. Ереван, Армения). Перед полимеризацией их очищали от стабилизатора – гидрохинона – отмывкой 10% раствором КОН, промывали водой до нейтрального значения рН промывных вод, сушили над CaCl₂ и дважды перегоняли в вакууме. Чистоту мономеров контролировали рефрактометрически и методом ЯМР ¹Н-спектроскопии. Инициатор – пероксид бензоила (ПБ), $T_{\pi\pi} = 108^{\circ}\text{C} - 108^{\circ}\text{C}$ дважды перекристаллизовывали из метанола и сушили при комнатной температуре в вакууме до постоянной массы.

В качестве каталитической добавки применяли дикарбонил димера циклопентадиенил железа (ДДЦЖ) и ферроцен (ФЦ) ("Aldrich", США) со структурой:

Гомополимеризацию проводили до глубоких степеней превращения, кинетику реакции изучали дилатометрически, затворная жидкость – глицерин [8]. Для подготовки системы мономер– инициатор к полимеризации в массе исходную смесь помещали в ампулу и дегазировали раствор трехкратным повторением циклов замораживание—вакуумирование—размораживание. После этого ампулу запаивали. Полимеризацию проводили при температуре 50 и 60°С (±0.1°С) до достижения необходимой степени превращения мономера, расчет производили по соотношению:

$$x = \frac{\Delta V}{V_0 k} \times 100\%,$$

КИНЕТИКА И КАТАЛИЗ том 60 № 3 2019

где x — конверсия (%), V_0 — первоначальный объем мономера (мл), ΔV — его изменение (мл), k — коэффициент контракции, равный:

$$k = \frac{V_{\rm M} - V_{\rm m}}{V_{\rm m}},$$

где $V_{\rm M}$ и $V_{\rm n}$ – удельные объемы мономера и полимера, значения *k* взяты из [8].

Сополимеризацию проводили в массе при различных концентрациях МЦ и пероксида бензоила (ПБ) и температурах полимеризации 50 и 60°С. Кинетику процесса изучали на начальных степенях превращения гравиметрическим методом. Стеклянные ампулы заполняли полимеризационной смесью, замораживали в жидком азоте и откачивали до остаточного давления 0.01 мм рт.ст. Операции замораживания и откачивания проводили трижды, после чего ампулу запаивали и помещали в термостат, температура в котором поддерживали с точностью ± 0.1 °С. После выдержки определенное время в термостате и достижении нужной степени конверсии (не более 8%) ампулу быстро охлаждали и вскрывали.

Реакционную смесь выливали в пятикратный избыток метанола при перемешивании. Сополимер очищали 3-х кратным переосаждением из толуола в метанол. Очищенные сополимеры сушили в вакууме при комнатной температуре до постоянной массы.

ЯМР-спектроскопические исследования сополимеров проводили на приборе AV 500 ("Brucker", Германия). Для анализа готовили растворы сополимеров в CDCl₃, в качестве внутреннего стандарта применяли тетраметилсилан. Измерения осуществляли при температуре 25°С, записывали спектры ЯМР¹Н. Для определения констант сополимеризации по результатам элементного анализа и анали ЯМР-спектров ¹Н полученных образцов находили состав сополимеров. В расчетах использовали площади пиков групп $-OCH_2-$ ($\delta = 3.9-4.0$ м. д.) и $-OCH_3$ ($\delta = 3.5-3.7$ м. д.):

$$m_1 = \frac{H_1}{n_1}; \quad m_2 = \frac{H_2}{n_2},$$

где m_1 и m_2 – содержание ММА и БМА в сополимере соответственно; H_1 и H_2 – значения площадей пиков групп – OCH₃ и – OCH₂– соответственно; n_1 и n_2 – количество протонов групп – OCH₃ и – OCH₂ [9–11].

Эффективные константы сополимеризации r_1 и r_2 для начальных степеней превращения рассчитывали методом Майо—Льюиса и Келена— Тюдоша [12].

Рис. 1. Кинетика гомополимеризации ММА (4) [5] и БМА (1–3, 5, 6) в присутствии инициирующих систем ПБ–ФЦ (1–4) и ПБ (5, 6). [ПБ] = [ФЦ], моль $\pi^{-1} \times 10^3$: 1.0 (1, 2, 4–6), 2.0 (3). $T_{\text{пол}}$, °С: 60 (1, 3–5), 50 (2, 6).

Молекулярные характеристики (M_w , M_n и M_w/M_n) полученных сополимеров определяли методом гель-проникающей хроматографии на жидкостном хроматографе LC-20AD System ("Shimadzu", Япония), элюент – тетрагидрофуран, скорость потока – 0.5 мл/мин. Использовали детектор RID-10A ("Shimadzu", Япония), вискозиметр (детектор) PSS ETA-2010 ("Polymer Standarts Service", Германия). Систему колонок – три колонки SDV (стирол дивинильный сополимер) – в диапазоне молекулярных масс (**MM**) 1000А–100000А калибровали по полистирольным стандартам с $M_w/M_n \le 1.2$.

Микроструктуру сополимера определяли с помощью метода ЯМР-спектроскопии ¹Н. Содержание триад рассчитывали по интегральной высоте сигнала α-метильной группы (гетеро-, изо- и синдио- при 1.17, 0.98 и 0.79 м. д. соответственно).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Поскольку в литературе имеются лишь сведения о полимеризации ММА на инициирующей системе ПБ-ФЦ [5], мы исследовали кинетику гомополимеризации ММА и БМА в присутствии инициирующих систем ДДЦЖ-ПБ и ПБ-ФЦ. Полученные кинетические кривые гомополимеризации бутилметакрилата представлены на рис. 1.

Видно, что введение ФЦ дополнительно к ПБ вызывает увеличение начальной скорости полимеризации настолько, что при 60°С процесс заканчивается, не достигая 100% конверсии. При снижении температуры полимеризации до 50°С конверсия мономера доходит практически до 100%. Как было показано в работе [6], возрастание скорости полимеризации в присутствии металлоценов связано с формированием комплекса ПБ-МЦ-мономер, распад которого протекает при значительно меньших величинах энергии активации. Исследование различных направлений взаимодействия ФЦ с ПБ с помощью квантовохимических расчетов, проведенных в работе [6], позволило локализовать структуры комплексов с переносом заряда (КПЗ), образующихся за счет одновременного взаимодействия обеих карбонильных групп ПБ с атомами водорода циклопенталиенильных колец.

Очевидно, что в нашем случае из-за еще более быстрого разложения комплекса ПБ-ФЦ-БМА пероксид бензоила расходуется полностью, что и вызывает прекращение реакции полимеризации.

Так же, как снижение температуры полимеризации, увеличение концентрации инициирующей группы в полимеризационной системе позволяет достичь 100% конверсии мономера, в том числе и при $T_{\text{пол}} = 60^{\circ}$ С (рис. 2). На рис. 2 представлены и результаты гомополимеризации MMA [5]. Из полученных результатов следует, что при одинаковой концентрации ФЦ (1.0×10^{-3} моль/л) поли-

Рис. 2. Кинетика гомополимеризации БМА в присутствии инициирующих систем ДДЦЖ–ПБ (1, 2, 4, 5) и ПБ (3, 6). [ДДЦЖ] = [ПБ], моль $\pi^{-1} \times 10^3$: 4.0 (1), 2.0 (2, 5), 1.0 (3, 4, 6). $T_{\Pi 0 \pi}$, °C: 60 (2–4), 50 (1, 5, 6).

меризация БМА протекает с большей скоростью, чем полимеризация ММА.

Аналогичная картина имеет место и при полимеризации БМА в присутствии инициирующей

МЦ–ПБ	<i>Т</i> _{пол} , °С	$[M\Pi] = [\Pi B],$	w ₀ × 10 ⁴ , моль л ^{−1} мин ^{−1}		
			MMA	БМА	
ФЦ–ПБ	60	1	41.8 [5]*	33.0	
		2	—	58.0	
	50	1	25.5 [5]*	29.0	
ддцж–пб	60	1	4.7	6.9	
		2	_	14.7	
		3	18.0	_	
		4	21.9	_	
		5	25.6	—	
	50	1	3.0	3.2	
		2	_	4.7	
		4	—	13.1	
ПБ	60	1	5.6 [5]*	3.4	
	50	1	1.8 [5]*	3.3	

Таблица 1. Начальные скорости гомополимеризации MMA и БМА в присутствии МЦ–ПБ в различных концентрациях

* Данные работы [5].

Прочерки означают, что данные отсутствуют.

системы ПБ-ДДЦЖ (рис. 2). При $T_{\text{пол}} = 60^{\circ}\text{C}$ процесс также прекращается при конверсии мономера ~70%, а увеличение концентрации инициирующей системы до 2.0 моль/л приводит к тому, что достигается 100% конверсия мономера. Действие концентрации инициирующей системы на скорость и предельно достигаемую конверсию мономера прослеживается и при $T_{\text{пол}} = 50^{\circ}\text{C}$ (рис. 2 и табл. 1).

Роль металлоцена не ограничивается его влиянием на рост начальной скорости полимеризации. Как следует из кинетических зависимостей, практически полностью исчезает проявление гель-эффекта (рис. 3, кривые 1-4), который имеет место в присутствии ПБ (рис. 3, кривые 5 и 6). Таким образом, металлоцены принимают участие в процессе полимеризации не только на стадии инициирования, но и на стадии роста цепи. Объяснить это можно, как и в случае гомополимеризации ММА, с точки зрения концепции радикально-координационной полимеризации [7], а именно — ростом цепи как на радикальных, так и на координационных активных центрах.

Как уже упоминалось выше, работы по радикальной сополимеризации виниловых мономеров в присутствии МЦ весьма немногочисленны, а представленные в них данные противоречивы. В связи с этим нами было исследовано влияние ФЦ и ДДЦЖ на сополимеризацию двух активных мономеров: ММА и БМА. На рис. 4 приведены

Рис. 3. Дифференциальные кривые гомополимеризации БМА в присутствии инициирующих систем ПБ–ДДЦЖ (*1*–4) и ПБ (*5*, *6*). [ДДЦЖ] = [ПБ], моль $\pi^{-1} \times 10^3$: 4.0 (*2*), 2.0 (*1*, 4), 1.0 (*3*, *5*, *6*); $T_{\text{пол}}$, °C: 60 (*1*, *3*, *5*), 50 (*2*, *4*, *6*).

Рис. 4. Зависимость начальной скорости сополимеризации ММА и БМА от состава исходной смеси мономеров M_2 . M_2 – мольная доля БМА в исходной смеси, %. Условия сополимеризации: [ПБ] = [МЦ] = 1 × 10⁻³ моль/л; МЦ: ФЦ (1, 2); ДДЦЖ (3, 5); ПБ (4); $T_{\text{пол}}$, °C: 60 (1, 3, 4); 50 (2, 5).

зависимости начальной скорости процесса от процентного содержания БМА (M_2) в исходной смеси.

Видно, что в присутствии металлоценов значения начальных скоростей изменяются и проходят через минимум при содержании БМА в исходной смеси от 30 до 70%, тогда как в случае инициирования только ПБ начальная скорость остается постоянной. Поскольку оба мономера активны, при избытке одного из них имеют место высокие значения начальной скорости.

МЕТАЛЛОКОМПЛЕКСЫ ЖЕЛЕЗА

МЦ-ПБ	$T_{\rm пол}$, °С	Состав исходной смеси, %		Состав сополимеров, %		~
		<i>M</i> ₁ (MMA)	<i>М</i> ₂ (БМА)	<i>m</i> ₁	<i>m</i> ₂	x, %
	60	10.0	90.0	10.2	89.8	8.9
		30.0	70.0	28.6	71.4	9.3
		50.0	50.0	49.1	50.9	6.5
		70.0	30.0	68.0	32.0	7.0
ФП ПЕ		90.0	10.0	89.0	11.0	7.1
ФЦ-ПВ		10.0	90.0	11.2	88.8	5.8
		30.0	70.0	29.0	71.0	6.2
	50	50.0	50.0	48.5	51.5	5.5
		70.0	30.0	70.3	29.7	4.3
		90.0	10.0	89.5	10.5	6.0
	60	10.0	90.0	10.7	89.3	5.9
		30.0	70.0	28.6	71.4	3.8
		50.0	50.0	48.5	51.5	0.9
		70.0	30.0	68.7	31.3	2.9
ддцж–пб		90.0	10.0	88.5	11.5	2.8
	50	10.0	90.0	9.0	91.0	4.5
		30.0	70.0	28.2	71.8	5.0
		50.0	50.0	49.9	50.1	2.5
		70.0	30.0	68.3	31.7	1.8
		90.0	10.0	89.4	10.6	3.9
ПБ	60	20.0	80.0	18.8	81.2	2.2
		50.0	50.0	48.2	51.8	2.9
		80.0	20.0	78.9	21.1	2.6

Таблица 2. Зависимость состава сополимера от состава исходной смеси мономеров [ПБ] = [МЦ] = 1×10^{-3} моль/л

Таблица 3. Относительные активности MMA (r_1) и БMA (r_2) при сополимеризации в присутствии инициирующей системы [ПБ] = [МЦ] = 1×10^{-3} моль/л

	-			-
МЦ-ПБ	<i>Т</i> _{пол} , °С	r_1	r_2	$r_1 \times r_2$
ФЦ–ПБ	60	0.89	1.00	0.89
	50	0.88	0.89	0.78
ДДЦЖ–ПБ	60	0.83	0.92	0.76
	50	0.95	1.09	1.03
ПБ [13]*	70	0.96	1.03	0.99
ПБ	60	0.94	1.08	1.02

* Использованы данные работы [13].

Таблица 4. Микроструктура сополимеров MMA : БМА = = 90 : 10, полученных в присутствии систем МЦ-ПБ

МЦ–ПБ	<i>Т</i> _{пол} , °С	Содержание звеньев, %			
		синдио-	гетеро-	ИЗО-	
ФЦ–ПБ	60	65.2	31.6	3.2	
	50	66.0	31.4	2.6	
ДДЦЖ–ПБ	60	62.8	33.4	3.8	
	50	64.1	30.6	5.3	
ПБ	60	56.0	42.0	2.0	

Таблица 5. Молекулярные характеристики сополимеров ММА и БМА, полученных в присутствии инициирующей системы [ПБ] = [МЦ] = 1×10^{-3} моль/л

ΜЦ	<i>Т</i> _{пол} , °С	Соотно- шение ММА/БМА	$M_{\rm n} \times 10^5$	$M_{\rm w} imes 10^5$	$M_{\rm w}/M_{\rm n}$
ФЦ	60	10:90	1.48	2.91	1.97
		50:50	1.67	3.00	1.80
		90:10	1.34	2.90	2.16
		10:90	1.20	2.55	2.13
	50	50:50	1.32	2.68	2.03
		90:10	1.36	2.94	2.16
ддцж	60	10:90	1.94	4.26	2.20
		50:50	1.79	3.84	2.15
		90:10	1.20	2.60	2.17
	50	10:90	0.64	1.18	1.84
		50:50	0.75	1.26	1.68
		90:10	1.76	3.71	2.11
ПБ	60	20:80	5.03	8.95	1.78
		50:50	4.83	8.28	1.71
		80:20	4.50	7.69	1.71

Зависимости состава сополимера от содержания мономеров в исходной смеси при сополимеризации в присутствии МЦ представлены в табл. 2. При $T_{пол}$ как 60°С, так и 50°С практически совпадают составы сополимеров и исходных смесей мономеров. То есть в этом случае образуется сополимер азеотропного состава, как и при сополимеризации, инициированной только ПБ [13].

В табл. 3 приведены рассчитанные значения эффективных констант сополимеризации для исследуемых систем. Из представленных данных следует, что как в случае инициирования только ПБ, так и в присутствии МЦ значения r_1 и r_2 близки к единице. Это и обуславливает азеотропный состав сополимеров.

Присутствие металлоценов в полимеризационной системе оказывает значительное влияние на микроструктуру получаемых сополимеров (табл. 4): увеличивается содержание синдио-тактических структур по сравнению с сополимеризацией под действием только ПБ. Этот факт нельзя объяснить ничем иным, кроме как участием в полимеризации, помимо радикальных, еще и координационных активных центров.

Молекулярные массы (ММ) сополимеров приблизительно в два-три раза меньше, чем в случае полимеризации, инициированной ПБ (табл. 5). Это связано с большей начальной скоростью полимеризации в присутствии металлокомплексов. Но надо учитывать, что значения ММ получены при небольших конверсиях мономера, а с ее увеличением будет происходить постепенный рост ММ за счет участия координационных центров в полимеризации [14].

Таким образом, МЦ, не оказывая сколь либо существенного воздействия на состав сополимеров, влияют на их микроструктуру. Это свидетельствует о том, что как на радикальных, так и на координационных активных центрах сополимеризация протекает с практически равной вероятностью вхождения в цепь сомономеров, несмотря на различие в их кинетической активности в процессе гомополимеризации. Возможность формирования координационных центров при гомополимеризации ММА и их строение были показаны ранее в работе [7] на основании квантовохимических расчетов.

При изучении реакций комплексообразования макрорадикалов полиметилметакрилата (ПММА) с ферроценом было найдено, что присоединение R[•] к атому железа энергетически невыгодно. Полагали, что взаимодействие R[•] с атомом Fe с большей вероятностью происходит не через атом углерода, имеющего неспаренный электрон, а через атом кислорода карбонильной группы [7].

Расчеты показали, что ферроцен может присоединять по Ср-кольцу R[•] (где Ср – это циклопентадиенильная группа), в результате чего образуется аддукт CpFe[•](C₅H₅R). Далее при взаимодействии с MMA- и ПММА-радикалами этот аддукт приводит к образованию координационных центров полимеризации. Последовательность превращений, ведущая к активному центру CpFe(MMA)₂(ПММА), показана на схеме 1:

Схема 1. Реакции, приводящие к образованию координацонного центра полимеризации из ферроцена. Под стрелками – тепловые эффекты (кДж/моль) [7].

Энергия активации (E_{akt}) реакции присоединения ММА к полимерной цепи в таком активном центре составляет 15 кДж/моль. В случае титаноцени цирконоцендихлоридов (схема 2) координационными центрами полимеризации являются структуры Ср₂Ti · (MMA)(ПММА) ($E_{akr} = 21$ кДж/моль) и CpZrCl₂(MMA)(ПММА) ($E_{akr} = 28$ кДж/моль):

Схема 2. Структура координационного центра ММА, полученного в присутствии титаноцендихлорида (а) и цирконоцендихлорида (б) [7].

При взаимодействии ферроцена с полистирольным радикалом (R[•]) формируется структура (1), представляющая собой металлоцентрированный радикал (схема 3). Дальнейшая рекомбинация (1) с R[•] приводит к появлению структуры (2), которая, координационно взаимодействуя с мономером, дает продукт (**3**). Этот продукт может координировать очередную молекулу мономера, образуя комплекс (**4**) – активный центр координационного роста цепи:

КИНЕТИКА И КАТАЛИЗ том 60 № 3 2019

Схема 3. Схема взаимодействий в системе МЦ-полистирольный радикал-стирол [7].

Подробно этот материал изложен в работе [15]. Вероятно, удлинение радикала у атома углерода в молекуле акрилата оказывает существенное влияния на стерическое расположение метакрилатных звеньев в сополимере, но не вносит существенного изменения в структуру координационного центра. Поэтому участие координационных центров не сказывается на относительной кинетической активности мономеров.

ЗАКЛЮЧЕНИЕ

Таким образом, проведенные исследования влияния металлокомплексов железа – ферроцена и дикарбонил димера циклопентадиенил железа на гомо- и сополимеризацию метилметакрилата и бутилметакрилата, инициированных пероксидом бензоила, показали, что в присутствии металлокомплексов изменяется вид кинетических зависимостей гомополимеризации этих мономеров. Составы сополимеров и исходных смесей мономеров практически совпадают. Значения констант сополимеризации близки единице. Присутствие металлоценов оказывает воздействие на микроструктуру сополимеров и их молекулярно-массовые характеристики. Эти изменения объясняются образованием макромолекул как с участием свободных радикалов, так и формирующихся в присутствии металлокомплексов координационных активных центров. Участие координационных центров не сказывается на относительной кинетической активности мономеров. Однако удлинение радикала у атома углерода в молекуле акрилата оказывает существенное влияния на стереорегулирующую способность координационных активных центров и, таким образом, на стерическое расположение метакрилатных звеньев в сополимере.

БЛАГОДАРНОСТИ

Анализы выполнены на оборудовании ЦКП "Химия" УфИХ УФИЦ РАН.

ФИНАНСИРОВАНИЕ

Работа выполнена по программе ФНИ государственных академий на 2013—2020 гг. (гос. задание АААА-А17-117011910026-3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Matyjaszewski K., Wei M., Xia J., McDermott N.E. // Macromolecules. 1997. V. 30. № 26. P. 8161.
- Outsu T., Yang-Un M. // J. Macromol. Sci. 1977. V. 11. A. № 10. P. 1783.
- 3. *Ye D.K., Li G.H., Dao-Yu L.* // Polym. Commun. 1984. № 2. P. 139.
- Grishin D.F., Shchepalov A.A., Telegina E.V., Ignatov S.K., Razuvaev A.G., Semenycheva L.L. // J. Polym. Sci. A. 2005. V. 47. № 6. P. 574.
- Сигаева Н.Н., Фризен А.К., Насибуллин И.И., Ермолаев Н.Л., Колесов С.В. // Кинетика и катализ. 2012. Т. 53. № 4. С. 491.
- 6. Kolesov S.V., Nasibullin I.I., Frizen A.K., Sigaeva N.N., Galkin E.G. // J. Polym. Sci. B. 2015. V. 57. № 2. P. 71.
- 7. Колесов С.В., Сигаева Н.Н., Глухов Е.А., Насибуллин И.И., Фризен А.К. // Успехи современного естествознания. 2016. № 3. С. 33.

КИНЕТИКА И КАТАЛИЗ том 60 № 3 2019

- 12 Fanaur A. A. Boarde
- 8. Гладышев Г.П., Попов В.А. Радикальная полимеризация при глубоких степенях полимеризации. М.: Наука, 1974. С. 244.
- 9. Bovey F.A. // J. Polym. Sci. 1962. V. 62. № 173. P. 197.
- 10. *Бови Ф.А.* ЯМР высокого разрешения макромолекул. М: Химия, 1977. С. 456.
- 11. Слоним И.Я., Любимов А.Н. Ядерный магнитный резонанс в полимерах. М.: Химия, 1966. С. 340.
- Берлин А.А., Вольфсон С.А., Ениколопян Н.С. Кинетика полимеризационных процессов. М.: Химия, 1978. С. 320.
- 13. Brar A.S., Kapur G.S. // Polymer J. 1988. V. 20. P. 811.
- Sigaeva N.N., Friesen A.K., Nasibullin I.I., Ermolaev N.L., Kolesov S.V. // J. Polym. Sci. B. 2012. V. 54. № 4. P. 197.
- 15. *Фризен А.К.* Дис... докт. хим. наук. Уфа: УфИХ РАН, 2016.