УДК 544.431.2:544.431.24:544.432.2

ВЗАИМОДЕЙСТВИЕ ГЛУТАТИОНА С ПЕРОКСИДОМ ВОДОРОДА. КИНЕТИЧЕСКАЯ МОДЕЛЬ

© 2019 г. К. М. Зинатуллина^{1, 2, *}, О. Т. Касаикина¹, В. А. Кузьмин², Н. П. Храмеева²

 ¹ΦГБУН Институт химической физики им. Н.Н. Семенова Российской академии наук, ул. Косыгина, 4, Москва, 119991 Россия
 ²ΦГБУН Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, ул. Косыгина, 4, Москва, 119991 Россия *E-mail: karinazinat11@gmail.com Поступила в редакцию 04.10.2018 г. После доработки 07.12.2018 г.

Принята к публикации 22.01.2019 г.

Исследованы кинетические закономерности взаимодействия глутатиона (GSH) с пероксидом водорода (H_2O_2). Показано, что скорость расходования GSH нелинейно зависит от концентраций реагентов, процесс сопровождается появлением радикалов с относительно небольшой скоростью, составляющей доли процента от скорости расходования GSH. На основании полученных экспериментальных и литературных данных о реакциях GSH с H_2O_2 и тиильных радикалов предложена кинетическая модель сложного процесса взаимодействия GSH и H_2O_2 в водной среде при 37°С. Модель включает 15 квазиэлементарных реакций с соответствующими константами скорости, в том числе, формирование промежуточного комплекса GSH $-H_2O_2$ и его последующие реакции с образованием конечных продуктов. Компьютерное моделирование на основе разработанной модели удовлетворительно описывает особенности кинетики процесса в широком диапазоне концентраций реагентов.

Ключевые слова: кинетика, глутатион, пероксид водорода, тиильные радикалы, кинетическая модель **DOI:** 10.1134/S0453881119030183

введение

Тиолсодержащие соединения играют важную роль в защите биологических систем от окислительных повреждений [1, 2]. Глутатион (GSH) – самый распространенный цитозольный тиол, относится к эндогенным биоантиоксидантам, синтезируемым непосредственно в живых организмах. GSH взаимодействует с гидроксильными радикалами, восстанавливает пероксид водорода, гидропероксиды, дисульфидные связи -S-S- и предотвращает окисление протеинов [3-9]. Концентрация GSH в биологических тканях составляет 0.1-10 ммоль л⁻¹, что значительно выше концентраций других потенциальных биоантиоксидантов. В клетках GSH присутствует преимущественно в восстановленной форме (GSH). Активными формами кислорода (АФК) GSH окисляется в дисульфид (GSSG). Соотношение восстановленной и окисленной форм глутатиона ([GSH]/[GSSG]) в клетке является одним из важнейших параметров, который показывает уровень окислительного стресса [10–12]. Окислительный стресс характеризуется повышенным содержанием АФК и отражает дисбаланс между скоростями образования АФК и их утилизацией [13–15].

В живых организмах восстановление гидропероксидов осуществляется глутатион-пероксидазами – ферментами, специфичными для органов и тканей, которые используют GSH в качестве субстрата и эффективно восстанавливают не только H_2O_2 , но и органические гидропероксиды, включая гидропероксиды мембранных полиненасыщенных жирных кислот. GSH участвует во многих физиологических процессах. В живых организмах он регулирует конформации белков и экспрессию генов с помощью реакций тиол-дисульфидного обмена, влияет на лимфоциты и иммунные реакции [16–19]. Изучается взаимосвязь GSH с различными заболеваниями, включая рак, нейродегенеративные болезни, синдром приобретенного иммунодефицита, старение, инфаркт, инсульт [19-24].

В последние десятилетия активно исследуется роль GSH в биохимии раковых клеток. Предполагается, что GSH является ключевым элементом в их защите от свободных радикалов и электрофилов и определяет чувствительность клеток к радиации и медикаментозной цитотоксичности. Множественную лекарственную и лучевую резистентность опухолевых клеток по сравнению с нормальными тканями связывают с повышенным в них уровнем GSH [22–25]. В литературе редокс-пара GSH/GSSG и H_2O_2 занимают центральное место в определении окислительно-восстановительного гомеостаза и редокс-сигнализации [26–31].

Согласно [2, 6, 32–35] взаимодействие GSH и H_2O_2 протекает стехиометрически в соответствии с уравнением:

$$2\text{GSH} + \text{H}_2\text{O}_2 \rightarrow \text{GSSG} + 2\text{H}_2\text{O}.$$

Однако в ряде работ отмечается, что, несмотря на общую стехиометрию, соответствующую вышеуказанному уравнению, скорость процесса имеет первый порядок по концентрации GSH [2, 31, 36] и зависит от соотношения концентраций GSH и H₂O₂ [36]. Недавно [37, 38] мы обнаружили, что взаимодействие GSH и H₂O₂ сопровождается генерированием радикалов. скорость которого составляет доли процента от скорости расходования GSH, однако ее оказалось достаточно для инициирования цепной реакции GSH с ненасыщенными фенолами ресвератролом и кофейной кислотой [39, 40]. Скорости образования радикалов (W_i) были измерены методом ингибиторов с применением анионного полиметинового красителя А (пиридиновая соль 3,3'-ди-ү-сульфопропил-9-метилтиакарбо-цианинбетаина) в качестве акцептора. Этот водорастворимый краситель инертен по отношению к тиолам и пероксиду водорода, но активно и стехиометрически реагирует со свободными радикалами [41]. По расходованию А, используя метод конкурирующих реакций, можно проводить оценку антирадикальной активности антиоксидантов. В частности, так было получено значение $k_{rO2} = 0.84 \times$ $\times 10^5$ M⁻¹ с⁻¹ для константы скорости реакции GSH с пероксильным радикалом из ААРН (2,2'азобис(2-амидинопропан) гидрохлорид) в водной среде при 37°С [38, 40].

В настоящей работе экспериментально исследованы концентрационные зависимости скорости расходования GSH и скорости образования радикалов в реакции GSH с H₂O₂. С помощью компьютерного моделирования с учетом полученных экспериментальных и имеющихся литературных данных о реакциях GSH, H₂O₂ и тиильных радикалов проведен анализ возможных путей неферментативного превращения GSH в GSSG. Построена кинетическая модель сложного процесса взаимодействия GSH и H_2O_2 (в водной среде при 37°C), которая хорошо описывает особенности кинетики процесса в широком диапазоне концентраций реагентов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Глутатион (GSH), реактив Эллмана (5,5'-дитиобис-(2-нитробензойная кислота (**DTNB**), "Sigma-Aldrich"), пероксид водорода ("Усольхимпром") применяли без предварительной очистки. Акцептором радикалов (**A**) служил анионный полиметиновый краситель (пиридиновая соль 3,3'ди-γ-сульфопропил-9-метилтиакарбо-цианинбетаина, "Госниихимфотопроект") [39]. В качестве реакционной среды использовали бидистиллированную и деионизированную воду (Direct-Q UV Millipore, 18 МОм см).

Реакции проводили при температуре 37°С в стеклянной термостатируемой ячейке, снабженной магнитной мешалкой. По ходу реакции из реакционного сосуда отбирали аликвоты (15 мкл), в которых анализировали содержание GSH методом Эллмана [42]. Для этого аликвоту добавляли к 3 мл натрий-фосфатного буферного раствора (PBS, pH 7.4), содержащего 0.1 мМ DTNB, и спектрофотометрически определяли содержание 2-нитро-5-тиобензойной кислоты ($\lambda_{max} = 412$ нм, $\varepsilon = 0.14 \times 10^5$ M⁻¹ см⁻¹), которая образуется при взаимодействии GSH с DTNB. Концентрацию базовых растворов H₂O₂ в отсутствие GSH контролировали йодометрическим методом.

Скорость генерирования радикалов (W_A) измеряли методом ингибиторов по расходованию акцептора **A**, изменение концентрации которого регистрировали спектрофотометрически ($\varepsilon = 0.77 \times 10^5 \text{ M}^{-1} \text{ см}^{-1}$ при $\lambda_{\text{max}} = 543 \text{ нм}$) непосредственно в термостатируемых кварцевых кюветах (1 см) спектрофотометра Ultraspec1100Pro ("Amersham plc", США).

Погрешность определения концентраций реагентов и скоростей реакций не превышала 15%.

Анализ кинетических особенностей взаимодействия GSH с H_2O_2 и компьютерное моделирование кинетических кривых расходования реагентов осуществляли с использованием программы [43].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлены зависимости начальной скорости расходования GSH (W_{GSH}) от концентраций GSH и H_2O_2 при разных соотношени-

Рис. 1. а – Зависимость скорости расходования GSH (W_{GSH}) от концентрации GSH в присутствии 4 мМ $H_2O_2(I)$ и от концентрации H_2O_2 в присутствии 4.5 мМ GSH (2); 6 – зависимость скорости расходования GSH от концентраций GSH (3) и $H_2O_2(4)$ в логарифмических координатах. Экспериментальные (\blacklozenge , \bigcirc) и расчетные (–) данные. Водная среда, 37°С.

Рис. 2. а – Изменение спектров поглощения 7 мкМ A в смеси 5 мМ GSH и 5.3 мМ H_2O_2 ; водная среда, 37°С. Спектры зарегистрированы с интервалом 1 мин. 6 – Кинетические кривые расходования 7 мкМ A в присутствии 10 мМ GSH (*I*), 10 мМ H_2O_2 (*2*) и смеси 5 мМ GSH с 5.3 мМ H_2O_2 (*3*).

ях их концентраций ($0.1 < [GSH]_0/[[H_2O_2]_0 < 2.5)$. Линейные анаморфозы этих зависимостей в логарифмических координатах (рис. 16) свидетельствуют о дробных порядках скорости расходования GSH по концентрациям реагентов:

$$W_{\rm GSH} \cong {\rm const} [{\rm GSH}]_0^{0.3} [{\rm H}_2 {\rm O}_2]_0^{1.2},$$
 (1)

КИНЕТИКА И КАТАЛИЗ том 60 № 3 2019

где const = $(1.7 \pm 0.2) \times 10^{-3} \text{ M}^{-0.5} \text{ c}^{-1}$.

Скорость инициирования радикалов измеряли методом ингибиторов по расходованию акцептора радикалов (А). На рис. 2а представлено изменение спектров поглощения А, зарегистрированных с интервалом 1 мин после введения акцептора в реакционную смесь. Из рис. 26 следует, что акцеп-

ЗИНАТУЛЛИНА и др.

[GSH] = 5 мМ; [A] = 7.2 мкМ			$[H_2O_2] = 8.6 \text{ MM}; [A] = 7.2 \text{ MKM}$		
[H ₂ O ₂], мМ	$W_{\rm A} imes 10^9$, M/c			$W_{\rm A} \times 10^9$, M/c	
	эксперимент	расчетные данные	[GSH], мМ	эксперимент	расчетные данные
0.45	1 ± 0.1	0.88	1.0	1.3 ± 0.15	2.4
0.9	1.7 ± 0.2	1.62	2.5	3.8 ± 0.4	3.5
1	2.0 ± 0.2	1.8	5.0	6.2 ± 0.6	5.5
1.75	2.5 ± 0.25	2.52	6.9	7.3 ± 0.7	7.8
2	2.8 ± 0.3	2.8	8.0	9.85 ± 1.0	9.6
3.5	4.5 ± 0.45	4.25	10.0	10.0 ± 1.0	10.3
4.4	4.9 ± 0.5	4.95			
8.8	5.6 ± 0.6	5.25			

Таблица 1. Скорости расходования акцептора **A** (7.2 мкМ) при разных концентрациях H_2O_2 в присутствии 5 мМ GSH, а также различных концентрациях GSH в присутствии 8.6 мМ H_2O_2 (водная среда, 37°С)

тор **A** не реагирует с GSH и H_2O_2 , взятыми по отдельности, и расходуется только в реакции с радикалами, генерируемыми при их взаимодействии (кривая *3*).

В табл. 1 представлены экспериментальные значения скоростей образования радикалов (W_A) при разных концентрациях H_2O_2 и GSH. Видно, что скорости образования радикалов на 2 порядка ниже W_{GSH} . Зависимости W_A от концентраций GSH и H_2O_2 также нелинейные, как и W_{GSH} , и имеют дробные порядки по концентрациям реагентов, отличные от порядков в уравнении (1) для W_{GSH} :

$$W_{\rm A} \cong \text{const} \left[\text{GSH}\right]^{0.75} \left[\text{H}_2\text{O}_2\right]^{0.75},$$
 (2)

где const = $(1.3 \pm 0.2) \times 10^{-5} \text{ M}^{-0.5} \text{ c}^{-1}$.

Дробные порядки по концентрациям основных реагентов, как правило, свидетельствуют о сложном многостадийном механизме процесса.

Для анализа кинетических особенностей взаимодействия GSH и H₂O₂ мы использовали компьютерное моделирование по программе [43]. Кинетическую схему — совокупность квазиэлементарных реакций (табл. 2) — конструировали поэтапно с учетом следующих особенностей процесса: 1) относительное увеличение $W_{\rm GSH}$ при [$\rm H_2O_2$]₀ > [GSH]₀ и относительное уменьшение $W_{\rm GSH}$ при [GSH]₀ > [$\rm H_2O_2$] (рис. 1); 2) образование радикалов и нелинейные зависимости начальной скорости расходования **A** от начальных концентраций GSH и $\rm H_2O_2$; 3) основными продуктами превращения GSH и $\rm H_2O_2$ являются GSSG и $\rm H_2O$; 4) кинетическая схема с оптимизированными константами скорости должна описывать экспериментальные кривые расходования GSH и введенного в реакционную смесь акцептора **A**.

Анализ литературных данных по кинетике взаимодействия GSH и H_2O_2 показал следующее. В работах [2, 6, 31, 44] было предположено, что начальным продуктом реакции между тиолом и H_2O_2 является сульфеновая кислота (–SOH), которая далее быстро взаимодействует с тиолом с образованием дисульфида:

$$GSH + H_2O_2 \rightarrow GSOH + H_2O,$$

$$GSOH + GSH \rightarrow GSSG + H_2O.$$

В [2] представлены кинетические характеристики реакции GSH и нескольких других тиолов с H_2O_2 в фосфатном буфере при 37°C и pH 7.4. Из экспоненциальных кинетических кривых расходования H_2O_2 в избытке GSH была определена эффективная константа скорости, из зависимости которой от концентрации GSH (~ мМ) получено значение бимолекулярной константы скорости реакции GSH и H_2O_2 , равное 0.9 M^{-1} с⁻¹. В работе [36] была тщательно исследована кинетика расходования GSH и H_2O_2 при их взаимодействии в нейтральном водном растворе при концентрациях порядка мМ и соотношении [GSH]₀/[H₂O₂]₀ в

интервале от 0.2 до 2. На основании наблюдаемых дифференциальных спектров поглощения реакционной смеси в специально сконструированных кюветах и наблюдаемых особенностях расходования H_2O_2 авторы [36] предположили формирование промежуточного комплекса $GSH-H_2O_2$, в котором тиоловая группа –SH реагирует с реактивом Эллмана так же, как в свободном GSH, а H_2O_2 не определяется используемым в [36] титансульфатным методом. Мы не нашли в литературе данных об образовании радикалов при взаимодействии GSH и H_2O_2 и в нашей первой публикации по этому вопросу [37] предложили относительно простую схему, учитывающую предположение [36] о формировании комплекса $GSH-H_2O_2$:

GSH

$$\downarrow$$

GSH + H₂O₂ \rightleftharpoons [GSH-H₂O₂] \rightarrow G-S-S-G + 2H₂O
 \downarrow
Радикалы (GS •)
 \downarrow
GS • + A
 \downarrow
Продукты
Схема 1.

В табл. 2 этой схеме соответствуют реакции (I)-(IV) (К - комплекс GSH-H₂O₂). Реакция (XIII) ($k_{13} = 10^9 \text{ M}^{-1} \text{ c}^{-1}$ [45]) характеризует быструю рекомбинацию тиильных радикалов, а взаимодействию акцептора А с тиильными радикалами соответствуют реакции (XIV) и (XV). Но моделирование показало, что совокупности реакций (I)-(IV) и (XIII)-(XV) соответствуют линейные зависимости W_{GSH} от начальных концентраций реагентов даже при вариации констант скоростей $k_1 - k_4$ в довольно широком интервале значений. С учетом литературных данных о промежуточном образовании сульфеновой кислоты (GSOH) введены реакции (V) и (VI). Реакции (VII) и (VIII) формирование димера глутатиона GSH + GSH *⇒* \rightleftharpoons GSH–GSH (C), в котором тиоловые группы определяются методом Эллмана, введены в модель для того, чтобы относительно уменьшить $W_{\rm GSH}$ и $W_{\rm A}$ в избытке GSH. Необходимо отметить, что в работе [32] при исследовании массспектров GSH методом электроспрея отрицательных ионов было показано, что в водном рас-

КИНЕТИКА И КАТАЛИЗ том 60 № 3 2019

творе наряду с ионами GSH обнаруживаются ионы димера, тогда как в фосфатном буферном растворе (0.1 M, pH ~ 7) димер не регистрируется. Для того чтобы $W_{\rm GSH}$ относительно увеличивалась в избытке H₂O₂ (рис. 1, кривая 2), добавлена реакция (XII). Реакции (IV), (IX) и (X), в которых образуются тиильные радикалы, увеличивают скорость расходования акцептора ($W_{\rm A}$) и практически не влияют на $W_{\rm GSH}$.

Реакции (I)–(XIII) характеризуют механизм взаимодействия GSH с H_2O_2 . Реакции (XIV) и (XV) имеют место при добавках акцептора радикалов и вместе с остальными реакциями моделируют кинетические кривые расходования акцептора.

Представленная кинетическая модель с оптимизированными константами скоростей вполне удовлетворительно описывает экспериментальные концентрационные зависимости для W_A и W_{GSH} (рис. 1 и табл. 1), а также экспериментальные кинетические кривые расходования GSH и A в реакции GSH с H_2O_2 (рис. 2 и 3).

Реакции	Лит. ссылка*	Константы скорости	Значение k_i , $M^{-1} c^{-1}$	
$H_2O_2 + GSH \rightarrow K$	(I)	[36]	<i>k</i> ₁	1.2×10^{-1}
$K \rightarrow H_2O_2 + GSH$	(II)	[36]	<i>k</i> ₂	$**1 \times 10^{-6}$
$K + GSH \rightarrow GSSG + 2H_2O$	(III)	[36]	<i>k</i> ₃	4×10^{-3}
$\mathbf{K} + \mathbf{GSH} \rightarrow \mathbf{GS} \bullet + \mathbf{GS} \bullet + 2\mathbf{H}_2\mathbf{O}$	(IV)	Настоящ. работа	k_4	7×10^{-4}
$K \rightarrow GSOH + H_2O$	(V)	Настоящ. работа	k_5	$**2 \times 10^{-3}$
$\rm GSOH + \rm GSH \rightarrow \rm GSSG + \rm H_2O$	(VI)	[2, 44]	k ₆	8×10^{-1}
$GSH + GSH \rightarrow C$	(VII)	[32]	k_7	1.3
$C \rightarrow GSH + GSH$	(VIII)	[32]	k_8	$**9 \times 10^{-4}$
$GSH + H_2O_2 \rightarrow GS \bullet + OH \bullet + H_2O$	(IX)	Настоящ. работа	<i>k</i> 9	4×10^{-4}
$OH \cdot + GSH \rightarrow H_2O + GS \cdot$	(X)	Настоящ. работа	k_{10}	1×10^{8}
$\mathrm{K} + \mathrm{K} \rightarrow \mathrm{GSSG} + 2\mathrm{H}_2\mathrm{O} + \mathrm{H}_2\mathrm{O}_2$	(XI)	[36]	k_{11}	9×10^{-2}
$C + H_2O_2 \rightarrow GSSG + 2H_2O$	(XII)	Настоящ. работа	k ₁₂	1×10^{-3}
$GS \bullet + GS \bullet \to GSSG$	(XIII)	[45]	k ₁₃	1×10^{9}
$\mathbf{GS} \bullet + \mathbf{A} \to \mathbf{B} \bullet$	(XIV)	Настоящ. работа	k ₁₅	6×10^{5}
$\mathbf{B} \boldsymbol{\cdot} + \mathbf{B} \boldsymbol{\cdot} \rightarrow$ продукты	(XV)	Настоящ. работа	k ₁₆	2×10^{8}

Таблица 2. Кинетическая модель взаимодействия GSH с H_2O_2 в присутствии акцептора радикалов A в водной среде при $37^{\circ}C$

Примечание. К – комплекс GSH– H_2O_2 ; С – комплекс GSH–GSH.

* Ссылки на работы, в которых упоминается соответствующая реакция. Оценка констант скоростей проведена только в [36], но для взаимодействия GSH с H₂O₂ в фосфатном буфере.

** Константа скорости имеет размерность c⁻¹.

Рис. 3. а – Кинетические кривые расходования тиильных групп в растворе 4.5 мМ GSH в отсутствие $H_2O_2(I)$, в смеси с 4 мМ $H_2O_2(2)$ и в смеси с 8.5 мМ $H_2O_2(3)$. ◆, ○, △ – экспериментальные данные (по Эллману), линии – расчет по кинетической модели (табл. 2) [GSH]*=[GSH]+[K]+2[C]. 6 – Кинетическая кривая расходования 6 мкМ акцептора А в присутствии 10 мМ GSH и 8.6 мМ H_2O_2 . Точки – экспериментальные данные, линии – расчет по кинетической модели (табл. 2).

ЗАКЛЮЧЕНИЕ

На основании экспериментально полученных концентрационных зависимостей скорости расходования GSH и скорости образования радикалов в реакции GSH с H₂O₂ (в водной среде при 37°С) разработана кинетическая модель взаимодействия GSH с H₂O₂, включающая 15 реакций с соответствующими оптимизированными для условий эксперимента значениями констант скоростей. Модель предусматривает образование комплексов GSH-H2O2 и GSH-GSH, что позволяет описать нетривиальные концентрационные зависимости скорости расходования глутатиона при избыточных концентрациях компонентов и относительно простой брутто-стехиометрии реакции. согласно которой лисульфил GSSG составляет не менее 95% прореагировавшего глутатиона.

Показано, что кинетическая модель удовлетворительно отображает не только концентрационные зависимости скоростей $W_{\rm GSH}$ и $W_{\rm A}$, но и экспериментальные кинетические кривые. Окисление глутатиона сопровождается образованием радикалов, выход которых хотя и небольшой, но достаточный для инициирования радикальноцепных процессов.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке грантов РФФИ № 18-33-00742 и 17-03-00364.

СПИСОК ЛИТЕРАТУРЫ

- Poole L.B. // Free Radical Biology and Medicine. 2015. V. 80. P. 148.
- Winterbourn C.C., Metodiewa D. // Free Radic. Biol. Med. 1999. V. 27. P. 322.
- Kheirabadi R., Izadyar M. // J. Phys. Chem. A. 2016.
 V. 51. № 120. P. 10108. DOI 10.1021/acs.jpca.6b11437
- Kritzinger E.C., Bauer F.F., du Toit W.J. // J. Agric. Food Chem. 2013. V. 2. № 61. P. 269. dx.doi.org/10.1021/jf303665z
- Saito S., Kawabata J. // J. Agric. Food Chem. 2004. V. 26. № 52. P. 8163.
- Winterbourn C.C., Metodieva D. // Methods Enzymol. 1995. № 251. P. 81.
- Gambuti A., Han G., Peterson A.L., Waterhouse A.L. // Am. J. Enol. Vitic. 2015. № 66. P. 411.
- 8. *Wang Y., Qiao M., Mieyal J.J., Asmis L.M., Asmis R. //* Free Radic. Biol. Med. 2006. № 41. P.775.
- 9. *Schafer F.Q., Buettner G.R.* // Free Radic. Biol. Med. 2001. V. 11. № 30. P. 1191.
- 10. Anderson M.E. // Chem. Biol. Interact. 1998. № 112. P. 1.

КИНЕТИКА И КАТАЛИЗ том 60 № 3 2019

- 11. *Penninckx M.J.* // Enzyme Microb. Technol. 2000. № 26. P. 737.
- Messens J., Collet J.F. // Antioxidants & Redox Signaling. 2013. V. 18. № 13. P. 1205. https://doi.org/ 10.1089/ars.2012.5156
- 13. Sies H. Oxidative Stress. L.: Academic Press. 1985. P. 1.
- 14. *Sies H., Jones D.P.* Encyclopedia of Stress. San Diego, CA.: Elsevier. 2007. V. 3. P. 45.
- 15. *Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B.* // Free Radic. Biol Med. 2010. V. 49. № 11. P. 1603.
- Hopkins F.G., Morgan E.J. // Biochem. J. 1936. V. 8. № 30. P. 1446.
- 17. *Hopkins F.G., Morgan E.J.* // Biochem. J. 1938. V. 3. Nº 32. P. 611.
- Kroemer G., Reed J.C. // Nat. Med. 2000. V. 5. № 6. P. 513.
- Wu G., Fang Y.Z., Yang S., Lupton J.R., Turner N.D. // J. Nutr. 2004. № 134. P. 489.
- 20. Conway J.G., Neptun D.A., Garvey L.K., Popp J.A. // Carcinogenesis. 1987. № 8. P. 999.
- 21. Townsend D.M., Tew K.D., Tapiero H. // Biomed. Pharmacother. 2003. V. 57. P. 145.
- 22. *Estrela J.M., Ortega A., Obrador E.* // Critical Reviews in Clinical Laboratory Sciences. 2006. V. 43. № 2. P. 143. DOI 10.1080/10408360500523878
- 23. *Toyokuni S.* // Frontiers in pharmacology. 2014. V. 5. № 200. P. 1. DOI 10.3389/fphar.2014.00200
- 24. *Stavrovskaya A.A.* // Biochemistry (Mosc). 2000. V. 1. № 65. P. 95.
- Guo R., Yang G., Feng Z., Zhu Y., Yang P., Song H., Wang W., Huang P., Zhang J. // Biomater. Sci. V. 6. № 5. P. 1238. DOI 10.1039/c8bm00094h
- 26. Albrecht S.C., Barata A., Groβhans J., Teleman A.A., Dick T.P. // Cell Metabolism. 2011. № 14. P. 819. DOI 10.1016/j.cmet.2011.10.010
- 27. Weschawalit S., Thongthip S., Phutrakool P., Asawanonda P. // Clinical, Cosmetic and Investigational Dermatology. 2017. № 10. P. 147.
- Altıntaşa A., Davidsena K., Gardea C., Mortensena U.H., Brasen J.C., Sams T., Workman C.T. // Free Radical Biol. Med. 2016. № 101. P. 143.
- 29. Marinho H.S., Real C., Cyrne L., Soares H., Antunes F. // Redox Biol. 2014. № 2. P. 535.
- 30. Sies H. // Redox Biol. 2017. № 11. P. 613.
- 31. *Winterbourn C.C., Hampton M.B.* // Free Radic. Biol. Med. 2008. V. 5. № 45. P. 549.
- 32. Deutsch J.C., Santhosh-Kumar C.R., Kolhouse J.F. // J. Chromatogr. A. 1999. № 862. P. 161.
- Petzolda H., Sadler P.J. // Chem. Commun. 2008. P. 4413. DOI 10.1039/b805358h
- 34. Singh B., Das R.S., Banerjee R., Mukhopadhyay S. // Inorganica. Chimica. Acta. 2014. № 418. P. 51.
- 35. *Chatgilialoglu C., Bowry V.W.* // J. Org. Chem. 2018. V. 83. № 16. P. 9178. DOI 10.1021/acs.joc.8b01216
- 36. Abedinzadeh Z., Gardes-Albert M., Ferradini C. // Can. J. Chem. 1989. № 67. P. 1247.

- 37. Зинатуллина К.М., Касаикина О.Т., Кузьмин В.А., Храмеева Н.П., Шапиро Б.И. // Изв. АН. Серия химич. 2017. № 7. С. 1300.
- Зинатуллина К.М., Храмеева Н.П., Касаикина О.Т., Кузьмин В.А. // Изв. АН. Серия химич. 2018. № 4. С. 726. DOI 10.1007/s11172-018-2129-0
- 39. Зинатуллина К.М., Храмеева Н.П., Касаикина О.Т., Шапиро Б.И., Кузьмин В.А. // Изв. АН. Серия химич. 2017. № 11. Р. 2145. DOI 10.1007/s11172-017-1995-1
- 40. Zinatullina K.M., Khrameeva N.P., Kasaikina O.T. // Bulg. Chem. Comm. 2018. V. 50. Special Issue C. P. 25.

- 41. Зинатуллина К.М., Касаикина О.Т., Кузьмин В.А., Храмеева Н.П., Шапиро Б.И. // Изв. АН. Серия химич. 2016. № 12. Р. 2825.
- 42. *Ellman G.L.* // Arch. Biochem. Biophys. 1959. № 82. P. 70.
- 43. Sirick A.V., Pliss R.E., Rusakov A.I., Pliss E.M. // Oxidation Commun. 2014. V. 37. № 1. P. 37.
- 44. *Nagy P., Ashby M.T.* // J. Am. Chem. Soc. 2007. V. 129. № 45.P. 14082.
- 45. Hellwege K.-H., Madelung O., Martienssen W., Landolt-Bornstein // Springer-Verlag. 1983. № 13. P. 308.