УДК 544.431.2:544.23.022:535.377:004.942

КИНЕТИЧЕСКАЯ МОДЕЛЬ ТЕРМОСТИМУЛИРОВАННОЙ ЛЮМИНЕСЦЕНЦИИ ПЛЕНОК ПОЛИ(ДИФЕНИЛЕНФТАЛИДА)

© 2019 г. М. Ю. Овчинников^{а,} *, В. А. Антипин^а, С. Л. Хурсан^а

^аУфимский Институт химии Уфимского федерального исследовательского центра РАН, пр-т Октября, 71, Уфа, 450054 Россия

*e-mail: myuovchinnikov@gmail.com

Поступила в редакцию 04.03.2019 г. После доработки 30.03.2019 г. Принята к публикации 16.04.2019 г.

С использованием методов математического моделирования изучена термостимулированная люминесценция (ТСЛ) пленок поли(дифениленфталида) (ПДФ) с кислотной и дифенильной концевыми группами. Решением обратной кинетической задачи в рамках трехцентровой четырехсталийной схемы процесса достигнуто адекватное (среднее относительное отклонение 6%) описание кинетических кривых ТСЛ и определены активационные параметры отдельных стадий. Закономерности кинетики ТСЛ свидетельствуют о существовании двух независимых каналов, приводящих к генерации электронно-возбужденного дифениленового фрагмента полимерной цепи. Фотовозбуждение ПДФ приводит к образованию системы разделенных ион-радикальных состояний и, как следствие, к активации отдельных фрагментов полимера. Последующие рекомбинационные процессы с участием наиболее активных состояний осуществляются через две последовательные стадии и характеризуются сравнительно невысокими значениями энергии активации ($E_{a2} = 23 \text{ кДж/моль}, E_{a3} = 42 \text{ кДж/моль}), традиционно ин-$ терпретируемыми в рамках теории механической релаксации как колебания наименьшихструктурных элементов полимера (предположительно боковых фрагментов ПДФ триарилметильного типа). Высокотемпературная ТСЛ (>370 К) описывается в рамках модели Рендела-Уилкинса и обусловлена, вероятно, сегментной подвижностью полимера ($E_{a1} = 70.5 \text{ кДж/моль}$). Полученные данные свидетельствуют, что в процессе генерации электронно-возбужденных состояний принимают участие преимушественно срединные звенья полимерной цепи: анализ активационных параметров, оцененных из кинетики ТСЛ пленок ПДФ с различным составом концевых звеньев, показал отсутствие значимых различий в описываемых рекомбинационных процессах.

Ключевые слова: термостимулированная люминесценция, поли(дифениленфталид), кинетическое моделирование, молекулярная релаксация, рекомбинация, ион-радикалы. **DOI:** 10.1134/S0453881119050046

ВВЕДЕНИЕ

В настоящее время органические полимерные материалы широко используются в микроэлектронике и фотонике [1–3]. Одним из критериев, определяющих область их применения, является высокая вероятность излучательной дезактивации фрагментов полимера, возбужденных электрическим полем, ультрафиолетовым или видимым светом, а также ионизирующим излучением. Не менее актуальным является вопрос о влиянии химического и фотохимического старения, инициируемого генерацией возбужденных состояний в полимерной матрице, на люминесцентные свойства полимеров и масштаб этого эффекта. В рамках указанных выше требований многообещающе выглядят ароматические высокомолекулярные соединения класса частично сопряженных кардовых полимеров – поли(ариленфталиды) (ПАФ) [4].

Сокращения: ПАФ – поли(ариленфталиды), ПДФ – поли(дифениленфталиды), ПФФ – поли(флуорениленфталиды), СЭ – сродство к электрону, ТАМ – триарилметильный тип, ТСЛ – термостимулированная люминесценция, DP – дифениленовый фрагмент.

Строение элементарного звена некоторых представителей поли(ариленфталидов)

ПАФ оптически прозрачны, термо- и хемостойки, обладают люминесценцией и высокими электрофизическими свойствами, характеризуются эффективным пленкообразованием и растворимостью в широком спектре органических сред [4]. В соответствии с современными представлениями [5-7], ключевую роль в генерации возбужденных состояний в полимерах при их нагревании играет рекомбинация ион-радикальных пар, образованных при энергетическом воздействии на полимер и стабилизированных полимерной матрицей. Интенсификация рекомбинационных процессов обусловлена ростом молекулярной подвижности элементов цепи при повышении температуры. Тем не менее детальный механизм термостимулированной люминесценции (ТСЛ) кардовых полимеров и активационные параметры основных стадий этого процесса изучены недостаточно. Имеются немногочисленные данные по кинетическим параметрам, очевидно, относящимся к лимитирующей стадии ТСЛ, приводящей к эмиссии квантов света в видимом спектральном диапазоне. В частности, для пленки поли(флуорениленфталида) (ПФФ) по начальному участку кривой ТСЛ вычислена приближенная величина энергии активации, которая составила от 73 до 76 кДж/моль в зависимости от скорости нагрева образца [7].

Какова же химическая природа активных частиц, ответственных за возникновение ТСЛ в кардовых полимерах? Согласно исследованиям люминесцентных свойств поли(дифениленфталида) (ПД Φ) и предложенной на основе анализа полученных данных концепции [8], за излучение в видимой области спектра ответственна фосфоресценция дифениленовых (флуорениленовых для $\Pi \Phi \Phi$) звеньев полимера, возникающая в результате переноса электрона с физической или химической ловушки электрона на дифениленовый катион-радикал. Если химическая природа катионного центра достаточно очевидна, то набор возможных анион-радикальных состояний существенно шире. Как показали результаты теоретического исследования, проведенные в рамках DFT-формализма (B3LYP/6-311+G(d,p)) [6], высоким сродством к электрону (СЭ, эВ) характеризуются концевые кислотные и антрахиноновые (СЭ = 2.4 3B), концевые сложноэфирные и

дефектные антроновые структуры (С $\Im = 1.8 \Im B$), а также фталидные группы (С $\Im = 1.5 \Im B$) ПАФ. Образование различных концевых звеньев обусловлено условиями синтеза полифталида [9].

A priori можно предположить, что, помимо глубины химической ловушки электрона, закономерности ТСЛ ПАФ должны определяться природой релаксационных процессов, усиливающихся в полимере при нагревании. Например, высокое сродство к электрону кислотных и антрахиноновых фрагментов ПАФ и релаксационная подвижность концевых групп позволяют рассматривать их в качестве потенциальных кандидатов на роль основных анион-радикальных состояний в облученном полимере. Однако, важен и экстенсивный фактор: проявление указанных свойств концевых групп компенсируется их низким содержанием в полимере (средняя длина цепи ПДФ – 50–100 звеньев). Обратное соотношение факторов справедливо для боковых фталидных фрагментов ПАФ: умеренные значения СЭ и подвижность при значительном содержании в полимере. Информация, необходимая для лучшего понимания природы и закономерностей ТСЛ ПАФ, может быть получена при изучении кинетики стимулированного свечения. Поэтому предметом настоящего исследования являлось построение кинетической схемы, адекватно описывающей зависимость интенсивности ТСЛ ПДФ от времени в условиях нестационарного температурного режима, а также изучение влияния структуры терминальных звеньев ПДФ на кинетику ТСЛ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ПДФ синтезировали по методике [4, 10]. Концевые звенья образовывались при прерывании процесса поликонденсации псевдохлорангидрида фталевой кислоты обработкой реакционной смеси метанолом (образец ПДФ-I, схема 1, (а)) либо дифенилом (образец ПДФ-II, схема 1, (б)) [9].

Схема 1. Строение ПДФ: (а) – кислотная (ПДФ-I), (б) – дифенильная (ПДФ-II) концевые группы

Молекулярная масса и температура размягчения синтезированного ПДФ составляют (50-80) × × 10³ усл. ед. и 738 К соответственно. Использованные образцы пленок были изготовлены методом полива из 5%-ного раствора хлороформа [11]. Остаточный растворитель удаляли из пленок отжигом образца при 423 К в течение нескольких часов. Толщина полученных образцов составляла 125-160 мкм. Перед исследованием кинетики ТСЛ образцы ПДФ-I и ПДФ-II отжигали при 423 К, затем облучали нефильтрованным УФ-светом осветителя ОИ-18 (ртутная дуговая лампа СВД-120, Россия, 120 Вт, λ = 250-600 нм) при комнатной температуре в течение 10 мин. Кинетику термостимулированной люминесценции записывали в режиме реального времени с использованием многоканальной установки, обеспечивающей регистрацию светового потока и управление температурным режимом образца [12]. Необходимый температурный режим образца задавали с помощью плоского нагревателя с питанием от программируемого терморегулятора: линейное изменение температуры либо режим термостатирования. Дополнительно температуру образца контролировали дифференциальной термопарой. Световой поток измеряли с помощью фотоэлектронного умножителя (ФЭУ-130, Россия, $\lambda = 200-650$ нм) в токовом режиме. Температуру изменяли в диапазоне 293-433 К с точностью ±0.1 град. Холостые опыты (при отсутствии пленки ПДФ) показали пренебрежимо низкий уровень сигнала при разогреве до максимальных в данном исследовании температур. Спектры ТСЛ снимали в области 220-700 нм с помощью граничных светофильтров по методике [13].

КИНЕТИКА И КАТАЛИЗ том 60 № 5 2019

ВЫЧИСЛИТЕЛЬНЫЕ ПРОЦЕДУРЫ

Кинетические закономерности ТСЛ обусловлены протеканием ряда параллельно-последовательных процессов в неизотермических условиях. В этой связи кинетическое моделирование проводили с применением численных методов интегрирования систем нелинейных дифференциальных уравнений. Систему однородных нелинейных дифференциальных уравнений, описывающую кинетическую схему излучательной дезактивации электронно-возбужденных фрагментов ПДФ, решали с использованием метода Розенброка 4-ого порядка точности [14]. Массив начальных условий включал величины констант скоростей отдельных стадий ТСЛ, а также исходное содержание анион-радикальных активных фрагментов ПДФ. Вследствие математической формализации механизма ТСЛ катион-радикальные центры полимера учитывались опосредованно. Температурную зависимость констант скорости описывали в рамках уравнения Аррениуса. Пары значений предэкспоненциальных факторов и энергий активации кинетических констант скорости A_i/E_{ai} , а также начальные количества активных звеньев [X]₀ и [Y]₀ формируют пространство переменных (И). Значения переменных, адекватно описывающих наблюдаемые экспериментально закономерности, были локализованы путем минимизации функционалов σ_{CAO} и σ_{COO} :

$$\sigma_{\rm CAO}(V) = \frac{\sum_{i=1}^{N} \left| S_{i, \, \text{эксп}} - S_{i, \, \text{теор}} \right|}{N}, \tag{1}$$

$$\sigma_{\rm COO}(V) = \frac{\sum_{i=1}^{N} \left| 1 - \frac{S_{i,\rm reop}}{S_{i,\rm \scriptscriptstyle 3KC\Pi}} \right|}{N},$$
(2)

$$S(\tau) = \int_{0}^{\tau} I_{\text{TCЛ}}(\tau) d\tau = \alpha \int_{0}^{\tau} W_{\text{лим}}(\tau) d\tau, \qquad (3)$$

где САО и СОО – средние абсолютное и относительное отклонения соответственно, S_{i, эксп} и S_{i, теор} (отн. ед.) – экспериментальная и расчетная светосуммы за время процесса τ, величина І_{тсл} (отн. ед./с) пропорциональна лимитирующей скорости реакции (*w*_{лим}) химического/фотохимического превращения (в работе использовано α = $= I_{\text{TCЛ}}/w_{\text{лим}} = 1$), N - количество экспериментальных точек. Функционал σ_{CAO} использовали на начальных стадиях оптимизационного процесса, тогда как функционал σ_{COO} сходится эффективнее в области, близкой к минимуму. Минимизацию функционалов осуществляли с использованием алгоритма Нелдера-Мида [15]. Управляющую кусочную функцию $T(\tau)$ использовали в виде массива данных и при необходимости рассчитывали интерполяционные значения. Следует отметить положительный момент нелинейной формы температурного профиля для решения обратной задачи математического моделирования. Хорошо известно, что высокая чувствительность отклонения расчетных данных от экспериментальных к изменению кинетических параметров $(\partial \sigma / \partial k_i)$ является гарантией достоверной оценки искомых констант скорости при анализе схемы изучаемой реакции. Сложный характер зависимости $T(\tau)$ обеспечивает необходимый градиент функции σ в пространстве варьируемых переменных И.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кинетические измерения ТСЛ ПДФ проводили с двумя типами пленок, различающимися строением концевых звеньев (схема 1). Образец ПДФ-І содержит кислотный концевой фрагмент (а), потенциально способный к трансформации в антрахиноновый [9], тогда как образец ПДФ-II – дифенильную концевую группу (б). Подготовленные предварительно облученные образцы пленок ПДФ-І и ПДФ-ІІ подвергали программированному линейному нагреву и термостатированию или охлаждению (рис. 1, штрихпунктирная линия) в диапазоне температур от комнатной до 433 К. При этом регистрировали свечение в видимой области спектра (рис. 1, заштрихованная область). Повышение температуры приводило к усилению интенсивности ТСЛ, в изотермических условиях наблюдался экспоненциальный спад интенсивности свечения, который усиливался при охлаждении пленки. Важно отметить, что

первый цикл нагревания—охлаждения пленок ПДФ τ_A по характеру изменения интенсивности ТСЛ, $I_{TCЛ}(\tau, T)$, отличается от второго и последующих циклов τ_B . Для диапазона τ'_B с линейной скоростью нагрева наблюдается монотонный рост $I_{TCЛ}$ и скорости ее изменения, тогда как диа-

пазон τ'_A характеризуется, во-первых, существенно большей интенсивностью свечения и, во-вторых, экстремальной зависимостью скорости изменения $I_{TCЛ}$, достигающей максимального значения примерно в области максимального содержания компонента Z (рис. 1).

Наиболее простым объяснением наблюдаемых закономерностей является предположение о существовании двух предшественников электронно-возбужденных состояний в полимере, которые существенно различаются по своей активности в рекомбинационном процессе. Можно предположить также, что фотохимические превращения, ответственные за формирование люминесцентной картины в первом временном интервале т_А, включают в себя полное (или в значительной мере) расходование лабильных и частичную трансформацию метастабильных структурных элементов ПДФ. В последующих циклах т_в лабильные центры отсутствуют, а величина І_{тсл} определяется только содержанием неизрасходованных менее активных центров. Эта гипотеза согласуется с выводом о наличии в облученном $\Pi \Box \Phi$ как минимум двух независимых фотохимических трансформаций, каждая из которых приводит к образованию электронно-возбужденных состояний [16]. Исходя из этих представлений мы попытались в первую очередь описать функцию $I_{\text{TCЛ}}$ в интервале τ_{B} ввиду ее более простой формы. Формальный механизм процесса ТСЛ включает мономолекулярную стадию выхода электрона из ловушки X⁻ (активация ловушки), стадию рекомбинации зарядов и стадию излучательной дезактивации дифениленового фрагмента (**DP***, $\lambda_{max} = 500$ нм):

> (i) $X^{-} \xrightarrow{k_{1}} X + e^{-}$ (медленно), $e^{-} + DP^{+} \rightarrow DP^{*}$ (быстро), $DP^{*} \longrightarrow DP \rightsquigarrow hv$ (быстро).

Принимая во внимание высокое сродство к электрону кислородсодержащих фрагментов полимерной цепи [6], мы предположили, что лимитирующей стадией ТСЛ на $\tau_{\rm B}$ -участке кривой является стадия активации ловушки [17–20]. В этой связи закономерно ожидать удовлетворительного описания ТСЛ-кривой в рамках уравнения, подчиняющегося кинетическому закону первого порядка. Используемые нами модельные ограничения соответствуют одностадийной модели ТСЛ Рендела–Уилкинса [21–23] с ловушками элек-

Рис. 1. (а) – Временная зависимость интенсивности *I*_{ТСЛ} образцов пленки ПДФ-I и ПДФ-II (сплошная линия) и ее аппроксимация в рамках модели Рендела–Уилкинса (область Х) и полной схемы ТСЛ (жирная штриховая линия). Температурный профиль показан штрихпунктирной линией. (б) – Изменения во времени относительного содержания анион-радикалов Х⁻, Y⁻ и Z⁻, ответственных за образование электронно-возбужденных состояний DP*.

трона одинаковой глубины и допущением их изотропного распределения в теле полимера. Тогда интенсивность может быть выражена через скорость реакции в соответствии с уравнением (4):

$$I_{\rm TCЛ} = \alpha w_{\rm {\scriptscriptstyle ЛИM}} = -\frac{d[X^-]}{d\tau} = \frac{d[DP^*]}{d\tau} = k_{\rm l}[X^-], \quad (4)$$

где [X⁻] и [DP*] — содержание анион-радикалов (ион-радикальных пар) и частиц в возбужденном состоянии соответственно, k_1 — константа скорости стадии (i).

На рис. 1 видно, что для обоих типов полимера наблюдается превосходное описание $I_{\text{TCЛ}}$ на вре-

КИНЕТИКА И КАТАЛИЗ том 60 № 5 2019

менном отрезке $\tau_{\rm B}$, причем предэкспоненциальный множитель и энергия активации константы скорости k_1 практически совпадают (табл. 1). Найденная энергия активации (70.5 кДж/моль) удовлетворительно согласуется с величиной $E_{\rm a}$ ТСЛ ПФФ [7]. Следует отметить, что различные величины относительных интенсивностей и, как следствие, светосуммы для ПДФ-I и ПДФ-II могут быть обусловлены отличающейся толщиной пленки образцов.

Используя найденные параметры уравнения Аррениуса для константы скорости k_1 , можно выделить область кривой на участке τ_A , связанную с

ОВЧИННИКОВ и др.

Таблица 1. Активационные параметры (A_i , c⁻¹; E_{ai} , кДж/моль) констант скорости $k_1 - k_3$ и начальное содержание активных частиц Х⁻ и Y⁻ (отн. ед.), найденные решением обратной кинетической задачи для схемы процесса ТСЛ пленок ПДФ, описываемой системой дифференциальных уравнений (4)–(7)

Образец	A_i			$E_{\mathrm{a}i}$			[X -].	[Y -]_	ß* %	σ
ПДФ	1	2	3	1	2	3	[2 x]0	L +]0	β,70	\$00
Ι	6.96×10^{4}	1.79	1.03×10^{4}	70.5	23.2	42.2	9400	3800	28.4	0.059
II	6.52×10^4	1.75	1.07×10^4	70.5	23.2	41.5	6800	1700	22.2	0.064

* Конверсия (%) активных центров \mathbf{X}^- (рис. 1), $\beta = [\mathbf{X}^-]_{\infty} / [\mathbf{X}^-]_0 \times 100\%$, $[\mathbf{X}^-]_{\infty} -$ содержание активных центров \mathbf{X}^- в конечный момент времени.

трансформацией лабильных структурных элементов ПДФ (рис. 1, область Ү). На рис. 2 представлены графики, полученные вычитанием кривой, рассчитанной на основе одностадийной модели Рендела-Уилкинса, из экспериментальной зависимости $I_{\text{TCЛ}} \sim \tau_{\text{A}}$. Мы рассмотрели две формально-кинетические схемы описания выделенного компонента. Первая схема, идентичная использованной для описания участка т_в (рис. 2, пунктирная линия, ПДФ-I), недостаточна для приемлемого описания зависимости І_{тсл} от времени термической экспозиции. Вторая схема состоит из последовательности превращений с двумя медленными стадиями (ii, iii), позволяющей получить количественное описание экспериментальной зависимости (рис. 4, штриховая линия):

(ii) $Y^- \xrightarrow{k_2} Y + e^-$ (медленно),

 $e^- + Z \rightarrow Z^-$ (быстро),

(iii) $Z^- \xrightarrow{k_3} Z + e^-$ (медленно),

$$e^- + DP^+ \rightarrow DP^*$$
 (быстро),

В этой формальной схеме частицам Y и Z можно придать физический смысл активных фрагментов полимерной цепи, участвующих в миграции электрона. В схеме номерами отмечены лишь кинетически значимые стадии. Уравнения стадий (ii, iii) соответствуют системе дифференциальных уравнений:

$$\frac{\mathrm{d}[\mathbf{Y}^-]}{\mathrm{d}\tau} = -k_2[\mathbf{Y}^-],\tag{5}$$

$$\frac{d[Z^{-}]}{d\tau} = k_2[Y^{-}] - k_3[Z^{-}], \qquad (6)$$

$$\frac{\mathrm{d}[\mathrm{DP}^*]}{\mathrm{d}\tau} = k_3[\mathrm{Z}^-]. \tag{7}$$

Таким образом, полная кинетическая схема ТСЛ ПДФ может быть описана системой четырех

Рис. 2. Кинетическая кривая *I*_{TCЛ} образцов пленки ПДФ-I и ПДФ-II (сплошная линия и область Y), полученная вычитанием области X из экспериментальной временной зависимости *I*_{TCЛ} (рис. 1) и ее описание в рамках модели Рендела–Уилкинса для компонента Y⁻ (жирная пунктирная линия) и уравнений стадий (ii, iii) (штриховая линия). Температурный профиль показан штрихпунктирной линией.

дифференциальных уравнений (4)-(7) с тремя кинетическими константами и двумя реакционными каналами расходования лабильных (У-) и метастабильных (Х⁻) активных фрагментов полимерной матрицы. Результаты решения обратной кинетической задачи с восемью параметрами для обоих изученных полимеров приведены в табл. 1, среднее относительное отклонение составляет ~6%. Следует особенно отметить, что активационные параметры кинетических констант $k_1 - k_3$ для обоих образцов ПДФ идентичны в пределах указанной погрешности расчета. С одной стороны это свидетельствует о высокой точности расчетных величин, а с другой – указывает на единство фотохимических процессов, протекающих в пленках ПДФ с различными концевыми группами.

Формально-кинетическое описание исследуемого процесса должно быть наполнено физическим смыслом рассчитанных параметров формальной схемы. Хотя полученных в настоящей работе фактов недостаточно для строгих выводов о природе изучаемых процессов, можно сделать определенные предположения. Так, величины активационных параметров E_2 и E_3 (табл. 1) могут быть интерпретированы в рамках теории механической релаксации [24] как колебания боковых элементов (ү-релаксация, типичные значения $E_{\rm a} = 16-20$ кДж/моль) [25, 26] и переход фениленовых групп от крутильных колебаний к вращению (β -релаксация, $E_a = 46-50$ кДж/моль) [24]. Мы полагаем, что в качестве бокового элемента цепи может выступать анион-радикал триарилметильного типа (ТАМ):

Действительно, захват электрона фталидным фрагментом ПДФ приводит к образованию метастабильного анион-радикала, С-О-связь лактонного цикла при акцептировании электрона существенно ослабляется [27]. Принимая во внимание двухступенчатый характер рассматриваемой фотохимической траектории, стадию отрыва электрона от ТАМ (ii) можно интерпретировать как перезаселение электронных ловушек. При этом электрон, прежде чем достичь дифениленового катион-радикала, вероятно, локализуется на фталидном фрагменте. Менее очевидна природа ТСЛ на втором участке $\tau_{\rm B}$ и последующих циклах ТСЛ, интенсивность которой определяется величиной энергии активации Е₁. Согласно теории релаксационных процессов [24], активационные параметры, вычисляемые при анализе термолюминесцентных кривых, содержат информацию о типе молекулярной подвижности [28]. При этом энергию активации ~70 кДж/моль в зависимости от строения полимера [24] относят нередко к колебаниям отдельных каркасных сегментов. Мы полагаем, что в процессе, описываемом уравнением стадии (i), роль электронной ловушки может выполнять как регулярный элемент цепи – фталидный цикл, так и дефектный антроновый фрагмент [9].

До настоящего момента нами не было прокомментировано влияние глубины ловушки на активационные параметры. В соответствии с предварительным анализом накопленного массива экспериментальных данных по механической релаксации полимеров [24-26], структурно подобных ПАФ, есть основания полагать, что, помимо функции ограничения скорости взаимодействия [17-20], прямым следствием глубины ловушки может быть значение частотного фактора, масштабированное вероятностью туннелирования электрона с одного фрагмента полимерной цепи на другой. Проверка выдвинутого предположения, впрочем, как и идентификация электронных ловушек, участвующих в ступенчатом переносе электрона, требуют дополнительных экспериментальных исследований и квантово-химических вычислений, а также сопряженных с ними оценок вероятности и расстояния, на которое может туннелировать электрон. Эти вопросы являются предметом наших дальнейших исследований.

ЗАКЛЮЧЕНИЕ

Проявляя исключительные термические, химические, а также электрофизические свойства, полиариленфталиды (ПАФ) способны к испусканию квантов света в видимом спектральном диапазоне (λ_{макс} ≈ 500 нм) при фотохимических трансформациях активных фрагментов цепи с разделенными зарядами. В настоящей работе мы применили комплексный подход, объединяющий методы термолюминесценции и математического моделирования, для изучения активных фрагментов пленок поли(дифениленфталида), участвующих в процессах разделения зарядов и генерации электронно-возбужденных состояний. Установлено, что УФ-облучение образца ПДФ сопровождается образованием нестабильных структур Ү-, претерпевающих трансформации при нагревании полимера в течение короткого периода времени. Мы полагаем, что этими фрагментами полимерной цепи являются производные триарилметильного анион-радикала. При этом преобразование анион-радикала триарилметильного типа (ТАМ) может сопровождаться переносом электрона на фталидный фрагмент, затем на дифениленовый катион-радикал и генерацией электронно-возбужденного состояния за счет энергии рекомбинации ион-радикалов. Выдвинутое предположение согласуется в рамках концепции механической релаксации с подвижностью боковых элементов и вращением фениленовых сегментов полимерной цепи соответственно. Кинетическая схема термостимулированной люминесценции ПДФ дополняется высокотемпературной составляющей. Показано, что за процессы разделения и переноса зарядов, а также излучательную дезактивацию электронно-возбужденных состояний ответственны срединные звенья изучаемого полимера, поскольку значимых различий в активационных параметрах пленок ПДФ, характеризующихся различным строением концевых звеньев цепи, не обнаружено.

БЛАГОДАРНОСТИ

Авторы выражают глубокую благодарность докт. хим. наук В.А. Крайкину за любезно предоставленные образцы полимеров, а также канд. физ.-мат. наук К.Ф. Колединой и докт. физ.-мат. наук И.М. Губайдуллину за ценные замечания по применению методики численного решения систем дифференциальных уравнений.

Эксперимент проводили на оборудовании центра коллективного пользования "Химия" Уфимского Института химии УФИЦ РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания по теме НИР УфИХ УФИЦ РАН АААА-А17-117011910028-7 (№ 0246-2018-0018).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ванников А.В.* // Рос. хим. журн. 2001. Т. 45. № 5-6. С. 41.
- 2. Лачинов А.Н., Воробьёва Н.В. // Успехи физ. наук. 2006. Т. 176. № 12. С. 1249.
- 3. *Разумов В.Ф., Алфимов М.В.* // Тр. МФТИ. 2011. Т. 3. № 4. С. 22.
- 4. Салазкин, С.Н., Шапошникова В.В., Мачуленко Л.Н., Гилева Н.Г., Крайкин В.А., Лачинов А.Н. // Высокомолекуляр. соединения. Сер. А. 2008. Т. 50. № 3. С. 399.
- 5. Антипин В.А., Мамыкин Д.А., Казаков В.П. // Химия высоких энергий. 2011. Т. 45. № 4. С. 352.
- 6. *Хурсан С.Л., Антипин В.А., Шишлов Н.М.* // Вестн. Башкир. ун-та. 2015. Т. 20. № 1. С. 30.

- 7. *Антипин В.А., Хурсан С.Л.* // Химия высоких энергий. 2016. Т. 50. № 3. С. 236.
- 8. *Антипин В.А., Хурсан С.Л.* // Вестн. Башкир. ун-та. 2015. Т. 20. № 2. С. 417.
- 9. Крайкин В.А., Ковардаков В.А., Салазкин С.Н. // Высокомолекуляр. соединения. Сер. А. 2001. Т. 43. № 8. С. 1399.
- 10. *Салазкин С.Н.* // Высокомолекуляр. соединения. Сер. Б. 2004. Т. 46. № 7. С. 1244.
- 11. Ляшевич В.В., Коршак В.В., Родэ В.В., Тимофеева Г.И. // Высокомолекуляр. соединения. Сер. А. 1976. Т. 18. № 5. С. 1150.
- 12. *Антипин В.А., Антипин А.В.* // Журн. физ. химии. 2018. Т. 92. № 2. С. 343.
- Биолюминесценция. Труды Московского общества испытателей природы / Под ред. Журавлева А.И. М.: Наука, 1965. С. 170.
- 14. Rosenbrock H.H. // Comput. J. 1963. V. 5. № 4. P. 329.
- 15. Nelder J.A., Mead R. // Comput. J. 1965. V. 7. № 4. P. 308.
- Антипин В.А., Хурсан С.Л., Кинзябулатов Р.Р., Лебедев Ю.А. // Вестн. Башкир. ун-та. 2014. Т. 19. № 4. С. 1156.
- Charlesby A., Partridge R.H., Freeth F.A. // Proc. Roy. Soc. London. A. Math. Phys. Sci. 1963. V. 271. № 1345. P. 170.
- Fleming R.J. // J. Polym. Sci. A2. Polym. Phys. 1968. V. 6. № 7. P. 1283.
- 19. *Точин В.А., Никольский В.Г. //* Химия высоких энергий. 1969. Т. 3. С. 281.
- 20. Boustead I., Charlesby A., Bowen E.J. // Proc. Roy. Soc. London. A. Math. Phys. Sci. 1970. V. 315. № 1521. P. 271.
- Randall J.T., Wilkins M.H.F., Oliphant M.L.E. // Proc. Roy. Soc. London. A. Math. Phys. Sci. 1945. V. 184. № 999. P. 365.
- 22. Sunta C.M., Kulkarni R.N., Yoshimura E.M., Okuno E. // Radiat. Proton Dosimetry. 1996. V. 65. № 1–4. P. 21.
- 23. *Pagonis V., Kitis G., Furetta C.* Numerical and Practical Exercises in Thermoluminescence. N.Y.: Springer, 2006. 208 p.
- 24. *Бартенев Г.М.* Релаксационные свойства полимеров. М.: Химия, 1992. С. 384.
- 25. Jones A.A., Stockmayer W.H. // J. Polym. Sci. Polym. Phys. Ed. 1977. V. 15. № 5. P. 863.
- Schaefer J., Sefcik M.D., Stejskal E.O., McKay R.A., Dixon W.T., Cais R.E. // Macromolecules. 1984. V. 17. № 6. P. 1107.
- 27. Шишлов Н.М., Хурсан С.Л. // Изв. АН. Сер. хим. 2015. Т. 4. С. 766.
- Partridge R.H. // J. Polym. Sci. A. 1965. V. 3. № 8. P. 2817.