УДК 547.854.4:544.424:544.421.081.7:542.978

СИНЕРГИЗМ СМЕСИ 3-БУТИЛ-5-АМИНО-6-МЕТИЛУРАЦИЛА И БУТИЛГИДРОКСИТОЛУОЛА ПРИ ИНГИБИРОВАНИИ ОКИСЛЕНИЯ СТИРОЛА

© 2020 г. А. В. Антипин^{а,} *, С. А. Грабовский^а, Ю. С. Грабовская^а, Н. Н. Кабальнова^а

^а Уфимский институт химии УФИЦ РАН, просп. Октября, 71, Уфа, 450054 Россия

**e-mail: rincewind@anrb.ru* Поступила в редакцию 31.07.2019 г. После доработки 15.11.2019 г. Принята к публикации 06.12.2019 г.

Изучено антиоксидантное действие смеси 3-бутил-5-амино-6-метилурацила и бутилгидрокситолуола (ионола) в модельной системе инициированного радикально-цепного окисления стирола в хлорбензоле при 310 К. Максимальный синергетический эффект наблюдался при соотношении концентраций производного урацила к ионолу ≈ 0.75 . Обсужден механизм синергетического действия.

Ключевые слова: окисление, стирол, антиоксиданты, 3-бутил-5-амино-6-метилурацил, бутилгидрокситолуол (ионол), синергизм

DOI: 10.31857/S045388112003003X

Многие лекарственные препараты, являющиеся синтетическими молификациями приролных соединений, обладают как биологической, так и антиоксидантной активностью и используются в моно- и комплексной терапии для профилактики и лечения различных заболеваний [1–3]. Интерес к антиоксидантным свойствам производных урацила обусловлен широким спектром их фармакологической активности и относительно высокими константами скорости реакции с пероксильными радикалами [4]. Алкилирование атомов азота урацильного кольца увеличивает растворимость в органических неполярных растворителях [5, 6], что позволяет сравнивать эти производные урацила с традиционными фенольными ингибиторами, а также изучать их совместное действие в присутствии других ингибиторов радикально-цепного окисления.

Одним из приемов повышения эффективности ингибитора является использование его в смеси с другими компонентами [7]. Считается, что для достижения фактической защиты биологических и технических материалов от окисления желательно использовать синергетическое действие различных антиоксидантов [7, 8]. Проявление синергизма в действии антиоксидантов выявляется, как правило, эмпирическим путем. В связи с этим экспериментальное подтверждение гипотез, связывающих эффективность и химическое строение антиоксидантов с целью прогнозирования возможности синергизма или антагонизма в их совместном действии, представляется важным и актуальным [9].

В данной работе было изучено антиоксидантное действие смеси 3-бутил-5-амино-6-метилурацила и бутилгидрокситолуола (ионола) — одного из нетоксичных, официально разрешенных к использованию антиоксидантов в модельной системе инициированного радикально-цепного окисления стирола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

2,2'-Азо-бис-изобутиронитрил (AIBN) очищали двукратной перекристаллизацией из 96%-ного этилового спирта. Стирол (St) освобождали от ингибитора на колонке с окисью алюминия с последующей вакуумной перегонкой при 40°С (15 мм рт. ст.). Бутилгидрокситолуол (ионол, "Merck") очищали сублимацией в вакууме. Растворители хлорбензол, ацетон ("ч. д. а.") и этилацетат перегоняли непосредственно перед использованием. Этанол обезвоживали над гидридом кальция.

Обозначения: AIBN - 2,2'-азо-*бис*-изобутиронитрил, St – стирол, α -TP – α -токоферол.

Физико-химические методы

Спектры ЯМР ¹H, ¹³С и ¹⁵N регистрировали на импульсном спектрометре Bruker Avance-III ("Bruker", Германия) с рабочей частотой 500.13 МГц (¹H), 125.47 МГц (¹³С) и 50.58 МГц (¹⁵N) с использованием 5-мм датчика РАВВО с Z-градиентом при постоянной температуре образца 298 К. Химические сдвиги в спектрах ЯМР ¹H и ¹³С приведены (в м. д.) относительно сигнала внутреннего стандарта – тетраметилсилана, а в спектрах ЯМР ¹⁵N – относительно сигнала внешнего стандарта (жидкого аммиака). Отнесение сигналов в спектрах ЯМР проводили с использованием одномерных и двумерных спектров: DEPT-90, DEPT-135, {¹H, ¹H} gsCOSY, {¹H, ¹³C} gsHSQC, {¹H, ¹³C} gsHMBC, {¹H, ¹⁵N} gsHMBC и {¹H, ¹⁵N} gsHSQC.

Электронные спектры поглощения записывали на спектрометре SPECORD M40 VEB ("Carl Zeiss JENA", Германия).

Данные элементного анализа получали на приборе Perkin Elmer Ser. II CHNS/0 2400 (США).

Температуру плавления определяли с помощью автоматизированной системы Optimelt MPA100 ("Stanford Research Systems", Англия) в открытых капиллярах без корректировки.

Структура ингибитора І

3-Бутил-5-амино-6-метилурацил (I) получали восстановлением соответствующего нитропроизводного 10% Pd/C в этилацетате [5] и перекристаллизовывали из этанола. Исходный 3-бутил-5нитро-6-метилурацил получали по методике [10].

3-Бутил-5-нитро-6-метилурацил: выход 47%. ЯМР ¹H (DMSO-d₆), δ , м. д.: 0.894 (т, J = 7.4 Hz, 3H, CH₂CH₃), 1.286 (сик., J = 7.4 Hz, 2H, CH₂CH₃), 1.507 (п, J = 7.4 Hz, 2H, N(3)CH₂CH₂), 2.300 (с, 3H, C(6)CH₃), 3.766 (т, J = 7.4 Hz, 2H, N(3)CH₂), 12.106 (HN(1)). ЯМР ¹³C (DMSO-d₆), δ , м. д.: 13.54 (CH₂CH₃), 16.30 (C(6)CH₃), 19.51 (CH₂CH₃), 28.93 (N(3)CH₂CH₂), 40.13 (N(3)CH₂), 126.99 (C5), 149.00 (C2), 152.02 (C6), 155.50 (C4). Рассчитано для C₉H₁₃N₃O₄, %: C 47.57, H 5.77, N 18.49. Найдено, %: C 47.55, H 5.79, N 18.45.

3-Бутил-5-амино-6-метилурацил (I): выход 94%. ЯМР ¹H (DMSO-d₆), δ , м. д.: 0.887 (т, J = 7.4 Hz, 3H, CH₂CH₃), 1.263 (сик., J = 7.4 Hz, 2H, CH₂CH₃), 1.484 (п, J = 7.4 Hz, 2H, N(3)CH₂CH₂), 1.978 (с, 3H, C(6)CH₃), 3.777 (т, J = 7.5 Hz, 2H, N(3)CH₂), 3.792 (с, 2H, NH₂). ЯМР ¹³C (DMSO-d₆), δ , м. д.: 13.62 (CH₂CH₃), 13.78 (C(6)CH₃), 19.57 (CH₂CH₃), 29.35 (N(3)CH₂CH₂), 39.55 (N(3)CH₂), 117.36 (C5), 126.40 (C6), 149.17 (C2), 160.22 (C4). ЯМР ¹⁵N (ДМСО-d₆), δ , м. д.: 32.5 (NH₂), 126.5 (N1), 160.3 (N3). Рассчитано для $C_9H_{15}N_3O_2$, %: С 54.81, H 7.67, N 21.30. Найдено, %: С 54.85, H 7.63, N 21.33.

Инициированное окисление стирола

Антиоксидантную активность изучали в модельной системе инициированного AIBN окисления стирола (St) в хлорбензоле при 310 К в атмосфере воздуха ($P_0 = 1$ атм), объем жидкой и газовой фаз 4 и 19.5 мл, соответственно [5]. В предварительных экспериментах с использованием УФ-спектрофотометрии и высокоэффективной жидкостной хроматографии (ВЭЖХ) было установлено, что соединения не расходуются в насыщенных кислородом растворах как в отсутствие AIBN, так и в его присутствии без кислорода. Количество поглощенного кислорода определяли с помошью манометрической лифференциальной установки с датчиком перепада давления в кинетическом режиме, коэффициент Генри равен 0.198 для смеси хлорбензол-стирол при 310 К, как описано ранее [5]. Скорость инициирования w_i предварительно определяли в серии экспериментов из значений периода индукции (t_{ind}), используя α-токоферол (α-ТР) в качестве эталонного антиоксиданта: $w_i = 2[\alpha - TP]_0 / t_{ind}$ [11]. Константу продолжения цепи вычисляли из фактора окисляемости $k_2(2k_6)^{-1/2}$. Определение периода индукции, расчет констант скорости реакции с пероксильными радикалами и стехиометрического коэффициента ингибирования проводили аналогично приведенным в работе [12]. Скорость поглощения кислорода w, определяли численным дифференцированием сглаженной усреднением кинетической кривой, после повторного сглаживания численным интегрированием вычисляли индукционный период:

$$t_{\rm ind} = \int_{0}^{\infty} (1 - (w_t/w_0)^2) dt,$$

где w_0 — скорость поглощения кислорода без ингибитора.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При окислении стирола в присутствии 3-бутил-5-амино-6-метилурацила (I), ионола (II) и их смесей скорость поглощения кислорода снижается и наблюдается индукционный период (рис. 1). Из зависимостей поглощения кислорода от времени численным дифференцированием были рассчитаны скорости поглощения кислорода. После завершения индукционного периода скорость поглощения кислорода была равна скорости без добавок I и II, т.е. продукты не ингибируют окисление. $(k_2),$

считаны значения степени торможения (F)

где w₀ – скорость поглощения кислорода не ингибированного окисления. Из концентрационной зависимости

$$F = fk_7[\text{InH}]_0\sqrt{2k_6w_1}$$

была вычислена константа скорости ингибирования fk_7 , которая для I составляет 1×10^5 л моль⁻¹ с⁻¹ ([InH]₀ – начальная концентрация ингибитора). Стехиометрический коэффициент ингибирования (f) рассчитывали по формуле $f = w_i t_{ind} / [InH]_0$. Для II константа скорости ингибирования fk_7 и стехиометрический коэффициент ингибирования f совпали с литературными данными [14].

В присутствии I f равен 1.1 (табл. 1), что типично для 5-аминопроизводных урацила [5]. Введе-

Таблица 1. Кинетические параметры ингибирования окисления стирола*

* Условия окисления: [St] = 1.71 моль/л, 310 K, $2k_6 = 5.5 \times 10^7$ л моль⁻¹ с⁻¹ [13], $k_2 = 29.5$ л моль⁻¹ с⁻¹, $w_i = (1.3-1.4) \times 10^{-8}$ моль π^{-1} с⁻¹ $\times 10^{-8}$ моль л⁻¹ с⁻

** В смеси I и II для $If = (t_{ind}w_i - f_2[II]_0)/[I]_0$.

[О₂], моль/л

Расчет кинетических параметров проводили в рамках механизма цепного окисления:

$$AIBN \to r \xrightarrow{O_2} rOO \xrightarrow{St} R (k_i),$$

R'+O₂ \rightarrow ROO' (k₁),

$$ROO' + St \rightarrow R'$$

0.

......

ления w, период индукции

$$\operatorname{ROO} + \operatorname{ROO} \to \operatorname{P}$$
 $(k_6),$

$$\operatorname{ROO}^{\bullet} + \operatorname{InH} \to \operatorname{ROOH} + \operatorname{In}^{\bullet} (k_7).$$

По кинетическим кривым поглощения кислорода были рассчитаны начальная скорость окисления
$$w$$
, период индукции t_{ind} и длина цепи окисления $v = w/w_i$ (табл. 1). В присутствии ингибитора $v > 5-6$, что свидетельствует о протекании радикально-цепного процесса.
Для индивидуальных ингибиторов были рас-

Рис. 1. Типичные кинетические кривые поглощения кислорода при инициированном окислении стирола в хлорбензоле ([St] = 1.71 моль/л, $w_i = 1.31 \times 10^{-7}$ моль π^{-1} с⁻¹, 310 К) в различных условиях: 1 - 6ез ингибиторов ($w_0 =$ $= 7.9 \times 10^{-7}$ моль л⁻¹ с⁻¹), 2 – [I]₀ = 2.4 × 10⁻⁵ моль/л, 3 – $[II]_0 = 5 \times 10^{-5}$ моль/л, $4 - [I]_0 = 2.5 \times 10^{-5}$ моль/л и $[II]_0 =$ $= 5 \times 10^{-5}$ моль/л, $5 - [\mathbf{I}]_0 = [\mathbf{II}]_0 = 5 \times 10^{-5}$ моль/л.

ние в систему соединений I и α-ТР увеличивает индукционный период аддитивно. Так, для их смеси равного состава (по 1.2×10^{-5} моль/л) и $w_i =$ $= 1.35 \times 10^{-8}$ моль л⁻¹ с⁻¹ индукционный период составляет 2755 с.

Как видно на рис. 2, в присутствии смеси соединений I и II (кривые 4 и 5) период индукции увеличивается. При этом начальная скорость поглощения кислорода становится меньше, чем для индивидуальных ингибиторов. Для смеси рассчитывали стехиометрический коэффициент инги-

$[\mathbf{I}]_0 \times 10^{-5},$	$[II]_0 \times 10^{-5},$	$w \times 10^{-7}$,	ν	$\sum t_{\rm ind}$, c		SE, %	f	fs	F
моль/л	моль/л	моль л ⁻¹ с ⁻¹		эксперимент	расчет	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	• 2	
2.40	0	2.03	14	1885	—	—	1.1	_	3.7
0	5.0	4.9	35	7836	—	_	2.1	—	1.0
1.20	1.20	4.33	30	1904	2571	-26	0.22**	1.1	1.3
1.25	5.0	2.9	20	6599	8036	-18	-0.6^{**}	1.5	2.4
1.50	5.0	2.16	16	9436	8789	7	1.6**	1.9	3.3
2.50	5.0	1.57	11	10208	8929	14	1.7**	1.9	4.9
3.75	5.0	1.15	8	11376	9821	16	1.6**	1.8	6.9
5.00	5.0	0.76	5	11173	11464	-2.5	0.9**	1.5	10.1
7.50	5.0	0.88	6	10633	13 375	-20	0.5**	1.1	8.6

345

Рис. 2. Изменение скорости поглощения кислорода при инициированном окислении стирола в хлорбензоле ([St] = 1.71 моль/л, $w_i = 1.31 \times 10^{-7}$ моль π^{-1} с⁻¹, 310 K) в различных условиях: 1 - 6ез ингибиторов, $2 - [I]_0 = 2.4 \times 10^{-5}$ моль/л, $3 - [II]_0 = 5 \times 10^{-5}$ моль/л, $4 - [I]_0 = 2.5 \times 10^{-5}$ моль/л и $[II]_0 = 5 \times 10^{-5}$ моль/л, $5 - [I]_0 = [II]_0 = 5 \times 10^{-5}$ моль/л.

бирования f_{Σ} в пересчете на сумму концентраций двух ингибиторов. При некотором соотношении соединений I и II в смеси достигается максимальное значение стехиометрического коэффициента ингибирования f (табл. 1).

Синергетический эффект (SE) принято оценивать по увеличению индукционного периода [15–17]:

$$SE = \frac{t_{ind(I+II)} - (t_{ind I} + t_{ind II})}{t_{ind I} + t_{ind II}} \times 100\%,$$

где $t_{ind (I + II)}$ — наблюдаемый период индукции для смеси, $t_{ind I} + t_{ind II}$ — сумма периодов индукции индивидуальных ингибиторов.

Для оценки синергетического эффекта смеси ингибиторов рассчитывали ожидаемый аддитивный индукционный период из равенства:

$$w_{i}\sum t_{ind} = f_{1}[\mathbf{I}]_{0} + f_{2}[\mathbf{II}]_{0}$$

Стехиометрический коэффициент ингибирования для $If_1 \approx 1.0$ (среднее значение из большой серии экспериментов), для ионола $f_2 = 2.0$. Значение SE достигает максимума при соотношении $[I]_0/[II]_0 = 0.75$ и составляет 16% (табл. 1). Из зависимости видно (рис. 3), что имеется диапазон концентраций, при котором период индукции превышает аддитивный.

Так же был рассчитан стехиометрический коэффициент ингибирования [18] для I в смеси, который оказался равным 1.7 (см. табл. 1), исходя из предположения, что для II коэффициент неизменен (f=2). Таким образом, в смеси он увеличивается и близок к значению для фенольных антиоксидантов [19, 20].

Ранее было предположено, что ингибирование окисления стирола в присутствии аминоурацилов можно описать схемой [5].

Для I стехиометрический коэффициент ингибирования значительно меньше 2, так как I ингибирует окисление, замедляя передачу цепи, а не обрывая ее, как при ингибировании фенолами.

Согласно классификации синергетических смесей, предложенной в работе [21], первая группа объединяет смеси, в которых оба компонента взаимодействуют с радикалами (ROO'). Проявление синергетического эффекта в такой смеси определяется взаимодействием промежуточных продуктов ингибиторов. Например, в системе, содержащей фенил-N-β-нафтиламин и ионол (ArOH), между аминильными и феноксильными радикалами устанавливается равновесие [22]:

$$Am' + ArOH \rightleftharpoons AmH + ArO'$$
.

Равновесие сдвигается вправо при условии, что энергия диссоциации связи $D_{\rm NH} > D_{\rm OH}$. В нашем случае, вероятно, при добавлении фенольного ингибитора равновесие между радикалами ингибиторов смещается в сторону образования феноксильных радикалов, так как энергии диссоциации $D_{\rm NH} \approx 85$ ккал/моль для 5-аминоурацилов (UrNH₂) и $D_{\rm OH} = 80.5$ ккал/моль для ионола [5]:

 $UrNH_2 + ROO' \rightarrow UrN'H + ROOH$,

 $UrN'H + ArOH \rightleftharpoons UrNH_2 + ArO'.$

При этом уменьшается концентрация N-центрированных радикалов и вклад реакций с участием супероксид анион-радикала. В предлагаемой системе синергетический эффект не может быть объяснен кросс-рекомбинацией из-за низкой концентрации радикалов ингибиторов [22, 23].

ЗАКЛЮЧЕНИЕ

Впервые была изучена эффективность совместного действия бинарных смесей 3-бутил-5амино-6-метилурацила и ионола и обнаружен синергетический эффект в реакции инициированного окисления стирола в растворе хлорбензола при 310 К. Константа скорости реакции с пероксильными радикалами близка к значению 1×10^5 л моль⁻¹ с⁻¹, при этом стехиометрический коэффициент ингибирования равен 1.8 ± 0.2 . Максимальный синергетический эффект наблюдается при соотношении концентраций урацил : ионол ≈ 0.75 . Предположительно, происходит замещение более активных N-центрированных радикалов 3-бутил-5-амино-6-метилурацила на феноксильные в обменной реакции с ионолом.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Центра коллективного пользования "Химия" УфИХ УФИЦ РАН.

КИНЕТИКА И КАТАЛИЗ том 61 № 3 2020

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по теме госзадания "Окислительные процессы с участием активных форм кислорода" № АААА-А20-120012090025-2.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликтов интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бурлакова Е.Б.* // Росс. хим. журн. 2007. Т. 51. № 1. С. 3.
- Kancheva V.D., Kasaikina O.T. // Curr. Med. Chem. 2013. V. 20. P. 4784.
- Kancheva V.D., Angelova S.E. Lipid Peroxidation: Inhibition, Effects and Mechanisms / Ed. Catalá A. N.Y.: Nova Science Publishers, Inc., 2017. Chapter 4. P. 49.
- 4. *Муринов Ю.И., Грабовский С.А., Кабальнова Н.Н. //* Изв. АН. Сер. хим. 2019. Т. № 5. С. 946.
- Grabovskii S.A., Antipin A.V., Grabovskaiy Y.S., Andriayshina N.M., Kabal'nova N.N. // Lett. Org. Chem. 2017. V. 14. P. 24.
- 6. Grabovskiy S.A., Murinov Yu.I., Kabal'nova N.N. // Curr. Org. Chem. 2012. V. P. 2389.
- 7. *Карпухина Г.В., Эмануэль Н.М.* // Докл. АН СССР. 1984. Т. 276. № 5. С. 1163.
- 8. Viglianisi C., Menichetti S., Morelli P., Baschieri A., Amorati R. // Heteroatom Chem. 2018. V. 29. № 5–6. P. 1.
- 9. Перевозкина М.Г. Тестирование антиоксидантной активности полифункциональных соединений кинетическими методами. Новосибирск: Изд-во СибАК, 2014. 240 с.
- 10. Uchiyama K., Takamoto K., Umezome T. Pat. Jpn. 2013006813, 2013.
- Burton G.W., Doba T., Gabe E.J., Hughes L., Lee F.L., Prasad L., Ingold K.U. // J. Am. Chem. Soc. 1985. V. 107. P. 7053.
- 12. Loshadkin D., Roginsky V., Pliss E. // Int. J. Chem. Kinet. 2002. V. 34. № 3. P. 162.
- Howard J.A., Ingold K.U. // Can. J. Chem. 1965. V. 43. P. 2729.
- Howard J.A., Ingold K.U. // Can. J. Chem. 1962. V. 40. P. 1851.
- Zhi-Sheng Jia, Bo Zhou, Li Yang, Long-Min Wu and Zhong-Li Liu // J. Chem. Soc. Perkin Trans. 2. 1998. P. 911.
- 16. *Frankel E.N.* Lipid Oxidation. Dundee: The Oily Press, 1998.
- Kancheva V.D., Slavova-Kazakova A., Fabbri D., Dettori M.A., Delogu G., Janiak M., Amarowicz R. // Food Chem. 2014. V. 157. P. 263.
- Massaro M., Riela S., Guernelli S., Parisi F., Lazzara G., Baschieri A., Valgimigli L., Amorati R. // J. Mater. Chem. B. 2016. V. 4. P. 2229.
- Ingold K.U. Essays on Free Radical Chemistry / Eds. Hey D.H., Waters W.A., Norman R.O.C. London: Chemical Society, 1970, Special publications, № 24. P. 285.

- Mahoney L.R. // Angew. Chem. Int. Ed. Engl. 1969.
 V. 8. P. 547.
- 21. *Карпухина Г.В., Эмануэль Н.М.* // Докл. АН СССР. 1984. Т. 276. № 5. С. 1163.
- 69. 22. Денисов Е.Т., Азатян В.В. Ингибирование цепных реакций. Черноголовка: Изд-во РАН, 1997. 266 с.
 - 23. Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И. Химическая кинетика. М.: Химия, 2000. 568 с.

Synergistic Effect for a Muxture of 3-Butyl-5-Amino-6-Methyluracil and Butylated Hydroxytoluene during Inhibited Styrene Autoxidation

A. V. Antipin^{1, *}, S. A. Grabovskii¹, Yu. S. Grabovskaya¹, and N. N. Kabal'nova¹

¹ Ufa Institute of Chemistry UFRC RAS, Ufa, 450054 Russia *e-mail: rincewind@anrb.ru

The antioxidant effect for a mixture of 3-butyl-5-amino-6-methyluracil and butylated hydroxytoluene (BHT) was studied in a model system of initiated radical chain oxidation of styrene in chlorobenzene at 310 K. The maximum synergistic effect was observed at a ratio of uracil derivative : BHT concentrations of ~0.75. The mechanism of synergistic action was discussed.

Keywords: oxidation, styrene, antioxidants, 3-butyl-5-amino-6-methyluracil, butylated hydroxytoluene, synergism