УДК 541.127;541.128;547.215;546.226-325;546.881.5

ВЛИЯНИЕ КИСЛОТНОСТИ СРЕДЫ НА СКОРОСТЬ РЕАКЦИЙ ОКИСЛИТЕЛЬНОЙ ФУНКЦИОНАЛИЗАЦИИ УГЛЕВОДОРОДОВ В СЕРНОКИСЛОТНЫХ РАСТВОРАХ

© 2020 г. Л. К. Волкова^{*a*, *}, И. А. Опейда^{*b*, *c*, **}

^аИнститут физико-органической химии и углехимии им. Л.М. Литвиненко НАН Украины, ул. Харьковское шоссе, 50, Киев, 02160 Украина ^bОтделение физико-химии горючих ископаемых ИнФОУ им. Л.М. Литвиненко НАН Украины, ул. Научная, 3а, Львов, 79060, Украина ^cДонецкий национальный университет имени В. Стуса, ул. 600-летия, 21, Винница, 21021 Украина *e-mail: volkovalk@gmail.com **e-mail: opeida_i@yahoo.co.uk Поступила в редакцию 09.09.2019 г. После доработки 20.01.2020 г. Принята к публикации 29.01.2020 г.

Проанализировано влияние кислотности среды на константу скорости (k) реакций алканов (AlkH), циклоалканов (c-AlkH) и аренов (ArH) в сернокислотных растворах с пероксисоединениями (H_2O_2 или (NH_4)₂S₂O₈), комплексами (Pd(II), Pt(III), Hg(II)), кислотами (H_2CrO_4 , HNO₃, H₂SO₄, HVO₃), 1-адамантанолом (AdOH) и формальдегидом (CH₂O) с использованием соотношения lg $k = C_0 - m_0H_0$, где $H_0 - ф$ ункция кислотности Гаммета, C_0 – отрезок, отсекаемый на оси ординат и m_0 – наклон прямой в координатах lgk– H_0 . Показано, что в зависимости от величины наклона ($1 \sim m_0 \leq 3.4$) все реакции можно разбить на три группы в соответствии со степенью протонирования основной частицы: в группе 1-й происходит однократное протонирование (H_2O_2 или (NH_4)₂S₂O₈, Pd(II), Pt(III)), во 2-й – протонирование с последующей дегидратацией (AdOH, H_2CrO_4 , HNO₃, H_2SO_4 , а также HVO₃ и CH₂O в реакциях с ArH в 57–65%-ной и в 60–80%-ной H_2SO_4 соответственно), в 3-й – более глубокое 2–3-кратное протонирование (Hg(II), HVO₃ и CH₂O в реакциях с AlkH и *c*-AlkH в 84-93%-ной H_2SO_4). Для активных частиц окислителей в системе HVO₃– H_2SO_4 и в самой H_2SO_4 с помощью квантово-химического метода DFT B3LYP/6-311G(*d*,*p*) оценены термохимические характеристики их реакции.

Ключевые слова: насыщенные и ароматические углеводороды, окислители, сернокислотные растворы, константы скорости, кислотность среды

DOI: 10.31857/S0453881120040164

ВВЕДЕНИЕ

Производство углеводородов (RH) из природного газа и нефти – недорогих сырьевых материалов – является одним из крупнейших по объему в мире. Современные технологии по переработке RH в энергию, топливо, химические вещества требуют высоких температур (>800°C) и предусматривают сложные стадии, что делает их неэффективными. Разработка низкотемпературного селективного процесса прямого окисления алканов (AlkH) может привести к новой парадигме в нефтехимической технологии – экологически чистой, экономичной и позволяющей использовать большие запасы газа с удаленных месторождений как первичное сырье для получения топлива и химических веществ [1-5].

Одна из первых систем "истинной металлоорганической" активации связи С—Н алканов и циклоалканов (*c*-AlkH), система Шилова $PtCl_2(H_2O)_2$ [6, 7], включает комплексы платины(II) и платины(IV). При температуре до 100° С алканы: 1) подвергаются в присутствии соли Na_2PtCl_4 обмену H/D в растворах, содержащих дейтерированные воду или уксусную кислоту; 2) превращаются в спирты и алкилхлориды в растворах Na_2PtCl_6 в присутствии Na_2PtCl_4 . Кинетика и механизм реакций RH в растворах $Pt(II)-Pt(IV)-H_2O$ были изучены в лаборатории Рудакова [8, 9]. В работах Перианы (Periana), Сена (Sen) и др. [1–5, 10–12] исследованы реакции активации связи С—Н ал-

Сокращения и обозначения: RH — углеводороды; DFT — метод функциональной плотности; AlkH — алканы, *c*-AlkH — циклоалканы; ArH — арены; KПЗ — комплекс с переносом заряда; трет. С-H — третичная связь С-H; k — константа скорости реакции; $-lgK_B$ — основность ArH; I — потенциал ионизации ArH; H_0 и H_R — функции кислотности среды; ГОМ и ГЕТ — гомо- и гетеролитический разрывы трет. связи С-H в AlkH.

канов, в первую очередь метана, в мягких условиях (при 180–250°С) в сернокислотных растворах комплексов Pt(II), Hg(II), Pd(II) с возможной их реализацией в промышленности. Разработка новых катализаторов для активации связи С–Н или принципиально других подходов требует накопления и анализа фундаментальных знаний, в том числе и о влиянии кислотности среды.

В настоящей работе с целью определения особенностей химического строения активной частицы и механизма ее взаимодействия с насыщенными (AlkH, *c*-AlkH) и ароматическими (ArH) углеводородами в сернокислотных растворах окислителей, металлокомплексов и электрофилов в мягких условиях: 1) проанализировано влияние кислотности на скорость реакций AlkH, *c*-AlkH и ArH [8, 9, 13–18] при температуре до 100°С, а также метана и этана при 160–180°С, и рассмотрены механизмы превращений CH₄ в присутствии Pt(II), Hg(II) и Pd(II) при температуре до 250°С [1–3, 10–12]; 2) дана оценка реакционной способности предполагаемых активных частиц с помощью квантово-химического метода DFT B3LYP/6-311G(*d*,*p*).

СЕРНАЯ КИСЛОТА – СРЕДА ДЛЯ АКТИВАЦИИ СВЯЗИ С–Н УГЛЕВОДОРОДОВ

Серная кислота при концентрациях >85% – полярная, сильно кислая, слабо нуклеофильная жидкость. Химические частицы со связями С–Н в отличие от тех, что содержат связи С=С или функциональные группы, являются наиболее слабыми из известных лигандов и не конкурируют с более сильными лигандами (L_n). В реакциях по связи С–H в AlkH и *c*-AlkH влияние кислоты H₂SO₄ в основном распространяется на окислитель. Активация окислителя в зависимости от его природы может происходить по трем основным маршрутам:

 протонирование окислителя с образованием ионизованной активной частицы либо однократное протонирование с последующей дегидратацией;

2) координация окислителя с наиболее сильным нуклеофилом самой серной кислоты, лигандом HSO_4^- , что приводит к образованию высокоактивного катализатора, в котором HSO_4^- , достаточно легко замещается на алкан. Более сильные нуклеофилы (например, вода), в отличие от менее сильного HSO_4^- , в этих условиях полностью протонированы и не способны координировать с окислителем, а, значит, ингибировать катализ [10–12];

3) координирование окислителя с HSO_4^- как с мостиковым лигандом-основанием, способным связывать отщепляющийся H^+ . В последующих после активации связи C–H стадиях H_2SO_4 влияет на образование продуктов.

При [H₂SO₄] < 85% кислотность быстро падает, активность воды растет. Протонирование окислителей становится недостаточным для их активации, исключение могут составлять очень сильные окислите-

ли, которые работают в менее кислых средах. Свободная H_2O координирует с окислителем и, в отличие от более слабого нуклеофила HSO_4^- , не замещается на RH, что ведет к ингибированию катализатора.

Функции кислотности среды

Для описания зависимости скорости реакций от кислотности среды использованы следующие уравнения:

$$lgk = C_0 - m_0 H_0, (1a)$$

$$\lg k = C_R - m_R H_R, \tag{16}$$

где k – константа скорости; H_0 и H_R – функции кислотности, характеризующие способность кислотных растворов: а) протонировать реагент (функция Гаммета H_0) и б) превращать спирты в карбокатионы $(H_{\rm R}); m_0 = -(\Delta \lg k / \Delta H_0), m_{\rm R} = -(\Delta \lg k / \Delta H_{\rm R})$ наклоны прямых в координатах $\lg k - \Delta H_0$ и $\lg k - \Delta H_R$, а C_0, C_R – отсекаемые на оси ординат отрезки для этих прямых. При 25°С с ростом [H₂SO₄] кислотность возрастает: H_0 изменяется от +0.84 (1% H₂SO₄) до -11.93 (100% H₂SO₄) [19, 20], а $H_{\rm R}$ – от +1.25 (0.5% H₂SO₄) до -19.64 (98% H₂SO₄) [21, 22]. Применение уравнений (1а) и (1б) корректно при использовании величин k, H_0 и k, H_R , измеренных при одной температуре. Температурные зависимости функции кислотности H_0 в водных растворах серной кислоты [9, 19, 20] позволили представить параметры в уравнении (1а) при одинаковой температуре в интервале 25-90°С. Поскольку для функции кислотности H_R располагали данными лишь при 25 и 45°С [21, 22], проверку уравнения (1б) осуществляли, используя значение $H_{\rm R}$ при 25°С для реакций, проводимых при 25 и 30°С, и значение H_R при 45°C – для реакций, протекающих при 60, 70 и 90°С. Рост реакционной способности окислителя связан с его однократным протонированием, что соответствует величине m₀, близкой к 1. В случае, когда $m_0 > 1$, величины k обрабатывали по уравнению (1б). Значение *m*_R, близкое к 1, свидетельствует о протонировании и последующей дегидратации частицы, причем не только карбокатионной природы.

ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИЙ RH ОТ КИСЛОТНОСТИ СРЕДЫ В СИСТЕМАХ ОКИСЛИТЕЛЬ- H_2SO_4 ПРИ $T \le 90^{\circ}C$

В настоящей работе использованы результаты изучения реакций насыщенных и ароматических углеводородов с 10-ю различными реагентами в сернокислотных растворах, полученные Рудаковым и сотр. в течение последних 45 лет [8, 9, 13–18]. Из соображений удобства к AlkH, *c*-AlkH и ArH применили термин "субстрат" (RH), термин "окислитель" употребляли для исходных окислителей, металлокомплексов, альдегида и спирта, в сернокислотных растворах которых генерируется активная частица (синоним – "непосредственный реактант"), вступающая в реакцию с субстратом.

Реакции окисления углеводородов изучены кинетическим распределительным методом и методом шприц-реактора. Это позволило исследовать первую стадию – вхождение RH в реакцию в первой лимитирующей стадии [8, 9].

В табл. 1 для реакций RH в сернокислотных растворах с рядом реагентов – пероксидисульфатом аммония $(NH_4)_2S_2O_8$ или пероксидом водорода H_2O_2 , комплексами палладия(II) и платины(III), 1-адамантанолом (AdOH), хромовой (H₂CrO₄), азотной (HNO₃) и самой серной (H₂SO₄) кислотами: метаванадиевой (HVO₂) кислотой, комплексами ртути(II), формальдегидом (CH₂O) – приведены величины m_0 и m_R , характеризующие влияние среды в каждой системе. Реакции в концентрированной серной кислоте и в системах, содержащих комплексы Hg(II), Pd(II), Pt(III), изучены при 90°С, остальные — при 25, 30, 60 и 70°С. Реакции AlkH и c-AlkH представлены в табл. 1 в виде 3-х групп, отличающихся значением m_0 : I) системы 1–3, $m_0 \approx 1$; II) системы 4–7, $1.3 \le m_0 \le 1.7$; III) системы 8– 10, $2.2 \le m_0 \le 3.4$. Влияние кислотности на протекание реакции AdOH, HVO3 и CH2O с аренами исследовано в менее кислой среде ($57\% \le [H_2SO_4] \le 80\%$) по сравнению со взаимодействием тех же реагентов с AlkH и *c*-AlkH, (84% ≤ [H₂SO₄] ≤ 94%), табл. 1. На основании значения $m_0 = 1.4 \pm 0.1$ реакции бензола и алкилбензолов отнесены к группе II.

Реакции AlkH и с-AlkH в растворах окислитель— H_2SO_4 с $m_0 \approx 1$

В эту группу отнесены системы $(NH_4)_2S_2O_8$ - H_2SO_4 или $H_2O_2-H_2SO_4$, в которых при одинаковых условиях константы скорости равны, PdSO₄-H₂SO₄ и Pt(III)-H₂SO₄. Для реакции в каждой из этих систем величина m_0 близка к 1 (табл. 1), что отвечает однократному протонированию исходного реагента с образованием активных частиц $H_3O_2^+$, PdHSO₄⁺ и HSO₄⁻ Pt(III) соответственно. По данным [23] при нагревании соединений Pt(IV) с H₂SO₄ до 100°C образуется димерный анион $[Pt_2(SO_4)_4(H_2O)_2]^{2-}$, в котором ионы Pt(III) связаны друг с другом 4-я мостиковыми сульфатными лигандами. Первые порядки по концентрациям AlkH и платины и величина $m_0 = 1.0$ свидетельствуют о том, что активной частицей скорее является мономерный комплекс платины, чем димерный.

Реакции AlkH, c-AlkH и ArH в растворах окислитель- H_2SO_4 с $1.3 \le m_0 \le 1.7$

Для систем $H_2CrO_4 - H_2SO_4$ и $HNO_3 - H_2SO_4$ результаты лучше описываются в координатах уравнения (1б), чем (1а). Для реакций $H_2CrO_4 + c$ -AlkH в 45–60% H_2SO_4 по данным [9] значение m_R составляет 0.7–0.8. Близость m_R к 1 позволяет предположить, что активной частицей является

КИНЕТИКА И КАТАЛИЗ том 61 № 4 2020

хромилсерная кислота, образующаяся при протонировании H₂CrO₄ и последующей дегидратации:

$$\begin{array}{l} H_2 CrO_4 + H^+ + HSO_4^- \rightleftharpoons \\ \rightarrow HCrO_3 OSO_3 H + H_2 O. \end{array}$$
(I)

Скорость реакций AlkH и *c*-AlkH в системе $HNO_3-H_2SO_4$, генерирующей NO_2^+ :

 $HNO_3 + H^+ \rightleftharpoons H_2NO_3^+ \rightleftharpoons NO_2^+ + H_2O_3$ (II)растет с увеличением $[H_2SO_4]$ от 87 до 92%, достигает максимума при $[H_2SO_4] = 92-94\%$ и при возрастании концентарции серной кислоты от 94 до 100% снижается [9]. Концентрация нитроний-катиона NO⁺₂ в растворе HNO₃-86-100% H₂SO₄ увеличивается с ростом [H₂SO₄] до 92%, достигая при этом предельной максимальной величины. Уменьшение скорости после экстремума связывают с существенным снижением активности HSO₄⁻ при концентрации H₂SO₄ от 94 до 100%. По величинам k, взятым до максимума, оценили величины наклонов прямых в координатах зависимостей (1а) и (1б). Оказалось, что значение $m_{\rm R}$ ближе к единице, чем m_0 (табл. 1). Это свидетельствует о том, что в растворах HNO₃-87-92% H₂SO₄ активная частица пред-

ставляет собой скорее NO_2^+ , чем $H_2NO_3^+$.

Согласно [24] в растворах AdOH-H₂SO₄ протонирование AdOH и последующее отщепление воды приводят к образованию 1-адамантильного карбокатиона (Ad⁺), который по данным [15] является активной частицей в реакциях с RH. Для реакций циклогексана и толуола величины m_R, полученные из зависимости (1б), примерно одинаковы и близки к 1 (табл. 1). Это позволило предположить [15], что в растворах AdOH-66-94% H₂SO₄ непосредственный реагент в реакциях с RH – это катионы Ad⁺, активность и количество которых возрастают с повышением кислотности среды. Основной вклад в реакцию ArH + Ad⁺ в 66.5−78% H₂SO₄ вносит адамантилирование в пара- и мета-положения по отношению к заместителю в бензольном кольце, тогда как орто-положения из-за большого размера Ad⁺ стерически не доступны. $B 85 \div 94\%$ H₂SO₄ катион Ad⁺ отрывает гидрид-ион от алканов с образованием карбокатиона.

В растворах HVO₃-57-65% H₂SO₄ скорость реакции аренов описывается уравнением 1-го порядка по [ArH] и [HVO₃] [14]. Величины *k* для толуола, толуола-d₆ и этилбензола растут по мере уменьшения H_0 (или H_R), далее в интервале 65-68% H₂SO₄ остаются неизменными, что может быть объяснено достижением равновесного предела для концентрации активной частицы. Наклоны зависимостей (1) в области прямолинейности примерно одинаковы и равны $m_0 = 1.6 \pm 0.1$ и $m_R = 0.8 \pm 0.1$.

При $[H_2SO_4] \le 60\%$ ванадий(V) представлен в виде мономера [25]:

$$\begin{array}{c} \mathrm{HVO}_3 + \mathrm{H}^+ \rightleftharpoons \mathrm{H}_2 \mathrm{VO}_3^+ \\ \mathrm{H}_2 \mathrm{VO}_3^+ \rightleftharpoons \mathrm{VO}_2^+ + \mathrm{H}_2 \mathrm{O}. \end{array} \tag{III}$$

Таблиц сравнен	а 1. Влияние кислотности ния приведены данные для	среды на реакции реакций аренов	алканов и циклоалкано	ов в системах реагент-серная кислота и в са	мой серной кис.	лоте. Для
ğ	Реагент	[H ₂ SO ₄], мас. %	Активная частица	$\operatorname{Cy6crpar}(T, {^\circ}\operatorname{C})$	m_0^*	$m^*_{ m R}$
			Реакции алканов	и циклоалканов		
			Реакции	$c m_0 \sim 1$		
-	(NH ₄) ₂ S ₂ O ₈ или H ₂ O ₂	96—06	$H_3O_2^+$ [8, 9]	$i-C_5H_{12}$, $n-C_6H_{14}$, $c-C_6H_{12}/(25)$	0.8	I
6	Dateo	86.7–96		$i-C_4H_{10}, i-C_5H_{12}/(90)$	0.9-1.0	
7	rus04	80–95	PdHSO ₄ [8, 9]	<i>с</i> -С ₆ Н ₁₂ , 2,2,4-Триметилпентан	1.2-1.4	I
3	Сульфаты Pt(III)	86—93	HSO ⁻ ₄ Pt(III) [8, 9]	2-Метилпропан/(90)	1.0	Ι
			Реакции	c <i>m</i> ₀ > 1		
4	1-Адамантанол	85–94	Ad ⁺ [15]	$c-C_6H_{12}/(70)$	1.5 ± 0.1	0.8 ± 0.1
5	H_2CrO_4	45-60.3	HCrO ₃ HSO ₄ [8, 9]	<i>c</i> -C ₆ H ₁₂ , <i>c</i> -C ₅ H ₁₀ **/(25) Метилциклогексан**	1.6*** 1.5***	0.8*** 0.7***
9	HNO ₃	86—92	$HSO_4^NO_2^+$ [8, 9]	i-C ₄ H ₁₀ , c-C ₆ H ₁₂ /(25)	1.5***	0.8-0.9***
Ľ	H_2SO_4	84–99.5	HSO ⁷ SO ₃ H ⁺ [8, 9]	Циклогексан, 2,2,4-Триметилпентан Метилциклогексан <i>i</i> -C ₄ H ₁₀ , <i>i</i> -C ₅ H ₁₂ /(90)	$\begin{array}{c} 1.3 \pm 0.2 \\ 1.5 \pm 0.1 \\ 1.6 \pm 0.1 \\ 1.7 \pm 0.1 \end{array}$	I
8	HVO ₃	84—90	V ₃ O ₂ [16, 18]	2,3-Диметилбутан/(60)	~2.2***	~1.2***
9	HgSO_4	87—93	HSO ⁻ ₄ Hg ²⁺ [8, 9]	Метилциклопентан/(90)	2.9***	1.2^{***}
10	Формальдегид CH ₂ O	88.8–93	CH ₂ OH ⁺ [13]	$c-C_6H_{12}/(25)$	3.4***	1.8^{***}
			Реакции аре	Hob c $m_0 > 1$		
4	1-Адамантанол	66–78	Ad ⁺ [15]	CH ₃ C ₆ H ₅ /(30)	1.4 ± 0.2	0.9 ± 0.1
8	HVO ₃	27-65	VO ⁺ ₂ [14]	$CH_3C_6H_5, CD_3C_6D_5, C_2H_5C_6H_5/(30)$	1.6 ± 0.1	0.8 ± 0.1
10	CH_2O	60.2-80	CH ₂ OH ⁺ [13]	$C_{6}H_{6}/(25)$	1.3^{***}	0.8
* <i>m</i> ₀ и **Оцен *** Оцен Ig <i>k</i> — <i>H</i> ₀ <i>v</i>	т _R – наклоны зависимостей ка по 2-м измерениям. ка произведена по данным [8 или lgk-H _R до максимума или	lg $k-H_0$ и lg $k-H_R$, ур: - Для Cr(VI), NO $\frac{1}{2}$, г плато соответствени	авнения (1а) и (1б) соотве ⁻ , Нg(II); по данным [13] – но. Прочерки означают, чт	гственно. для СН ₂ OH ⁺ ; для NO [‡] , V ₃ O ₂ и VO [‡] значения <i>n</i> го расчет <i>m</i> _R не производили.	4 ₀ или <i>т</i> _R найдень	і из зависимостей

512

ВОЛКОВА, ОПЕЙДА

КИНЕТИКА И КАТАЛИЗ

№ 4

том 61

2020

При $[H_2SO_4] \ge 60\%$ образуются димеры с центральной группой $V_2O_3^{4+}$ [25, 26]. Авторы работы [14] в качестве активной частицы предложили VO_2^+ . Линейная зависимость между lgk и потенциалом ионизации арена в ряду бензол—алкилбензолы, а также накопление продукта сочетания PhCH₂C₆H₄CH₃ в реакции толуола (PhCH₃) позволили сделать вывод, что реакция начинается с переноса электрона от PhCH₃ к VO₂⁺ и последующего отрыва атома H, приводящих к карбокатиону PhCH₂⁺, который, атакуя PhCH₃, дает PhCH₂C₆H₄CH₃.

Кинетика реакций ArH в растворах $H_2CO-H_2SO_4$ была изучена в работах [13, 27]. Величины наклонов $m_0 = 1.3$ и $m_R = 0.8$ в реакции бензола в 60–80% H_2SO_4 объяснены [13] появлением активной частицы ⁺CH₂OH через протонирование метиленгликоля (продукта быстрой кислотно-каталитической гидратации формальдегида) с последующим отщеплением воды: HOCH₂OH + H⁺ \rightleftharpoons ⁺CH₂OH + H₂O [28–30].

В системе CH₂O-52.5% H₂SO₄ [27] реакция имеет 1-й порядок по [ArH] и меньше 1-го – по [СН₂О]. Предложен механизм реакции с участием активной частицы, которая отвечает уравнению (1a), $H_2CO + H_3O^+ \rightleftharpoons {}^+CH_2OH + H_2O$, однако в растворах 50-60% H₂SO₄ зависимость lg $k-H_0$ не изучена. Субстратная селективность, отношение константы скорости реакции ArH к константе скорости реакции толуола ($k_{\text{отн}} = k_{\text{ArH}}/k_{\text{PhCH3}}$), в ряду толуол (1), *орто-*, *мета-*, *пара-*ксилолы (6.4, 182, 4.4), псевдокумол (160), мезитилен (4200) описывается зависимостью $lg(k_{oth}) = -0.600 \times (-lgK_B) + 3.971$, $R^2 = 0.988$, где $-lgK_B$ – основность ArH [31], *R* – коэффициент корреляции. Эти результаты позволили авторам [27] предложить механизм быстрого равновесного образования комплекса с переносом заряда (КПЗ) между ArH и $^+$ CH₂OH с последующей медленной стадией его превращения в σ-комплекс. Оказалось, что субстратная селективность, приведенная в [13] для ряда: бензол (0.003), толуол (1), этилбензол (0.7), н-пропилбензол (0.4), изопропилбензол (0.25), орто-, ме*та-*, *пара-*ксилолы (5.0, 2.1, 3.5), лучше коррелирует с потенциалом ионизации ArH (I, кДж/моль [32]), $\lg(k_{\text{oth}}) = -0.040 I + 33.92, R^2 = 0.873$, чем с его основностью, $\lg(k_{\text{отн}}) = -0.517(-\lg K_{\text{B}}) + 2.879$, $R^2 = 0.708$. К реакциям ArH, контролируемым I, относятся реакции с NO_2^+ в 64.9% H_2SO_4 при 25°С, lg($k_{\text{отн}}$)= -0.027I + 23.25, R^2 =0.950 [33] и с VO₂⁺ в 59.7% H₂SO₄ при 30°С, lg($k_{\text{отн}}$)= -0.058I + 49.25, $R^2 = 0.918$ [14], при этом учет этил-, *н*-пропил-, изопропил- и трет-бутилбензолов в системах CH_2O , NO_2^+ , VO_2^+ несколько ухудшает корреляцию, возможно, вследствие стерических препятствий. Это позволяет предположить, что в системе $CH_2O-60\%$ H_2SO_4 медленной стадией скорее будет образование КПЗ или ион-радикальной па-

КИНЕТИКА И КАТАЛИЗ том 61 № 4 2020

ры, чем появление σ-комплекса, либо конкуренция этих двух маршрутов.

В растворах самой высококонцентрированной серной кислоты (84–99.5%) величины m_0 , полученные для реакций *с*-AlkH и AlkH [8, 9], также больше 1 и лежат в интервале 1.3–1.7. Возможный маршрут образования активных частиц в H_2SO_4 представлен ниже:

$$\begin{array}{c} H_2 SO_4 + H^+ \rightleftharpoons H_3 SO_4^+ \\ H_3 SO_4^+ \rightleftharpoons SO_3 H^+ + H_2 O. \end{array}$$
(IV)

Оценка $m_{\rm R}$ по данным [9] некорректна, поскольку $H_{\rm R}$ даны для интервала 0.5–98% ${\rm H}_2{\rm SO}_4$ при 25°C [21, 22], а константы измерены в области [${\rm H}_2{\rm SO}_4$] до 99.5% при 90°C.

V

Реакции AlkH и c-AlkH в растворах окислитель $-H_2SO_4 c \ 2.2 \le m_0 \le 3.4$

Для реакций 2,3-диметилбутана в растворах $HVO_3-84-90\%$ H_2SO_4 величины констант скорости растут, далее в области 90–93% H_2SO_4 не изменяются, вероятно, из-за достижения равновесного предела для концентрации активной частицы; область $[H_2SO_4] > 94\%$ не изучена. Величины *m* до плато составляют $m_0 \approx 2.2$, $m_R \approx 1.2$, при этом m_R ближе к 1 [18].

В работе [34] было предположено, что в растворах 76–88% H_2SO_4 повышение концентрации ванадия(V) или температуры ведет к образованию тримерных частиц, -V-O-V-O-V-, обозначенных для краткости V_3O_2 . Растворы ванадия(V) в 90–99% H_2SO_4 не изучены. В 100% H_2SO_4 образуется кислота $H[VO(HSO_4)_4]$, а с ростом [V(V)] – димер $H_2[V_2O_3(HSO_4)_6]$ и, возможно, более высокомолекулярные олигомеры [35].

В реакциях AlkH и *c*- AlkH в растворах HVO_3 - H_2SO_4 экспериментальный порядок по [HVO₃] составляет 1.5 [16], что соответствует модели образования тримера V_3O_2 при взаимодействии моно- и дикомплексов ванадия(V) [34, 35]. Возможные структуры активной частицы тримера – $H[V_3O_3(SO_4)_5]$ или $H_3[V_3O_5(HSO_4)_8]$.

Для реакций ArH + VO₂⁺ в 57–68% H₂SO₄ и AlkH + V₃O₂ в 84–93% H₂SO₄ характер зависимости величин *k* от кислотности среды одинаков: после достижения максимумов при [H₂SO₄] равной 65 и 90– 92% соответственно рост *k* для ArH и AlkH прекращается. Величины m_0 и m_R , найденные до выхода констант скорости на плато, в ~1.4–1.2 раза выше в реакции с AlkH, чем с ArH, что может быть следствием более глубокого протонирования ванадия(V).

В растворах HgSO₄–87–92% H₂SO₄ в реакции метилциклопентана по оценке с использованием результатов работы [9] величины $m_0 \approx 3$, $m_R \approx 1.2$. Интересно отметить, что согласно [36] переходные состояния в двух предложенных механизмах катализа ртутью(II) в серной кислоте включают две молекулы H₂SO₄. Однако, как было показано Казанским

[37], учет только двух молекул серной кислоты может оказаться недостаточным, на что, можно предполагать, также указывают высокие значения m_0 .

На основании зависимости констант скорости реакций циклогексана в сернокислотных растворах формальдегида от $[H_2SO_4]$ в интервале 88–93% (данные [13]) получены самые высокие значения $m_0 = 3.4$ и $m_R = 1.8$, что может быть связано с олигомеризацией CH₂O или его сольватацией [37], приводящих к более сложной структуре активной частицы, чем катион ⁺CH₂OH.

Различные механизмы в реакциях ArH в 60% H_2SO_4 [13] и в 52.5% H_2SO_4 [27], рост m_0 от 1.3 в реакциях с ArH в 60–80% H_2SO_4 до 3.4 в реакциях с *c*-AlkH в 88÷93% H_2SO_4 согласуются с изменением природы активной частицы и увеличением ее объема с ростом кислотности. Анализ данных [13, 27–30, 37] позволяет предложить 2 механизма образования активных частиц при растворении навески параформальдегида (параформ, гидратированный полимер формальдегида состава (CH₂O)_{*n*}H₂O, где *n* = 8–100) в H_2SO_4 необходимой концентрации:

1) деполимеризация параформа, $m(CH_2O)_n \rightleftharpoons (M \times n)/x$, в моно- (x = 1), ди- (x = 2) и тример (x = 3) формальдегида с уменьшением H_0 , которая отвечает 1-му порядку по концентрации параформа в случае, когда эти равновесия смещены вправо. Действительно, в реакциях с *c*-AlkH порядок по концентрации параформа, в редакции авторов [13] – по [CH₂O], равен единице. Высокое значение $m_0 = 3.4$ в реакции с *c*-AlkH при высокой кислотности согласуется с возможностью протонирования по каждому атому O в триоксане (циклическая форма (CH₂O)₃);

2) альтернативный механизм предполагает, что во всем исследованном интервале концентраций серной кислоты (52–93%) деполимеризация параформа идет до формальдегида, однократное протонирование которого ведет к появлению активной частицы ⁺CH₂OH, как в [27]. С уменьшением H_0 растет сольватация ⁺CH₂OH молекулами H₂SO₄ [37]. В 52% H₂SO₄ ($-H_0 = 3.6$) сольватация не влияет на кинетику реакции ArH с ⁺CH₂OH. При снижении H_0 катион ⁺CH₂OH сольватируется в 60–80% H₂SO₄ ($-H_0 = 4.5-7.5$) 1–2 молекулами H₂SO₄, а в 89–93% H₂SO₄ ($-H_0 = 8.9-9.45$) – 2–3 молекулами H₂SO₄, что приводит к росту объема активной частицы и увеличению наклона m_0 , а также к разным механизмам в реакциях с ArH при различных H_0 .

РЕАКЦИОННАЯ СПОСОБНОСТЬ АКТИВНЫХ ЧАСТИЦ В H₂SO₄ И В СИСТЕМЕ HVO₃-H₂SO₄

Для ряда процессов окислительной функционализации по связи С–Н были получены доказательства [38, 39] того, что кроме механизма с участием гетеролитических стадий, происходящих с образованием карбокатионов:

$$RH + O = M \rightleftharpoons R^{+} + HO - M^{-}, \qquad (V)$$

возможны механизмы с участием радикальных стадий типа:

$$RH + O = M \rightleftharpoons R' + HO - M.$$
 (VI)

В [36] методом функционала плотности (DFT) детально были проанализированы и сопоставлены два механизма катализа ртутью(II) в серной кислоте: активация связи С–Н и перенос электрона, а также радикальное окисление. Показана предпочтительность радикального пути реакции окисления.

Представляет интерес сопоставить вероятность механизма (VI) с реакцией отрыва гидрид иона (V) в растворе $HVO_3-H_2SO_4$ и в самой серной кислоте, а также выяснить, как влияет протонирование частиц окислителя на оба процесса.

Экспериментально изучить кинетику реакций отдельных частиц в растворах для сравнения их реакционной способности сложно. С этой целью представляется целесообразным в качестве первого приближения использовать оценки термохимических характеристик их предполагаемых реакций, которые, как показывает практика [40], хорошо коррелируют с кинетическими параметрами.

Термохимические данные оценены с использованием метода квантовой химии DFT B3LYP/6-311G(d,p) при полной оптимизации всех геометрических параметров частиц. Исходная геометрия частиц была оптимизирована методом PM7 (пакет МОРАС2016) [41, 42]. Учет влияния среды сложен и требует специального исследования. В работе [43] с помощью DFT B3LYP были выполнены расчеты молекулы H₂SO₄ в вакууме и в жидкой серной кислоте с использованием модели COSMO. Рассчитанное значение для энергии ее сольватации относительно большое и составляет -18.6 ккал/моль. Сравнение термохимических свойств реакций в ряду, где сохраняются типы разрываемых и образующихся связей, а также заряды на молекулярных частицах реактантов и продуктов, становится возможным, так как при этом просходит существенное нивелирование ошибок в разницах энтальпий реакций, вызванных неточностью метода и неучетом сольватации. В этом случае можно считать разницу в несколько десятков ккал/моль достаточной для качественного сравнения реакционной способности частиц.

Однако для более точных исследований, как было показано в работах [44, 45], необходим учет явного (имплицитного) присутствия молекул среды в ближайшем окружении сольватированной частицы, особенно ионов.

Возможные маршруты образования активных частиц в H_2SO_4 и в системе $HVO_3-H_2SO_4$ представлены уравнениями реакций (IV) и (III) соответственно. Для реагирующих частиц – HVO_3 ,

протонированных $H_3SO_4^+$, $H_2VO_3^+$ и образующихся в результате дегидратации последних HSO_3^+ и VO_2^+ – на примере реакций с 2,3-диметилбутаном (AlkH) рассчитаны энтальпии (ΔH) двух маршрутов: гомолитического (ГОМ, (VI)), и гетеролитического (ГЕТ, (V)), протекающих с образованием радикалов Alk⁺ или карбокатионов Alk⁺ вследствие гомо- или гетеролитического разрыва трет. связи С–H в AlkH соответственно (табл. 2).

Система HVO₃–H₂SO₄. Величины ΔH в маршрутах отрыва как H, так и H⁻ изменяются в ряду HVO₃ > H₂VO₃⁺ > VO₂⁺ от положительных к отрицательным значениям, что определяет существенный рост реакционной способности образо-

вавшейся по реакциям (III) частицы VO_2^+ , особенно в случае ГЕТ-механизма (табл. 2). Сравнение величин ΔH для реакций частиц $H_2VO_3^+$ и VO_2^+ с трет. связью С–Н свидетельствует о предпочтении механизма ГЕТ над ГОМ. Данные табл. 2 согласуются с экспериментальными результатами для газофазных реакций VO_2^+ с этаном, пропаном, бутаном и изобутаном при 25°С [46]. В реакции $VO_2^+ + C_2H_6$ образуются этилен (100%) и $[VO_2H_2]^+$. В случае пропана 2% превращается в пропилен, 92% – в $[VC_3H_6O_2]^+$ и H_2 . В реакциях VO_2^+ с бутанами расщепляются как связи С–Н, так и С–С:

$$n-C_{4}H_{10} \xrightarrow{40\%} [VC_{2}H_{6}O_{2}]^{+} + C_{2}H_{4}; \xrightarrow{-31\%} [VC_{2}H_{6}O_{2}]^{+} + H^{+} + H_{2}O; \xrightarrow{-15\%} [VO_{2}H_{2}]^{+} + [C_{4}H_{8}]$$

$$i-C_{4}H_{10} \xrightarrow{35\%} [C_{4}H_{9}]^{+} + [VO_{2}H_{2}]; \xrightarrow{-29\%} [VC_{3}H_{6}O_{2}]^{+} + CH_{4}; \xrightarrow{-15\%} [VC_{4}H_{6}O]^{+} + H_{2} + H_{2}O.$$

При взаимодействии VO₂⁺ с *н*-алканами ряда C₂-C₄ преобладает гомолиз перв. и втор. связей C-H. Трет. связь C-H в *i*-C₄H₁₀ реагирует в основном (35%) по маршруту отрыва H⁻ с образованием карбокатиона [C₄H₉]⁺ и частицы [VO₂H]. В реакции VO₂⁺ с *i*-C₄H₁₀ [46], как и с изогексаном (табл. 2), гетеролиз трет. связи C-H выгоднее гомолиза.

Система AlkH-H₂SO₄. Величины ΔH в маршрутах отрыва как H, так и H⁻ изменяются в ряду $H_3SO_4^+ > HSO_3^+$. При этом значения ΔH , рассчитанные для механизма ГОМ, выше в H_2SO_4 , чем в системе HVO₃-H₂SO₄, что отвечает большей активности ванадийсодержащих реагентов по сравнению с рассмотренными частицами серной кислоты (табл. 2). В механизме ГЕТ наблюдается обратная тенденция: величины ΔH в реакциях AlkH с $H_3SO_4^+$ и с HSO_3^+ существенно ниже, чем в реакциях AlkH в системе HVO₃-H₂SO₄. Частицы серной кислоты значительно активнее ванадийсодержащих частиц в реакциях отрыва гидридиона. Величины ΔH для реакций частиц $H_3SO_4^+$ и HSO₃⁺ с трет. связью С–Н отражают преобладающее предпочтение механизма ГЕТ над ГОМ.

Величины ΔH реакций свидетельствуют о том, что протонирование частицы делает ее более активной. В реакциях гетеролиза связи С–Н наиболее активна частица HSO₃⁺, образованная по двухступенчатому процессу, уравнение (IV). Отрыв катионом HSO₃⁺ гидрид-иона H⁻ от третичной связи С–Н с появлением Alk⁺ значительно выгоднее, чем отрыв атома H с образованием Alk^{*}. Данные табл. 2 согласуются с гипотезой [8, 9] о том, что для растворов H₂SO₄ активной частицей, действительно, является HSO_3^+ , отрывающая H^- от третичной связи C-H.

Полученные методом DFT структуры для реакционноспособных частиц в окислении углеводорода в системе $HVO_3 - H_2SO_4$ или в самой серной кислоте удовлетворительно согласуются с ранее предполагаемыми структурами промежуточных активных частиц, принимающих участие в реакциях протекающих в этих системах.

АКТИВАЦИЯ МЕТАНА НА КОМПЛЕКСАХ Pt(II), Hg(II), Pd(II) В СЕРНОКИСЛОТНЫХ PACTBOPAX ПРИ 180–250°С

В 10-ти приведенных в табл. 1 системах окисление CH₄ не наблюдали. В работах [1–3, 10–12] для активации метана использовали сернокислотные ($85\% \leq [H_2SO_4] \leq 100\%$) растворы комплексов переходных элементов (L_nM-X , где M =

= Pt(II), Hg(II), Pd(II), X = Cl⁻, L_n = HSO₄⁻) при более высокой температуре (180–250°С). Оказалось, что влияние кислотности среды на скорость реакции такое же, как и при температуре до 100°С.

Активация метана начинается с координации М с лигандом HSO_4^- и последующих внутрисферной замене HSO_4^- на CH_4 , либо межмолекулярной реакции M с CH_4 и средой, приводящих к формированию метанового комплекса. В результате взаимодействия связи C–H метана с двухкоординационным центром M по механизму электрофильного замещения и "нуклеофильной атаки" частицами серной кислоты H⁺ отщепляется от CH₄ с появлением интермедиата [CH₃MHSO₄], в результате гетеролиза которого по связи [CH₃–M]⁺ образуется продукт CH₃OSO₃H при отсутствии свободных радикалов или карбокатионов [47].

N⁰	Тип реакции	ΔH , ккал/моль		
Реакции RH в системе HVO ₃ -H ₂ SO ₄				
Отрыв атома Н				
1	$\mathrm{HVO}_3 + \mathrm{C}_6\mathrm{H}_{14} \rightarrow \mathrm{H}_2\mathrm{VO}_3 + \mathrm{C}_6\mathrm{H}_{13}$	49.7		
2	$H_2VO_3^+ + C_6H_{14} \rightarrow H_3VO_3^+ + C_6H_{13}$	7.2		
3	$VO_2^+ + C_6H_{14} \rightarrow HVO_2^+ + C_6H_{13}$	-0.8		
Отрыв гидрид-иона Н ⁻				
4	$\mathrm{HVO}_3 + \mathrm{C_6H_{14}} \rightarrow \mathrm{H_2VO_3^-} + \mathrm{C_6H_{13}^+}$	191.8		
5	$H_2VO_3^+ + C_6H_{14} \rightarrow H_3VO_3 + C_6H_{13}^+$	6.7		
6	$VO_2^+ + C_6H_{14} \rightarrow HVO_2 + C_6H_{13}^+$	-4.0		
Реакции RH с серной кислотой				
Отрыв атома Н				
7	$\mathrm{H_{3}SO_{4}^{+}+C_{6}H_{14}\rightarrow H_{4}SO_{4}^{+}+C_{6}H_{13}}$	51.7		
8	$\mathrm{HSO}_3^+ + \mathrm{C_6H_{14}} \rightarrow \mathrm{H_2SO}_3^+ + \mathrm{C_6H_{13}}$	13.1		
Отрыв гидрид-иона Н ⁻				
9	$\mathrm{H_3SO_4^+} + \mathrm{C_6H_{14}} \rightarrow \mathrm{H_4SO_4} + \mathrm{C_6H_{13}^+}$	-5.8		
10	$HSO_3^+ + C_6H_{14} \rightarrow H_2SO_3 + C_6H_{13}^+$	-75.9		

Таблица 2. Изменения энтальпии для гомо- и гетеролитического разрывов третичной связи C–H в реакциях 2,3-диметилбутана (C_6H_{14}) в системах HVO₃–H₂SO₄ и в самой H₂SO₄, рассчитанные по методу DFT B3LYP/6-311G(*d*,*p*)

Платина(II). Сернокислотные растворы комплексов платины нестабильны из-за их необратимого перехода в металлическую платину (чернь) или нерастворимые полимерные соли (PtCl₂)n. Использование дипиримидинового (bpym) лиганда позволяет дольше сохранять окисленное состояние платины и ее электрофильность [10]. Комплекс с водой, $[(Hbpym)PtCl(H_2O)]^{2+}$, который образуется при $[H_2SO_4] < 90\%$, стабильнее $[(Hbpym)PtCl(HSO_4)]^+$, что согласуется с данными о влиянии кислотности среды в реакции обмена H/D метана в растворе Pt(bpym)(SO₄)-D₂SO₄ при 75°С. В 80% D₂SO₄ протекание реакции не обнаружено. В интервале концентраций от 84% D₂SO₄ до 6% олеума наблюдаемая константа скорости обмена H/D ($k_{\text{набл}} \times 10^5$, л моль⁻¹ с⁻¹) возрастает в ~20 раз.

В системе (bpym)Pt(II)Cl₂–H₂SO₄, названной "Periana-Catalytica", при [H₂SO₄] = 100%, [Pt(bpym)Cl₂] = 0.05 моль/л и T = 200°C с селективностью 90% образуется CH₃OH при конверсии метана 80%. Комплекс [(Hbpym)PtCl(HSO₄)]⁺, благодаря замене HSO₄⁻ на CH₄ во внутренней сфере платины, переходит в метановый, превращения которого по механизму электрофильного замещения обеспечиваются повышенной электрофильностью Pt(II) за счет протонирования лиганда bpym. Скоростьопределяющей стадией является скорее формирование метанового комплекса, чем расщепление связи C–H.

В системе Pt(II)-98% H_2SO_4 при 160°C этан связывается в комплекс Pt(II)-Et [48]. Элиминирование β -гидрида ведет к этилену и Pt(II)-гидриду, который быстро окисляется серной кислотой с регенерацией $Pt(II)-X_2$. Этилен в реакции с H_2SO_4 превращается в этилбисульфат, взаимодействие которого с H_2SO_4 приводит к бисульфатному эфиру изетионовой кислоты $HO_3S-CH_2-CH_2-OSO_3H$. В случае C_2H_6 лимитирующая стадия – активация связи С–H, что объясняет рост скорости функционализации этана в 100 раз по сравнению с CH₄. При 160°C в растворах Pt(II)–H₂SO₄ с ростом [H₂SO₄] от 84 до 98% константа скорости реакции этана возрастает примерно на два порядка [48], что при использовании значения H_0 для 90°C дает $m_0 \approx 1$. Интересно, что при 90°C в реакции 2-метилпропана в системе Pt(III)–86–93% H₂SO₄ величина m_0 равна 1 (табл. 1).

Ртуть(II). В растворе 0.02 моль/л Hg(HSO₄)₂ в 96% H₂SO₄ при 180°С образуется 1 моль/л CH₃OH с селективностью 90% и выходом > 40% на взятый CH₄ [10]. Реакция начинается с автоионизации Hg(HSO₄)₂ и образования комплекса [(HSO₄)Hg– Sol]⁺HSO₄, сольватированного растворителем (Sol). Координация CH₄ в его внутреннюю сферу приводит к метановому комплексу, в котором по механизму электрофильного замещения отщепляется H⁺ и образуется интермедиат [CH₃HgH-SO₄]. Гетеролиз по связи [CH₃–Hg]⁺ с одновременным захватом уходящей электрофильной группы CH₃ серной кислотой, HSO₄⁻ или H₂O ведет к образованию CH₃OSO₃H или CH₃OH. Восстановленная ртуть не обнаружена из-за окисления H₂SO₄.

В обратимой стадии активации метана образуются исходные $Hg(OSO_3H)_2$ и CH_4 . Частицы $[(HSO_4)Hg]^+$ реагируют в ~10³ раз быстрее со связью C–H метана, чем метанола, который в серной кислоте существует в основном в протонированной

 $[CH_3OH_2]^+$ или сульфатной CH_3OSO_3H формах. Доказательством того, что метилбисульфат ртути является продуктом активации метана, служит обнаружение такого комплекса в реакции ¹³CH₄ + + Hg(HSO₄)₂ + H₂SO₄ [10]. Его идентичность подтверждена сравнением с образцом CH₃HgOSO₃H, полученным при взаимодействии Hg(CH₃)₂ + H₂SO₄. В реакции метана с D₂SO₄ в присутствии Hg(II) показано вхождение дейтерия в CH₄, что объяснили [10] дейтеролизом интермедиата:

$$CH_4 + Hg(II) \xrightarrow{-H^+} CH_3Hg(II) \xrightarrow{D^+}$$
$$\xrightarrow{D^+} CH_3D + Hg(II).$$

Палладий((II). Реакции с метаном изучены в растворах 0.02 моль/л Pd(II)—96% H_2SO_4 при 180°С и отношении давлений (атм : атм) метана и необходимого для стабилизации системы кислорода CH₄ : O₂ = 13–27 : 0–10 [11]. В этих условиях более 99% Pd(II) находится в виде частиц Pd(OSO₃H)₂, ответственных за активацию CH₄. Окисление CH₄ начинается внешнесферно с образования метилпалладиевого комплекса:

$$CH_4 + Pd(OSO_3H)_2 \rightarrow (CH_3)Pd(OSO_3H) + H_2SO_4.$$

Бисульфатные ионы, как нуклеофилы, отщепляют протон от CH₄; ионы Pd(II), как электрофилы, связываются с метилидным анионом. Комплекс (CH₃)Pd(OSO₃H) превращается по двум маршрутам:

1) окисляется серной кислотой до CH_3OSO_3H . Добавка CH_3OSO_3H к реакционной смеси приводит к выделению CH_4 , а также к CO, CO₂ и SO₂, SO₃. Оксиды являются продуктами реакций:

Использование в уравнении (1а) данных [11] и величин H_0 при 90°С дает значение $m_0 = 0.9$, $R^2 = 0.949$, близкое к m_0 в реакциях RH в растворах Pd(II)— 80—96% H₂SO₄ при 90°С (табл. 1). Это может свидетельствовать о том, что при 90 и 180°С активная частица одна и та же, [PdOSO₃H]⁺, и механизмы активации ею связей С–Н подобны.

Система $Pd(OSO_3H)_2-H_2SO_4$ имеет следующие особенности:

1) При 90°С [8, 50] комплексы Pd^{*n*} (n = 0-2) направляют реакцию с c-C₆H₁₂ по маршруту окислительного дегидрирования в бензол, "защищая" появляющиеся интермедиаты циклогексен и диен от побочных превращений. Ни в одной из известных систем металлокомплексов или электрофилов при окислении циклогексана бензол не обнаружен в продуктах реакции [7, 8].

КИНЕТИКА И КАТАЛИЗ том 61 № 4 2020

$$Pd(OSO_3H)_2 + CH_3OSO_3H \rightarrow Pd^0 + CO + SO_2 + H_2O + 2H_2SO_4$$
и

$$Pd(OSO_3H)_2 + CO \rightarrow Pd^0 + CO_2 + SO_3 + H_2SO_4$$

и дезактивируют катализатор, переводя его в палладиевую чернь. Окисление Pd^0 происходит за счет O_2 и H_2SO_4 ;

2) взаимодействует по связи Pd-CH₃ с накапливающимся CO, образуя комплекс (CH₃CO)Pd(OSO₃H), реакция которого с серной кислотой приводит к СН₃СООН. Доказательства протекания этой стадии получены при изучении реакций с добавками к реакционной смеси [49]. При добавлении ¹³СО или ¹³CH₃OH к ¹²CH₄ преимущественно образуется ¹²CH₃¹³COOH, при добавлении ¹²CH₃OH к ¹³CH₄-¹³CH₃¹²COOH. Высокая селективность по уксусной кислоте по сравнению с серусодержащими кислотами (метансульфоновой CH₃SO₃H, метандисульфоновой $CH_2(SO_3H)_2$, сульфоуксусной HO₃SCH₂COOH) подтверждает, что CO быстрее, чем SO₂, внедряется по связи Pd–CH₃. В палладиевой системе удалось с помощью О2 поддерживать соотношение [Pd²⁺]/[СО], необходимое для образования СН₃СООН, катализировать окислительное присоединение СО по связи Pd-CH₃ и получить уксусную кислоту из двух молекул СН₄ без добавок СО:

$$2^{13}CH_4 + 4H_2SO_4 \xrightarrow{Pd(II)-H_2SO_4} (VII)$$

$$\xrightarrow{Pd(II)-H_2SO_4} \xrightarrow{13}CH_2 \xrightarrow{13}COOH + 6H_2O + 4SO_2.$$

На скорость реакции (VII) влияет $[H_2SO_4]$, что продемонстрировано в [11] на примере роста выхода CH₃COOH (в относительных единицах) с ростом кислотности среды при 180°C:

2) При ~200°С [10, 11] метилпалладиевый комплекс: а) окисляется серной кислотой до метилбисульфата, который в реакции с Pd(II) дает CO; б) взаимодействует по связи Pd—CH₃ с накапливающимся CO, образуя комплекс (CH₃CO)Pd(OSO₃H), реакция которого с H₂SO₄ приводит к уксусной кислоте. Это первая система [10], в которой превращение 2CH₄ \rightarrow CH₃COOH не требует добавок CO.

ЗАКЛЮЧЕНИЕ

1. Реакции алканов (AlkH), циклоалканов (*c*-AlkH) и аренов (ArH) с окислителями в сернокислотных растворах (табл. 1) являются кислотно-каталитическими. Реакции с AlkH и *c*-AlkH протекают при [H₂SO₄] не менее 45% в присутствии Cr(VI), 80% – Pd(II), 84% – остальных рассмотренных окислителей. В соответствии с типом протонирования окислителя (однократное, с последующей дегидратацией или более глубокое), приводящего к появлению

активной в катализе частицы, и связанного с этим значения наклона (m_0) для зависимости lg $k-H_0$, реакции *c*-AlkH и AlkH можно отнести к 3-м группам: I) $m_0 \approx 1$; II) $1.3 \le m_0 \le 1.7$; III) $2.2 \le m_0 \le 3.4$.

В группу I вошли реакции, в которых активная частица образуется при однократном протонировании: H_2O_2 , Pd(II) и Pt(III). Для реакций CH₄ в Pd(II)-80-96% H₂SO₄ при 180°C и C₂H₆ в Pt(II)-84-98% H₂SO₄ при 160°C значения m_0 равны 1. Группа II включает реакции с активными частицами (Ad⁺, HCrO₃⁺, NO₂⁺, SO₃H⁺), образующимися в результате дегидратации протонированного реагента, для которых зависимость *k* от кислотности лучше описывается в координатах lg*k*-*H*_R с $m_R = 0.8 \pm 0.1$. В группу III отнесены реакции с HgSO₄, HVO₃ и CH₂O, для которых влияние кислотности на их скорость наибольшее, $m_0 \ge 2.2$.

2. Влияние кислотности в реакциях ArH (бензола и метилбензолов) изучено в сернокислотных растворах, содержащих AdOH, HVO₃, CH₂O, при [H₂SO₄] примерно на 25% ниже, чем в реакциях AlkH и *c*-AlkH с этими же реагентами. Реакции с аренами отнесены в группу II, поскольку найденные для них $m_{\rm R} = 0.8-0.9$ отвечают образованию активной частицы в результате дегидратации протонированного реагента. В растворах AdOH–H₂SO₄ для реакций ArH и *c*-AlkH влияние кислотности на скорость описывается в координатах $lgk-H_{\rm R}$ с близкими значениями $m_{\rm R} - 0.8$ и 0.9 соответственно. Это согласуется с тем, что в реакцию как с ArH, так и с *c*-AlkH вступает одна частица Ad⁺, реакционная способность и концентрация которой повышаются с уменьшением H_0 .

В системах, содержащих HVO₃ и CH₂O, со снижением величины H_0 (с ростом [H₂SO₄]) влияние кислотности на скорость реакций увеличивается, значение m_0 в реакциях с AlkH выше по сравнению с m_0 в реакциях с ArH. В сернокислотных растворах HVO₃ в реакции с ArH участвует активная частица VO₂⁺ – продукт дегидратации H₂VO₃⁺; в реакции с AlkH $m_0 \approx$ $\approx 2.2, m_R \approx 1.2$. Рост m_0 объясняется появлением новой олигомерной частицы, тримера ванадия(V).

В системе $CH_2O-H_2SO_4$ для концентраций серной кислоты 52.5, 60–80 и 88–93% рассмотрено участие различных активных частиц, которые можно расположить в два ряда: 1) протонированные CH_2O , $(CH_2O)_2$, $(CH_2O)_3$; 2) $^+CH_2OH$ почти несольватированная, сольватированная 1–2 молекулами серной кислоты и далее 2–3 молекулами H_2SO_4 . В каждом ряду за счет либо олигомеризации, либо сольватации объем активной частицы растет, что увеличивает стерические затруднения, которые она испытывает при приближении к реакционному центру. Это позволяет объяснить различия в значениях субстратных селективностей и в механизмах реакций ArH при $[H_2SO_4]$ равной 52 и 60%. В случае тримера $(CH_2O)_3$ протонирование

возможно по каждому из кислородов, что отвечает росту m_0 с уменьшением величины H_0 .

3. Сильное влияние кислотности в группе III реакций AlkH и *c*-AlkH с Hg(II), HVO₃ и CH₂O может быть вызвано как олигомеризацией, так и сольватацией реагентов, которые требуют дополнительного протонирования при участии в них 2-3 молекул H₂SO₄.

4. Результаты квантово-химических расчетов для реакций ванадийсодержащих частиц в H_2SO_4 и частиц самой серной кислоты свидетельствуют о влиянии протонирования на реакционную способность исходных молекул, подтверждают важность процессов переноса H^- и показывают, что для отдельных частиц, образовавшихся в результате протонирования, реакции, протекающие через гомолиз связи С–H, могут конкурировать с теми, что идут через гетеролиз этой связи.

В дальнейшем представляется интересным получить термохимические данные для образования комплексов как окислителя, так и окисляющегося углеводорода с частицами серной кислоты, а также для гомо- и гетеролитических маршрутов с участием этих комплексов.

БЛАГОДАРНОСТИ

Авторы благодарят к.х.н. Е.Н. Пастернак за выполненные расчеты свойств частиц методом DFT (данные табл. 2).

СПИСОК ЛИТЕРАТУРЫ

- Gunsalus N.J., Koppaka A., Park S.H., Bischof S.M., Hashiguchi B.G., Periana R.A. // Chem. Rev. 2017. V. 117. № 13. P. 8521.
- Mironov O.A., Bischof S.M., Konnick M.M., Hashiguchi B.G., Ziatdinov V.R., Goddard W.A. 3rd, Ahlquist M., Periana R.A. // J. Am. Chem. Soc. 2013. V. 135. № 39. P. 14644.
- 3. *Hashiguchi B.G., Bischof S.M., Konnick M.M., Periana R.A.* // Acc. Chem. Res. 2012. V. 45. № 6. P. 885.
- 4. Чепайкин Е.Г. // Успехи химии. 2011. Т. 80. № 4. С. 384.
- 5. Chepaikin E.G., Menchikova G.N., Pomogailo S.I. // Russ. Chem. Bull. 2019. V. 68. № 8. P. 1465.
- Shilov A.E., Shul'pin G.B., Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Dordrecht/Boston/London/Moscow: Kluwer Academic Publishers, 2000. 555 p.
- Rudakov E.S., Shul'pin G.B. // J. Organometal. Chem. 2015. V. 793. P. 4.
- 8. Гончарук Г.А., Камалов Г.Л., Ковтун В.В., Рудаков Е.С., Яцимирский В.К. Катализ. Механизмы гомогенного и гетерогенного катализа, кластерные подходы. Киев: Наук. думка, 2002. 541 с.
- 9. *Рудаков Е.С.* Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. Киев: Наук. думка, 1985. 248 с.
- Periana R.A., Bhalla G., Tenn W.J., Young III, Kenneth J.H., Liu X.Y., Mironov O.A., Jones C.J., Ziatdinov V.R. // J. Mol. Catal. A: Chem. 2004. V. 220. P. 7.
- 11. Zerella M., Kahros A., Bell A. T. // J. Catal. 2006. V. 237. P. 111.
- 12. Sen A. // Acc. Chem. Res. 1998. V. 31. № 6. P. 550.
- 13. *Тищенко Н.А., Рудаков Е.С. //* Кинетика и катализ. 1990. Т. 31. № 1. С. 32.
- Рудаков Е.С., Волкова Л.К. // Кинетика и катализ. 2006. Т. 47. № 6. С. 885.

- 15. Рудаков Е.С., Волкова Л.К. // Изв. Акад. Наук. Сер. хим. 2008. № 8. С. 1581.
- 16. Рудаков Е.С., Волкова Л.К., Коробченко М.А., Мерзликина М.А. // Укр. хим. журн. 2014. Т. 80. № 4. С. 75. 17. Волкова Л.К., Мерзликина М.А. // Катализ и нефте-
- химия. 2016. № 25. С. 45. 18. Волкова Л.К., Опейда Й.А. / Фізико-органічна хімія,
- фармакологія та фармацевтична технологія біологічно активних речовин. Зб. наук. праць. Київ, 2018. С. 91.
- 19. Винник М.И. // Успехи химии. 1966. Т. 35. № 11. С. 1922.
- 20. Johnson C.D., Katritzky A.R., Shapiro S.A. // J. Am. Chem. Soc. 1969. V. 91. № 24. P. 6654.
- 21. Deno N.C., Jaruzelski J.J., Schriesheim A. // J. Am. Chem. Soc. 1955. V. 77. № 11. P. 3044.
- 22. Arnett E.M., Bushick R.D. // J. Am. Chem. Soc. 1964. V. 86. № 8. P. 1564.
- Муравейская Г.С., Кукина Г.А., Орлова В.С., Еста-фьева О.Н., Порай-Кошиц М.А. // Докл. АН СССР. 1976. T. 226. № 3. C. 596.
- 24. Geluk H.W., Schlatmann J.L.M.A. // Tetrahedron. 1968. V. 24. P. 5361.
- 25. Ивакин А.А., Фотиев А.А. Химия пятивалентного ванадия в водных растворах. Тр. Ин-та химии Уральского науч. центра АН СССР. Вып. 24. Свердловск, 1971. 190 с.
- 26. *Курбатова Л.Д., Курбатов Д.И.* // Журн. неорган. химии. 2006. Т. 51. № 5. С. 908.
- 27. Лобачев В.Л., Зимцева Г.П., Рудаков Е.С. Теорет. и эксперим. химия. 2001. Т. 37. № 1. С. 15.
- 28. Уокер Дж. Формальдегид. Москва: Госхимиздат, 1957. 608 c.
- 29. Мошинская Н.К. Полимерные материалы на основе ароматических углеводородов и формальдегида. Киев: Техніка, 1970. 256 с.
- 30. *Савченко В.И.* // Изв. АН СССР Отд. хим. наук. 1969. № 11. С. 2603.
- 31. Коптюг В.А. Аренониевые ионы. Строение и реакционная способность. Новосибирск: Наука, 1982. 272 с.

- 32. Fukuzumi S., Kochi J.K. // J. Am. Chem. Soc. 1981. V. 103. № 24. P. 7240.
- 33. *Рудаков Е.С., Лобачев В.Л. //* Изв. СО АН СССР, сер. хим. наук. 1987. Вып. 3. № 9. С. 25.
- 34. *Madic C., Begun G.M., Hahn R.L., Launay J.P., Thiessen W.E.* // Inorg. Chem. 1984. V. 23. № 4. P. 469.
- 35. *Gillespie R.J., Kapoor R., Robinson E.A.* // Can. J. Chem. 1966. V. 44. № 10. P. 1203.
- 36. Fuller III J.T., Butler S., Devarajan D., Jacobs A., Hashiguchi B.G., Konnick M.M., Ess D.H. // ACS Catal. 2016. V. 6. № 7. P. 4312.
- 37. Kazansky V.B., Senchenva I.N. // J. Mol. Catal. 1992. V. 74. P. 257.
- 38. Limberg C. // Wiley Online Library. 2003. V. 42. № 48. P. 5932.
- 39. Shul'pin G.B. // Catal. Rev. 2016. V. 6. № 4. P. 1.
- 40. Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И. Химическая кинетика. Москва: Химия, 2000. 568 с.
- 41. Stewart J.J.P. // J. Mol. Modeling. 2013. V. 19. № 1. P. 1.
- 42. Stewart J.J.P. MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA. 2016. http://openmopac.net/MOPAC2016.html.
- 43. Ahlquist M., Periana R.A., Goddard III W.A. // Chem. Commun. 2009. № 17. P. 2373.
- 44. Kazansky V.B. // Catal. Rev. 2001. V. 43. № 3. P. 199.
- 45. Kazansky V.B. // Top. Catal. 2000. V. 11. № 1-4. P. 55.
- 46. Engeser M., Schlangen M., Schroder D., Schwarz H., Yumura T., Yoshizawa K. // Organometallics. 2003. V. 22. P. 3933.
- 47. Basickes N., Terrence E., Hogan E., Sen A. // J. Am. Chem. Soc. 1996. V. 118. № 51. P. 13111.
- 48. Konnick M.M., Bischof S.M., Yousufuddin M., Hashiguchi B.G., Ess D.H., Periana R.A. // J. Am. Chem. Soc. 2014. V. 136. № 28. P. 10085.
- 49. Periana R.A., Mironov O.A., Taube D., Bhalla G., Jones C.J. // Science. 2003. V. 301. P. 814.
- 50. Rudakov E.S., Shul'pin G.B. // J. Organometal. Chem. 2018. V. 867. P. 25.

Effect of Medium Acidity on the Reaction Rate of Oxidative Functionalization of Hydrocarbons in Sulfuric Acid Solutions

L. K. Volkova^{1, *} and I. A. Opeida^{2, 3, **}

¹Litvinenko Institute of Physical–Organic Chemistry and Coal Chemistry of National Academy of Sciences of Ukraine,

st. Kharkiv Highway, 50, Kyiv, 02160 Ukraine

²Department of Physical Chemistry of Fossil Fuels L.M. Litvinenko InPOCC of NAS of Ukraine, st. Scientific, 3a, Lviv, 79060 Ukraine ³Vasyl' Stus Donetsk National University, st. 600th Anniversary, 21, Vinnitsa, 21021 Ukraine

*e-mail: volkovalk@gmail.com

**e-mail: opeida i@yahoo.co.uk

The effect of the medium acidity on the rate constant (k) of reactions of alkanes (AlkH), cycloalkanes (c-AlkH) and arenes (ArH) in sulfuric acid solutions with peroxy compounds (H_2O_2 or (NH_4)₂S₂O₈), complexes (Pd(II), Pt(III), Hg(II)), acids (H₂CrO₄, HNO₃, H₂SO₄, HVO₃), 1-adamantanol (ÅdÕH) and formaldehyde (CH₂O) was analyzed using relationship log $k = C_0 - m_0 H_0$, where H_0 is the Hammett acidity function, C_0 is its intercept and m_0 is the slope of the line in the coordinates logk- H_0 . It was shown that, depending on the slope value ($1 \sim m_0 \leq 3.4$), all reactions can be divided into three groups in accordance with the degree of protonation of the main particle: in the 1st group, single protonation occurs (H_2O_2 or (NH_4)₂S₂O₈, Pd(II), Pt(III)), in the 2nd – protonation followed by dehydration (AdOH, H₂CrO₄, HNO₃, H₂SO₄, as well as HVO₃ and CH₂O in reactions with ArH in 57–65% and 60–80% H₂SO₄, respectively), in the 3rd - double or triple protonation (Hg(II), HVO₃ and CH₂O in reactions with AlkH and c-AlkH in 84– 93% H₂SO₄). For the active oxidizing particles in the HVO₃-H₂SO₄ system and in H₂SO₄ itself, the thermochemical characteristics of their reactions with 2,3-dimethylbutane were estimated using the quantum chemical method DFTB3LYP/6-311G (d, p) and the possibilities of alternative reaction mechanisms were analyzed.

Keywords: saturated and aromatic hydrocarbons, oxidizing agents, sulfuric acid solutions, rate constants, acidity of the medium

КИНЕТИКА И КАТАЛИЗ том 61 № 4 2020