——— МЕХАНИЗМЫ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ ——

УДК 542.943.7:546.11:546.562'655-31

МЕХАНОХИМИЧЕСКИЙ СИНТЕЗ— АЛЬТЕРНАТИВНЫЙ ЭФФЕКТИВНЫЙ МЕТОД ПРИГОТОВЛЕНИЯ КОМПОЗИТНЫХ КАТАЛИЗАТОРОВ

© 2020 г. О. С. Морозова^{а, *}, А. А. Фирсова^а, Ю. П. Тюленин^а, Г. А. Воробьева^а, А. В. Леонов^b

^а ФИЦ химической физики им. Н.Н. Семенова РАН, ул. Косыгина, 4, Москва, 117977 Россия ^b МГУ им. М.В. Ломоносова, Химический факультет, Ленинские горы, 1/3, Москва, 119911 Россия

**e-mail: om@chph.ras.ru* Поступила в редакцию 18.12.2019 г. После доработки 20.03.2020 г. Принята к публикации 23.05.2020 г.

Механохимический синтез в шаровой мельнице применен для приготовления нанокомпозитных катализаторов Cu(CuO)—CeO₂ из смесей CeO₂ и допантов: металлической меди и оксидов меди различной морфологии и состава (CuO и CuO с добавками Cu₂O в количестве 4 и 16.5 мас. %). Полученные материалы изучены методами рентгенофазового анализа, сканирующей электронной микроскопии, температурнопрограммированного восстановления в CO, H₂ и C₂H₆ (TПВ-CO, TПВ-H₂ и TПВ-C₂H₆) и испытаны в качестве катализаторов реакций селективного окисления CO в избытке H₂ (CO-PROX) и глубокого окисления C₂H₆. Методом TПВ установлено, что в синтезированных образцах появляются новые формы кислорода с большей реакционной способностью в области низких температура по отношению к CO, H₂ и C₂H₆. Показано, что конверсия CO мало зависит от природы исходных медьсодержащих компонентов в составе смеси с CeO₂, однако величина конверсии C₂H₆ при низких температурах чувствительна к составу допантов. Максимальная конверсия C₂H₆ при 400°C (91.4%) наблюдается на Cu–CeO₂-образце, минимальная (54.2%) – на CuO–CeO₂. Продемонстрировано, что механохимический синтез является универсальным методом приготовления оксидных медно-цериевых катализаторов.

Ключевые слова: механохимический синтез, оксидные медно-цериевые композиты, температурнопрограммированное восстановление, СО, H₂, C₂H₆, CO-PROX, глубокое окисление

DOI: 10.31857/S0453881120050081

ВВЕДЕНИЕ

В настоящее время оксидные медно-цериевые катализаторы широко используются в различных промышленных и экологически важных процессах, таких, например, как окисление летучих органических соединений и сажи, глубокое окисление углеводородов, реакция конверсии водяного пара, низкотемпературное окисление СО в избытке водорода (реакция CO-PROX) и многих других [1-7]. Активность этих катализаторов связывают с образованием межфазной границы $CuO_x - CeO_2$, на которой формируются центры Си–О–Се, и с высокой подвижностью кислорода в решетке СеО₂, обусловленной большим количеством кислородных вакансий. Введение меди в диоксид церия способствует возникновению таких вакансий. Считается [8-10], что именно центры на межфазной границе стимулируют появление в катализаторе подвижного кислорода с высокой реакционной способностью. Максимальная каталитическая активность достигается на образцах, содержащих 4–5 мас. % CuO [13, 14].

Предложены различные способы синтеза оксидных медно-цериевых систем, направленные на создание катализаторов, активных в области низких температур (120–180°С), обладающих протяженной межфазной границой CuO_x —CeO₂ [11, 12]. В основном эти способы энергозатратны, длительны и сопровождаются образованием экологически вредных сточных вод.

В работе [16] был предложен экологически чистый (безотходный) и одноступенчатый метод приготовления оксидных медно-цериевых катализаторов с помощью прямого механохимического синтеза (MC) из смесей индивидуальных компонентов оксидов CeO₂, CuO и металлической Cu. Благодаря механической активации (интенсивному перемешиванию и локальным пластическим деформациям под высоким давлением) происходило модифицирование поверхности частиц CeO₂ ионами меди, аналогичное тому, которое получали другими методами синтеза оксидных медно-цериевых систем. С помощью MC удалось создать систему CuO_x-CeO₂

Сокращения: ТПВ-СО, ТПВ-H₂ и ТПВ-C₂H₆ – температурно-программированное восстановление в СО, H₂ и C₂H₆; СО-PROX – селективное окисление СО в избытке H₂; МС – механохимический синтез; РФА – рентгенофазовый анализ; СЭМ – сканирующая электронная микроскопия; БЭТ – метод Брунауэра–Эммета–Теллера; ААС – атомноабсорбционная спектроскопия; ДСК – дифференциальная сканирующая калориметрия; ТГ – термогравиметрия.

с протяженной межфазной границей, физико-химические и каталитические свойства которой в реакции CO-PROX были практически идентичны тем, что описаны в литературе для образцов, синтезированных иными способами [17, 18].

Дальнейшие исследования позволили расширить состав медьсодержащих компонентов для получения катализаторов методом MC и испытать их не только в окислении CO (CO-PROX), но и в глубоком окислении этана. Ранее [19] была показана важная роль оксидов CuO в катализаторе CuO– CeO₂/Al₂O₃ для реакций глубокого окисления.

В настоящей работе в качестве модифицирующих добавок к CeO₂ были использованы оксиды меди CuO, содержавшие в своем составе ионы одновалентной меди (4 и 16.5 мас. % Cu₂O). Это дало возможность проверить предположение о важнейшей роли ионов Cu¹⁺ в образовании активных центров для реакции CO-PROX. Кроме того, морфология таких оксидных систем (размер и форма частиц) сильно отличалась от морфологии уже изученных CuO и Cu. Это позволяло выявить влияние и фазового состава, и морфологии исходных оксидов меди на формирование и физико-химические свойства оксидных медно-цериевых катализаторов.

Полученные с помощью MC катализаторы были исследованы методами рентгенофазового анализ РФА, сканирующей электронной микроскопии СЭМ, и температурно-программированного восстановления ТПВ в СО, H₂ и C₂H₆. Удельную поверхность определяли методом БЭТ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза катализаторов использовали CeO₂, приготовленный пиролизом Ce(NO₃)₃ · 6H₂O ("Aldrich", 99%) на воздухе [17]. Диоксид церия с удельной поверхностью $S_{yg} = 89 \text{ м}^2/\text{г}$ состоял из кубической фазы CeO2 (JCPDS 89-8434). В качестве медьсодержащих добавок применяли металлическую медь Cu – дендритную электролитическую ("GGP", 99.9%), фаза (JCPDS 89-2838), и различные оксиды меди CuO(I-III). CuO(I) был получен пиролизом Cu(NO₃)₂ · 2.5 H₂O (марка "ч. д. а.") [18], состоял на 100% из моноклинной фазы CuO (JCPDS 5-661); $S_{yg} = 1 \text{ м}^2/\text{г. CuO(II)}$ был приготовлен разложением Cu(NO₃)₂ · 2.5 H₂O ("Aldrich", 99%) в плазменном разряде и содержал 96 мас. % фазы CuO (JCPDS 5-661) и 4 мас. % фазы Cu₂O (JCPDS 5-667); $S_{yg} = 6 \text{ м}^2/\text{г. CuO(III)}$ ("Advanced Powder Technology LLC", Томск, Рос-сия) содержал 82 мас. % фазы CuO (JCPDS 5-661), 16.5 мас. % фазы Cu₂O (JCPDS 5-667) и 1.5 мас. % фазы Cu; $S_{\rm vg} = 12 \text{ м}^2/\Gamma$.

МС проводили в течение 30–90 мин в шаровой вибромельнице, состоящей из стального контейнера, прикрепленного к вибратору и заполненного стальными шарами диаметром 3–5 мм и весом 15.3 г. Энергонапряженность составляла 1 Вт/г, амплитуда колебаний – 7.25 мм, частота колебаний – 50 Гц [17,

18]. В мельницу помещали 1.8 г смеси 8 мас. % Си и 92 мас. % СеО₂ или 10 мас. % СиО и 90 мас. % СеО₂. Медьсодержащие добавки были взяты в двойном избытке по сравнению с оптимальным количеством для того, чтобы следить за изменением фазового состава образцов на разных стадиях обработки. Воспроизводимость характеристик образцов, полученных методом MC, проверяли по результатам ТПВ и измерениям каталитической активности.

Удельную поверхность определяли методом БЭТ по низкотемпературной адсорбции аргона. Химический анализ образцов проводили с помощью атомно-абсорбционной спектроскопии (AAC), используя прибор ThermoScientific iCAP 6300 Duo ("Thermo Scientific", США).

Морфологию образцов изучали методом сканирующей электронной микроскопии с использованием микроскопов SEM 515 ("Philips", Нидерланды) и JSM 6390LV ("JEOL", Япония). Перед измерениями образец крепили на двухсторонний проводящий скотч.

Фазовый состав исходных оксидов и образцов на разных стадиях МС исследовали на дифрактометре ДРОН-3 ("Буревестник", Россия) в области углов $2\theta = 20^{\circ}-90^{\circ}$ (Си*К* α -излучение, графитовый монохроматор), откалиброванном по линии (112) порошка SiO (α -кварц, межплоскостное расстояние – 1.818 Å). Количественный фазовый анализ проводили с помощью компьютерных программ [20]. Размер кристаллитов рассчитывали по формуле Шеррера или, в случае CeO₂, по программе [20].

Температурно-программированное восстановление исходных оксидов и синтезированных образцов в СО, H_2 и C_2H_6 (ТПВ-СО, ТПВ- H_2 и ТПВ- C_2H_6 соответственно) осуществляли с использованием проточного дифференциального сканирующего калориметра NETZSCH STA 449C ("NETZSCH", Германия), оснащенного массспектрометром AEOLOS-32. Эксперименты проводили в интервале 50–400°С со скоростью нагрева 10°С/мин. В качестве восстановителей применяли газовые смеси, содержащие 10 об. % H_2 , СО или C_2H_6 в аргоне. Газом-носителем был гелий. Все газы были чистоты 99.999%. Детали эксперимента приведены в [17].

Каталитическую активность в реакции окисления СО в избытке H_2 тестировали в интервале температур 20–400°С в проточном микрореакторе. Реакционную смесь состава 98 об. % H_2 , 1 об. % СО и 1 об. % О₂ пропускали со скоростью 40 мл/мин через трубчатый кварцевый микрореактор (диаметр 3 мм), содержавший 20 мг катализатора. Детально эксперимент описан в [18]. Каталитическую активность в реакции глубокого окисления C_2H_6 проверяли в интервале температур 100–500°С. Реакционную смесь состава 0.5 об. % C_2H_6 , 5 об. % О₂ и 94.5 об. % N₂ пропускали со скоростью 16 мл/мин через трубчатый кварцевый микрореактор (диаметр 3 мм), содержавший 20 мг катализатора, разбавленного 100 мг SiO₂. Анализ

продуктов реакции осуществляли хроматографически на приборе Кристалл-2000 (Россия) с использованием двух колонок, наполненных молекулярными ситами 13 A и Porapak QS. В обоих случаях предварительную обработку образцов не проводили.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Морфологические и структурные особенности композитов, полученных с помощью MC

На рис. 1 представлены микрофотографии СЭМ исходного CeO₂ (рис. 1д) и модифицирующих медьсодержащих добавок – металлической Си (рис. 1а) и оксидов CuO(I) (рис. 1б), CuO(II) (рис. 1в) и CuO(III) (рис. 1г), а также образца CuO (III)-СеО₂ после 60 мин МС (рис. 1е). Частицы исходного CeO₂ были разнообразны по размеру и форме, маленькие частицы располагались на поверхности более крупных частиц. Механическая активация СеО2 сопровождалась уплотнением и укрупнением частиц порошка до 20-30 мкм, что приводило к уменьшению удельной поверхности с 89 до 46.5 м²/г после 60 мин МС. Порошок Си (рис. 1а) представлял собой агломерированные плоские частицы длиной около 0.6 мкм и толщиной ~0.14 мкм, а оксид меди CuO(I) – хрупкие шарообразные агломераты плоских частиц длинной 1-3 мкм и толщиной ~0.1 мкм (рис. 16), которые легко разрушались при помоле. Большие рыхлые частицы CuO(II) (рис. 1в) состояли из мелких кубических частиц. В образце CuO(III) (рис. 1г) обнаружены два типа округлых или овальных частиц: мелкие диаметром 100-150 нм и крупные размером в несколько десятков мкм. Морфология образца CuO(III)-СеО2 после 60 мин МС полностью соответствует изменению в морфологии CeO₂, являющегося основным компонентом катализаторов (90-92 вес. %). Во всех случаях мелкие частицы СеО₂ "слипались" в крупные компактные частицы композита с размером 20-30 мкм, удельная поверхность после 60 мин MC составляла от 36 до 44 м²/г. Природа добавки практически не влияла на морфологию катализаторов. Отдельные мелкие фрагменты металлической меди и оксидов меди в плотных частицах СеО₂ не наблюдались.

На рис. 2 представлены рентгеновские дифрактограммы исходных медьсодержащих смесей (рис. 2а) и порошков, образовавшихся после 60 мин MC (рис. 2б). На дифрактограммах последних присутствовали линии, относящиеся к кубической фазе CeO₂ (JCPDS 34394) с a = 5.414 Å, моноклинной фазе CuO и/или кубической фазе Cu. Линии, характеризующие кубическую фазу Cu₂O, не обнаружены либо по причине низкой концентрации этого компонента, либо из-за окисления Cu₂O в CuO во время MC.

Анализ дифрактограмм, проведенный в соответствии с [20], показал, что размер кристаллитов CeO_2 составлял 10–14 нм и практически не зависел от времени MC и присутствия того или иного модификатора. Концентрация микронапряжений в оксиде церия возрастала от 0.2–0.3 до 0.8– 1.2% в процессе МС, однако прямой зависимости этой величины от времени МС не было выявлено. В рентгеновских дифрактограммах наблюдалось значительное уширение рентгеновских пиков CuO и Си и уменьшение их интенсивности по мере увеличения времени МС вплоть до почти полного их исчезновения. Несмотря на снижение интенсивности соответствующих рентгеновских пиков, ААС-анализ показал неизменность концентрации меди в образцах после МС. Размер кристаллитов фаз CuO и Cu оценивали по формуле Шеррера: после 90 мин МС величина частиц СиО уменьшилась с 30 до 7–10 нм, а Cu – с 80 до ~16 нм. По-видимому, микроструктура синтезированных методом МС образцов представляет собой нанокомпозит, состоящий из матрицы CeO₂ (нанофрагментов CeO₂ размером 10–14 нм) и кристаллитов Си или CuO, распределенных на поверхности или в межзеренных (межкристаллитных) границах СеО₂. Часть этих кристаллитов является рентгеноаморфными, что согласуется с данными работ [6-14].

Окислительная способность кислорода решетки катализаторов CuO(Cu)—CeO₂ (TПВ-CO, TПВ-H₂ и TПВ-C₂H₆) и фазовые превращения, сопровождающие процессы окисления

Механизм Марса-ван Кревелена считается наиболее вероятным для протекания окислительных реакций на оксидных медно-цериевых катализаторах [1-6], поэтому исследование окислительной способности кислорода решетки синтезированных композитов было необходимым шагом в изучении их каталитической активности. На рис. 3 приведены результаты масс-спектрального анализа продуктов окисления CO (рис. 3a), H_2 (рис. 3б) и C_2H_6 (рис. 3в) в режиме температурно-программированного восстановления образцов, полученных МС в течение 60 мин. Кривые изменения интенсивности масс-спектральных сигналов на линиях m/e = 44 (CO₂) и m/e = 18 (H₂O) записаны в ходе ТПВ-СО, ТПВ- H_2 и ТПВ- C_2H_6 соответственно. Процессы окисления СО и Н2 кислородом решетки композитов, или, что тоже самое, восстановления всех синтезированных катализаторов в CO и в H_2 , происходили в две стадии (рис. 3а и 3б) в низко- и высокотемпературных областях.

В табл. 1 приведены температуры низко- и высокотемпературных максимумов концентраций продуктов реакции для кривых, представленных на рис. За и 36, и соотношения соответствующих площадей низко- и высокотемпературных пиков.

Двухпиковая кривая восстановления является характерной особенностью именно композитных катализаторов. Для сравнения на вставке рис. Зб показано изменение интенсивности масс-спектрального сигнала m/e = 18 (H₂O) для смеси оксидов CuO(III) и CeO₂ (кривая 5), просто перетер-

Рис. 1. Микрофотографии СЭМ: а – кристаллы Cu; б – CuO(I); в – CuO(II); г – CuO(III); д – оксид серия CeO₂; е – порошок CuO(III)–CeO₂ после MC в течение 60 мин.

тых в агатовой ступке. Здесь присутствует только один высокотемпературный пик (ср. с кривой 4). Следует отметить, что аналогичная "двухпиковая" форма кривых ТПВ отмечается во многих работах, посвященных катализаторам Cu/CuO-CeO₂, приготовленным разными методами, например, в [14, 21-28]. Температурные области восстановления образцов в СО и H₂ различаются. В случае ТПВ-СО первая стадия восстановления протекает при 65-165°С, вторая - при 165-300°С, в случае ТПВ-Н₂ – при 140–208 и 208–300°С соответственно. По данным РФА после второй стадии обнаружены только фазы металлической меди и СеО₂, т.е. оксиды меди полностью восстанавливались. Напротив, после первой стадии ТПВ фаза металлической меди не наблюдалась, а интенсивность рентгеновских линий, относяшихся к CuO, практически не изменялась. Эти результаты позволили предположить, что в решетке синтезированных композитов имелось, по крайней мере, два типа локализации активного кислорода. Были проведены специальные эксперименты ТПВ с попеременным восстановлением образца CuO(III)-CeO₂ в CO и Н₂: ТПВ-СО останавливали в момент окончания первой (низкотемпературной) стадии восстановления, образец остужали в потоке чистого Не и после этого проводили ТПВ-Н₂. При этом на кривой Н₂-ТПВ исчезал низкотемпературный пик в области $140-208^{\circ}$ С. Таким образом было показано, что один и тот же "активный" кислород участвует в низкотемпературном окислении и СО, и H₂ [17]. Вероятно, именно этот кислород может быть локализован на границе фаз оксидов меди и церия, и именно этот "активный" кислород участвует в реакции СО-PROX.

Максимальная конверсия СО на изученных катализаторах достигалась при 150–160°С, что близко к температуре максимальной конверсии СО в ТПВ-экспериментах. Окисление водорода происходило при более высокой температуре. Именно это различие, отчетливо проявляющееся при ТПВ, позволяет осуществлять селективное окисление СО в присутствии H₂.

На рис. Зв приведены кривые $T\Pi B-C_2H_6$ образцов Cu–CeO₂ (кривые *1–3*) и CuO(1)–CeO₂ (кривая *4*), полученных MC в течение 60 мин. Из рис. Зв следует, что окисление C₂H₆ кислородом решетки композитов также протекало в две стадии. Специальные эксперименты, проведенные для Cu–CeO₂, показали, что в первой, низкотемпературной, стадии участвовал подвижный высокореакционный кислород решетки катализатора. Этот тип кислорода можно было полностью удалить из образца в первом цикле $T\Pi B-C_2H_6$ (ср. кривые *1* и *2* на рис. 3в). Обработка катализатора в смеси O₂/Ar компенсировала удаленный кислород катализатора за счет кислорода газовой фазы,

Таблица 1. Некоторые характеристики ТПВ-Н₂ и ТПВ-СО образцов Си-СеО₂ и СиО-СеО₂

No	Образец	ТПВ-СО			TПB-H ₂		
145		T_1 , °C	T_2 , °C	S_1/S_2	T_1 , °C	<i>T</i> ₂ , °C	S_1/S_2
1	Cu-CeO ₂	120	~194.6	0.58	194	217.6	0.92
$\frac{2}{2}$	$CuO(I) - CeO_2$	~150	1/8-200	0.41	~198	225.5	0.42
4	$CuO(III)-CeO_2$ $CuO(III)-CeO_2$	~159	199–209	0.42	~199	~239 ~223	0.92

Рис. 2. Рентгеновские дифрактограммы исходных медьсодержащих смесей с CeO_2 (а) и соответствующих нанокомпозитов после 60 мин MC (б): $1 - CuO(I)-CeO_2$; $2 - CuO(II)-CeO_2$; $3 - CuO(III)-CeO_2$; $4 - Cu-CeO_2$.

и кривая ТПВ-С₂H₆ (рис. 3в, кривая 3) приобретала прежний вид. Сравнение кривых ТПВ-С₂H₆ для образцов Cu–CeO₂ и CuO(I) –CeO₂ (кривые 3 и 4) показало, что они практически идентичны, следовательно низкотемпературное окисление этана на этих катализаторах протекает с участием одного и того же типа кислорода. Этот результат еще раз указывает на высокую подвижность "активного" кислорода в МС-катализаторах и возможность компенсации прореагировавшего кислорода за счет кислорода газовой фазы. Такая характерная особенность систем Cu/CuO–CeO₂, отмечается во многих публикациях, например [1, 8, 14].

Высокотемпературные пики на кривых ТПВ были отнесены к восстановлению нанофрагментов СиО, распределенных в матрице CeO₂. На это указывает обнаруженное методом РФА полное восстановление CuO в Cu после второй стадии ТПВ-СО, -H₂ и -C₂H₆ для всех CuO-содержащих композитов. Ранее было установлено, что даже

КИНЕТИКА И КАТАЛИЗ том 61 № 5 2020

Рис. 3. Изменение интенсивности масс-спектрального сигнала на линиях m/e = 44 (CO₂) и m/e = 18 (H₂O) в процессе ТПВ для нанокомпозитов Cu(CuO)–CeO₂ (60 мин MC): а – ТПВ-СО (CO₂, m/e = 44): 1 – CuO(I)–CeO₂; 2 – CuO(II)–CeO₂; 3 – CuO(III)–CeO₂; 4 – Cu–CeO₂; 6 – ТПВ-H₂ (H₂O, <math>m/e = 18): 1 – CuO(I)–CeO₂; 2 – CuO(II)–CeO₂; 3 – CuO(III)–CeO₂; 4 – Cu–CeO₂; 5 – CuO(II)–CeO₂, 3 – CuO(III)–CeO₂; 4 – Cu–CeO₂; 5 – CuO(III)–CeO₂, смесь перетерта в ступке перед MC; в – ТПВ-C₂H₆ (CO₂, <math>m/e = 44): 1 – Cu–CeO₂; 2 – Cu–CeO₂, повторный опыт; 3 – Cu–CeO₂ после предварительной обработки образца в смеси O₂/Ar; 4 – CuO(I)–CeO₂.

частичного восстановления оксида церия в этих условиях не происходило [22].

Каталитическая активность образцов CuO(Cu)—CeO₂, полученных методом MC

В табл. 2 приведены данные по максимальной конверсии СО в СО₂ в условиях селективного

		Конверсия СО, %				
№	Образец	MC	MC	MC		
		30 мин	60 мин	90 мин		
1	Cu–CeO ₂	72	95	89		
2	$CuO(I) - \tilde{C}eO_2$	83	92	94		
3	$CuO(II) - CeO_2$	85	83	85		
4	$CuO(III) - CeO_2$	91	95	81		

Таблица 2. Конверсия СО при 160°С (реакция PROX) на образцах Cu–CeO₂ и CuO–CeO₂

окисления СО в избытке H₂ на композитных катализаторах Cu-CeO₂ и CuO-CeO₂ при ~160°C. С увеличением длительности механической активации во время МС конверсия СО возрастала, проходя через максимум для образцов Cu-CeO₂ и CuO(III)-СеО₂ после 60 мин обработки. При механической активации смесей металлической мели или ее оксилов с лиоксилом нерия происходит модифицирование поверхности СеО₂ ионами меди, которое по данным ТПВ составляет примерно <1, 1.5 и ~4.5% при МС в течение 30, 60 и 90 мин соответственно. Оказалось, что присутствие в CuO(III) "биографического" Cu₂O, предполагаемой "активной" составляющей катализаторов Си/СиО-СеО2 [23, 13, 15, 29-31], не влияет на его активность. Возможно, что происходит окисление этой фазы до CuO кислородом CeO₂ в процессе MC. Методом P Φ A показано, что катализаторы, извлеченные из реактора на максимуме их активности (160-170°С). содержали фазы Cu и CuO в практически равном количестве, а катализаторы, извлеченные после реакции (230-240°С) – только фазу металлической меди.

Реакция глубокого окисления C_2H_6 оказалась более чувствительна к исходному составу медьсодержащих катализаторов. Сопоставление данных по конверсии C_2H_6 (рис. 4) на исследованных системах позволяет сделать вывод о том, что лучшим катализатором оказался композит Cu–CeO₂, а наименее активным – CuO(I)–CeO₂: при 400°C конверсия C_2H_6 составила 91.5 и 54% соответственно. Каталитические свойства двух других образцов были близки. Конверсия этана на всех катализаторах достигала 100% при 500°C.

Обсуждение результатов

Оксидные медно-цериевые катализаторы были приготовленные методом MC из основного компонента CeO_2 и медьсодержащих добавок различного фазового состава и морфологии. Две из этих добавок — элементарная медь и чистый оксид меди — были подробно исследованы нами ранее [17, 21]. Было показано, что физико-химические свойства образцов Cu—CeO₂ и CuO—CeO₂, приготовленных MC, аналогичны свойствам оксидных систем, синтезированных другими способами, описанными в литературе, такими как соосаждение из солей соответствующих металлов или пропитка носителей растворами солей меди с

последующим прокаливанием [3, 10, 14, 31], а также новыми методами – лазерной абляцией и напылением [6, 9, 11, 32]. Все эти способы, так же как и МС, нацелены на создание протяженных межфазных границ, на которых и локализуются центры, активные в селективном окислении СО в избытке Н₂ [7, 14, 15]. В случае применения МС сама методика способствует интенсивному перемешиванию материала. Близкий контакт между компонентами катализатора, распределение модифицирующей добавки в матрице основного компонента, СеО₂, очень высокие локальные давления – все это способствует модифицированию поверхности диоксида церия ионами меди. Механическая активация как таковая в сочетании с модифицированием поверхности [28, 33] способствует возникновению кислородных вакансий на поверхности CeO₂. Ранее в [17] мы показали методом РФЭС, что поверхность Си-СеО2 уже после 30 мин МС содержит ионы Cu^{1+} , Ce^{4+} и Ce^{3+} , их концентрация зависит от времени МС. Одновременно в композитах фиксировалось появление нового поверхностного состояния кислорода с энергией связи 530.8 эВ (в дополнение к основному с $E_{cb} = 529.3$ эВ), которое интерпретировано в литературе как: "ионы кислорода, находящиеся в необычной координации в СеО_х (x < 2) [34]"; кислород поверхности [23, 30], способный к окислению СО; "сильно поляризованные ионы кислорода на поверхности (или в подповерхностном слое) нанокристаллитов, находящиеся в особо низкой координации" [24]. Такой же тип кислорода был обнаружен в катализаторах Cu/CuO-CeO₂, приготовленных различными способами [23, 24, 30, 34, 35]. Возникновение "нового" состояния кислорода, участвующего в окислении CO, H2 и C2H6 при более низкой температуре, было зафиксировано также методами ТПВ-СО, ТПВ-Н2 и ТПВ-С2Н6 в настоящей работе. Не вызывает сомнений, что именно поверхность CeO₂, модифицированная атомами или ионами меди, является источником такого реакционноспособного кислорода. Как показано на рис. Зв (кривая 5), простое перемешивание компонентов катализатора недостаточно для взаимодействия оксидов и не сопровождается появлением "активного кислорода".

Важнейшим результатом представленной работы явилось то, что композиты, полученные из разных исходных медьсодержащих соединений, обладают очень сходными физико-химическими и, следовательно, каталитическими свойствами в реакции CO-PROX. Если на ранних стадиях МС каталитическая активность образцов несколько различалась, что можно объяснить разным размером частиц исходных компонентов и их фазовым составом, то в дальнейшем сам процесс МС приводит, вероятно, к "усреднению" поверхностного состава нанокомпозитов. В реакционной среде такая "усредненная" активная поверхность формируется окончательно. Доказательством такого предположения служит отсутствие каких-либо значительных различий в каталитических свойствах четырех изученных образцов: после 90 мин их катали-

Рис. 4. Конверсия C_2H_6 в реакции глубокого окисления на катализаторах $Cu(CuO)-CeO_2$ (60 мин MC): $1 - Cu-CeO_2$; $2 - CuO(II)-CeO_2$; $3 - CuO(III)-CeO_2$; $4 - CuO(I)-CeO_2$.

тическая активность была практически одинаковой. Это указывает на своего рода "унификацию" поверхности нанокомпозитов после определенной обработки независимо от первоначального фазового состава и морфологии исходных материалов.

В [36] было показано, что глубокое окисление предельных углеводородов на оксидных медноцериевых катализаторах также определяется подвижностью активного кислорода СеО₂, которая, в свою очередь, связана с модифицированием поверхности СеО₂ ионами меди. Два фактора могут существенно влиять на каталитические свойства композитов в этой реакции: состав поверхности образцов и подвижность кислорода. Согласно [37]. центром активации этана на поверхности является ион меди Cu¹⁺, с которым этан образует структуру типа сигма-комплекса. Ранее методом рентгеновской фотоэлектронной спектроскопии ионы меди Cu¹⁺ были обнаружены на поверхности МСкатализатора Си-СеО₂ [17]. Также они присутствовали в исходных образцах CuO(II) и CuO(III). Исследование методом РФА катализаторов после разных стадий ТПВ-C₂H₆ показало, что восстановление CuO в образце CuO(I)-CeO₂ происходит при температуре выше 350°С. Следовательно, образование необходимых активных центров затруднено, и их мало. В результате $T\Pi B - C_2 H_6$ было установлено, что количество активного кислорода в Cu-CeO₂ более чем в 3 раза превышало таковое в CuO(I)-CeO₂. Это способствовало большей конверсии C₂H₆ на образце Cu-CeO₂ в области относительно низких температур. При высокой температуре подвижность кислорода существенно возрастала, дополнительно в реакции начинал работать кислород решетки катализатора, и каталитическая активность всех исследованных образцов достигала максимума при 500°С.

ЗАКЛЮЧЕНИЕ

Была показана эффективность метода МС в приготовлении катализаторов Cu-CeO₂ и CuO-CeO₂ из смесей металлической меди и оксидов меди различной морфологии и фазового состава с лиоксилом церия СеО₂. Физико-химические свойства синтезированных систем (наличие протяженной межфазной границы, появление новой формы кислорода с высокой реакционной способностью при более низкой температуре, чем решеточный кислород оксидов) были аналогичны тем, которые были обнаружены для аналогичных катализаторов, приготовленных другими методами. Образцы катализаторов были испытаны в двух процессах: селективном окислении СО в избытке H₂ (СО-PROX) и глубоком окислении этана. Оказалось, что природа исходных медьсодержащих компонентов практически не важна для первого процесса. Каталитическая активность зависит только от времени МС (дозы энергии, подводимой к материалу), которая обеспечивает степень модифицирования поверхности CeO₂ ионами меди. При достаточно длительном (60-90 мин) МС свойства катализаторов сближаются.

Напротив, реакция глубокого окисления этана чувствительна к составу добавок: наиболее активным оказался Cu-CeO₂, а наименее активным – CuO(I)-CeO₂, в составе которого был чистый CuO. Это, вероятнее всего, связано с тем, что для активации С₂Н₆ на поверхности необходимы ионы Cu¹⁺. биографические или образующиеся во время MC во всех композитах, кроме CuO(I)—CeO₂. Восстановление поверхности этого образца и появление ионов Cu¹⁺ затруднено даже в атмосфере С₂Н₆/Аг. Поэтому увеличение конверсии этана на CuO(I)-CeO₂ происходило при более высоких температурах, когда в реакцию мог вступать кислород решетки CuO. Однако причины видимого различия низкотемпературной конверсии С₂Н₆ на изученных композитах требуют дальнейшего исследования.

БЛАГОДАРНОСТИ

Авторы благодарят Н.Г. Березкину (ФИЦ ХФ РАН им. Н.Н. Семенова) за исследования катализаторов с помощью СЭМ.

ФИНАНСИРОВАНИЕ

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований 19-03-00358 и в рамках государственного задания России (Тема V.46.13, 0082-2014-0007, № АААА-A18-118020890105-3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Liu W., Stephanopoulos M. // J. Catal. 1995. V. 153. P. 304.
- Yang W., Li D., Xu D and Wang X. // J. Nat. Gas Chem. 2009. V. 18. P. 458.
- 3. Yao S.Y., Xu W.Q., Johnston-Peck A.C., Zhao F.Z., Liu Z.Y., Luo S., Senanayake S.D., Martinez-Arias A.,

Liu W.J., Rodriguez J.A. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 17183.

- Chiu K.L., Kwong F.-I., Ng Dickon H.L. // Curr. Appl. Phys. 2012. V. 12. I. 4. P. 1195.
- 5. Yao X., Gao F., Yu Q., Qi L., Tang Ch., Dong L., Chen Y. // Catal. Sci. Technol. 2013. V. 3. P. 1355.
- 6. Kydd R., Teoh W.Y., Wong K., Wang Y., Scott J., Zeng Q.-H., Yu A.-B., Zou J., Amal R. // Adv. Func. Mater. 2009. V. 19. P. 369.
- 7. Chen A., Yu X., Zhou Y., Miao Sh., Li Y., Kuld S., Seh-ested J., Liu J., Aoki T., Hong S., Camellone M.F., Fabris S., Ning J., Jin Ch., Yang Ch., Nefedov A., Wöll Ch., Wang Y., Shen W.// Nat. Catal. 2019. V. 2. P. 334.
- 8. Yu W.-Zh., Wang W.-W., Fu X.-Pu, Wang X., Wu K., Si R., *Ma Ch., Jia Ch.-J., Yan Ch.H.* // Am. Chem. Soc. 2019. V. 141. I. 44. P. 17548.
- 9. Skårman B., Nakayama T., Grandjean D., Benfild R.E., Olsson E., Niihara K., Wallenberg L.R. // Chem. Mater. 2002. V. 14. P. 3686.
- 10. Wongkaew A., Kongsi W., Limsuwan P. // Adv. Mater. Sci. Eng. 2013. ID 374080.
- 11. Gurbani A., Ayastuy J.L., González-Marcos M.P., Gutiérrez-Ortiz M.A. // J. Hydrogen Ener. 2010. V. 35. P. 11582.
- 12. *Prasad R., Rattan G.* // Bull. Chem. React. Eng. Catal. 2010. V. 5. P. 7.
- 13. Liu Z., Zhou R., Zheng X. // J. Mol. Catal. 2007. V. 267. P. 137.
- 14. Martínez-Arias A., Gamarra D., Hungría A.B., Fernández-García M., Munuera G., Hornés A., Bera P., Conesa J.C., Cámara A.L. // Catal. 2013. V. 3. P. 378.
- 15. Martínez-Arias A., Gamarra D., Fernández-García M., Hornés A., Bera P., Koppány Zs., Schay Z. // Catal. Today. 2009. V. 143. P. 211.
- 16. Xu Ch., De S., Balu F.V., Ojeda M., Luque R. // Chem. Commun. 2015. V. 31. I. 51. P. 6698.
- 17. Borchers Ch., Martin M.L., Vorobjeva G.A., Morozova O.S., Firsova A.A., Leonov A.V., Kurmaev E.Z., Kukharenko A.I., Zhidkov I.S., Cholakh S.O. // J. Nanopart. Res. 2016. V. 18. P. 344.
- 18. Фирсова А.А., Морозова О.С., Леонов А.В., Стрелецкий А.Н., Корчак В.Н. // Кинетика и катализ. 2014. T. 55. № 6. Ĉ. 783.

- 19. Galvita V., Filez M., Poelman H., Bliznuk V., Marin G.B. // Catal. Lett. 2014. V. 144. P. 43.
- 20. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat. Treat. 2000. V. 42. P. 309.
- 21. *Il'ichev A.N., Firsova A.A., Korchak V.N. //* Kinet. Catal. 2006. V. 47. P. 585.
- 22. Borchers Ch., Martin M.L., Vorobjeva G.A., Morozova O.S., Firsova A.A., Leonov A.V., Kurmaev E.Z. Kukharenko A.I., Zhidkov I.S., Cholakh S.O. // AIP Adv. 2019. V. 9. P. 065115.
 23. Zeng Sh., Zhang W., Śliwa M., Su H. // Int. J. Hydrogen
- Energ. 2013. V. 38. P. 3597.
- 24. Tang X., Zhang B., Li Y., Xu Y., Xin Q., Shen W. // Appl. Catal. A: General. 2005. V. 288. P. 116.
- 25. Xu J., Harmer J., Li G., Chapman T., Collier P., Long-worth S., Tsang S.C. // Chem. Commun. 2010. V. 46. P. 1887.
- 26. Moretti E., Lenardaa M., Riello P., Storaro L., Talon A., Frattini R., Reyes-Carmona A., Jimenez-Lopez A., Rodriguez-Castellon E. // Appl. Catal. B: Environ. 2013. V. 129. P. 556.
- 27. Qi X., Flytzani-Stephanopoulos M. // Ind. Eng. Chem. Res. 2004. V. 43. P. 3055.
- 28. Polster Ch.P., Nair H., Baertsch C.D. // J. Catal. 2009. V. 266. P. 308.
- 29. Barbato P.S., Colussi S., Di Benedetto A., Landi G., Lisi L., Llorca J., Trovarelli A. // J. Phys. Chem. C. 2016. V. 120. P. 13039.
- Natile M.M., Galenda A., Glisenti A. // Surf. Sci. Spec-tra. 2009. V. 16. P. 13.
- 31. Di Benedetto A., Landi G., Lisi L. // Catalyst. 2018. V. 8. I. 5. P. 209.
- 32. Sundar R.S., Deevi S. // J. Nanopart. Res. 2006. V. 8. P. 497.
- Zhan W., Yang S., Zhang P., Guo Y., Lu G., Chisholm M.F., Dai Sh. // Chem. Mater. 2017. V. 29. I. 17. P. 7323.
- 34. Holgado P., Manuera G., Espinos J.P., Gonzanez-Elipe A.R. // Appl. Surf. Sci. 2000. V. 158. P. 164.
- Luo M.-F., Song Yu.-P., Lu Ji.-Q., Wang X.-Yu., Pu Zh.-Y. // J. Phys. Chem. C. 2007. V. 111. P. 12686.
- Luong N.N., Okumura H., Yamasue E., Ishihara K.N. // R. Soc. Open Sci. 2019. V. 6. P. 181861.
- 37. Pidko E., Kazansky V. // PCCP. 2005. V. 7. P. 1939.

Mechanochemical Synthesis as an Alternative Effective Technique for the Preparation of the Composite Catalysts

O. S. Morozova^{1, *}, A. A. Firsova¹, Yu. P. Tyulenin¹, G. A. Vorobieva¹, and A. V. Leonov²

¹Semenov Federal Research Center for Chemical Physics RAS, Kosygin st., 4, Moscow, 117977 Russia ²Lomonosov Moscow State University, Chemical Department, Leninskie Gory, 1/3, Moscow, 119911 Russia *e-mail: om@chph.ras.ru

Mechanochemical synthesis in a ball mill was applied for the nanocomposite Cu(CuO)–CeO₂ catalyst preparation from CeO2 and following dopants: Cu metal and copper oxides of different morphology and composition (CuO and CuO containing 4 or 16.5 mass. % of Cu2O). The materials obtained were examined with the use of X-ray phase analysis, scanning electron microscopy, temperature-programmed reduction in CO, H_2 , C_2H_6 (TPR-CO, TPR- H_2 and TPR- C_2H_6), and tested as catalysts in reactions of selective CO oxidation in H_2 excess (CO-PROX) and total C_2H_6 oxidation. New forms of oxygen with high low-temperature reactivity towards CO, H_2 and C_2H_6 were found in the samples synthesized by TPR. It was shown that CO conversion was slightly affected by the dopant nature in the dopant- CeO_2 mixture. Contrary, C_2H_6 conversion at low temperatures depends on dopant composition. The highest C_2H_6 conversion at 400°C (91.4%) was observed on Cu–CeO₂. The lowest one (54.2%) was observed on CuO–CeO₂. As was demonstrated, mechanochemical synthesis is a universal technique to produce copper oxide -ceria catalysts.

Keywords: mechanochemical synthesis, copper oxide-ceria composites, temperature-programmed reduction, CO, H₂, C₂H₆, CO-PROX, total oxidation