УДК 541.128:546.262.3-31:546.655`93-31

# АКТИВНОСТЬ КАТАЛИЗАТОРОВ 5%СиО/Се<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> В РЕАКЦИИ ОКИСЛЕНИЯ СО КИСЛОРОДОМ В ИЗБЫТКЕ ВОДОРОДА

© 2021 г. А. Н. Ильичев<sup>а,</sup> \*, М. Я. Быховский<sup>а</sup>, З. Т. Фаттахова<sup>а</sup>, Д. П. Шашкин<sup>а</sup>, В. Н. Корчак<sup>а</sup>

<sup>а</sup> ФГБУН Институт химической физики им. Н.Н. Семенова РАН, ул. Косыгина, 4, Москва, 119991 Россия \*e-mail: ilichev-alix@yandex.ru

Поступила в редакцию 19.11.2019 г. После доработки 19.08.2020 г. Принята к публикации 29.08.2020 г.

Катализаторы 5% CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> синтезированы на основе оксидов CeO<sub>2</sub>, PrO<sub>2</sub> и твердых растворов Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> с x = 0.2, 0.5 и 0.8. Высокодисперсный оксид меди содержится в катализаторах 5% CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>. При взаимодействии с носителями он образует активный кислород, который участвует в хемосорбции CO и низкотемпературной реакции окисления CO в присутствии водорода. Наибольшая величина конверсии CO в избытке H<sub>2</sub> ( $\gamma_{max}(T)$ ), близкая к 100%, получена при температурах 120–160°C на катализаторе 5% CuO/CeO<sub>2</sub>. При модифицировании CeO<sub>2</sub> катионами Pr, образец 5% Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>y</sub>, она понижается до 65% при 220°C из-за увеличения прочности связи кислорода в медьсодержащих центрах. На образце 5% CuO/PrO<sub>2</sub> максимальная конверсия CO (93%) зафиксирована при 200°C. При модифицировании PrO<sub>2</sub> катионами Ce активность катализаторов 5% CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и 5% CuO/Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>y</sub> не превышает таковую для 5% CuO/PrO<sub>2</sub>. С помощью метода ТПД изучены формы адсорбции CO и CO<sub>2</sub> на образцах 5% CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и 5% CuO/PrO<sub>y</sub>. Обсуждаются особенности протекания реакции на катализаторах 5% CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>. С учетом свойств комплексов CO, образующихся на медьсодержащих центрах окисления и адсорбции, рассмотрено их участие в реакции низкотемпературного окисления в водороде.

**Ключевые слова:** оксиды, твердые растворы, низкотемпературное окисление CO в смеси  $CO + O_2 + H_2$ **DOI:** 10.31857/S0453881121010032

### **ВВЕДЕНИЕ**

Топливные элементы превращают энергию химической реакции окисления водорода кислородом воздуха в электрическую и не загрязняют окружающую среду. В перспективе они могут найти широкое применение в автомобилестроении и теплоэнергетике. В промышленности водород производят из органического сырья. Он содержит около 2% оксида углерода, который понижает эффективность работы топливных элементов. Высокий коэффициент полезного действия генерации электроэнергии достигается в топливных элементах с платиновыми электродами при концентрации оксида углерода ниже 10 м. д., а для биметаллических систем PtRu – ниже 100 м. д. [1]. Водород может быть очищен от СО адсорбционным методом, с помощь мембран, а также в результате реакции  $CO + 3H_2 \rightarrow CH_4 + H_2O$  и селективного окисления  $2CO + O_2 \rightarrow CO_2$  в избытке волорода. Селективное окисление. протекающее при низких температурах – наиболее перспективный метод удаления из водорода следов СО [2]. Выделяют три группы катализаторов для этой реакции: 1) системы с нанесенными благородными металлами, такими как Pt, Pd, Ir, Ru и Rh; 2) нанокатализаторы, содержащие Au; 3) оксидные системы с переходными металлами – Co, Cr, Cu, Ni, Zn, нанесенными на оксиды с различными кислотными и основными свойствами - MgO, La<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub>, CeZrO<sub>2</sub>. Интерес к третьей группе обусловлен низкой стоимостью ката-

Сокращения и обозначения: ТПВ-H<sub>2</sub> – термопрограммированное восстановление водородом; ТПД – термопрограммированная десорбция; БЭТ – метод Брунауэра–Эммета– Теллера;  $\gamma$  – конверсии СО, %;  $\beta$  – конверсия О<sub>2</sub>, %;  $N_{CO_2}^{aec}$  – количество десорбированного СО<sub>2</sub>;  $N_{CO}^{aec}$  – количество десорбиованного СО;  $N_{CO+CO_2}^{aec}$  – общее количество десорбированного газа; L – размер кристаллитов;  $S_{yg}$  – удельная поверхность;  $N_{H_2}$  – суммарное количество поглощенного водорода на квадратном метре оксида;  $N_p$  – рассчитанное количества водорода, необходимого для восстановления оксида меди в образце;  $V_{H_2}$  – скорость расходования кислорода в реакции с оксидом углерода.

лизаторов по сравнению с таковой для первой и второй групп. Среди оксидных систем наибольшее внимание привлекает CuO–CeO<sub>2</sub>, не уступающий по активности катализаторам из 1 и 2 групп. Уникальность оксидной системы CuO–CeO<sub>2</sub> связывают с ее способностью запасать кислород, быстрым восстановлением в парах Ce<sup>4+</sup>–Ce<sup>3+</sup> и синергическим Cu–Ce-взаимодействием. Эти свойства отвечают за высокую активность кислорода катализатора [3], хемосорбцию и окисление CO кислородом на катионах Cu<sup>+</sup> при низких температурах [4, 5]. Однако все еще не решена проблема, связанная с относительно узким температурным окном для полной конверсии CO на CuO–CeO<sub>2</sub>.

Недавно в [6-10] было показано, что температурный интервал окисления СО в реакциях СО + О2 на  $M-CeO_2$  и  $CO + O_2 + H_2$  на  $CuO/M-CeO_2$  может быть расширен в низкотемпературную область при модифицировании оксида церия переходными и редкоземельными металлами (М). При изучении свойств твердых растворов, содержащих переходные металлы, в этих реакциях обнаружено, что наилучшими модификаторами являются оксиды Mn и Fe, которые повышают активность катализаторов в результате увеличения подвижности кислорода в образующихся кислородных вакансиях в СеО<sub>2</sub> [6, 7, 10]. Другое поведение демонстрируют твердые растворы, в состав которых входят редкоземельные металлы. Среди них празеодим в Pr-CeO<sub>2</sub> и Pr<sub>0.1</sub>Zr<sub>0.18</sub>Ce<sub>0.72</sub>O<sub>2</sub> обеспечивает наиболее высокую активность катализаторов в реакции СО + О2 также за счет увеличения подвижности кислорода [8, 9]. Однако в процессе селективного окисления СО кислородом в присутствии водорода активность катализаторов  $CuO/xPrCeO_2$  (x = 5, 10 и 15) понижается при возрастании содержания Pr по сравнению с таковой для образца CuO/CeO<sub>2</sub> [11]. Учитывая данные работ [3, 7], интерес представляют разбавленные твердые растворы с содержанием ионов празеодима *x* ≤ 1, при котором ожидаемо образование в СеО<sub>2</sub> вакансий с активным кислородом, участвующим в низкотемпературном окислении СО.

Для проверки этого предположения в настоящей работе изучено влияние катионов празеодима в структуре носителя оксида церия на каталитические свойства медноцериевых катализаторов 5%CuO/CeO<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> с x = 0, 0.2, 0.5, 0.8 и 1.0 в реакции окисления СО кислородом в избытке водорода. Об активности образцов в реакции судили по зависимостям конверсии СО в СО<sub>2</sub> от температуры при сопоставлении их с таковой для образца 5%CuO/CeO<sub>2</sub>, ранее показавшим наилучшие свойства в окислении СО кислородом катализатора при 20°C и в селективном окислении СО в ряду исследованных образцов (0.25–10)%CuO/CeO<sub>2</sub> [5, 12].

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Носители  $\text{CeO}_{1-x}\text{Pr}_x\text{O}_y$  с x = 0, 0.2, 0.5, 0.8 и 1 получали из гидроксидов, которые осаждали при добавлении растворов солей  $Ce(NO_3)_3$ ,  $Pr(NO_3)_3$  и их смесей в соответствующих соотношениях в раствор аммиака при рН 10. Осадки промывали в дистиллированной воде и высушивали при 150°С на воздухе. Далее гидроксиды разлагали при нагревании со скоростью 10°С/мин от 150 до 500°С и выдерживали при температуре 500°C в течение 30 мин. После термообработки носители пропитывали при 20°С раствором азотнокислой меди  $Cu(NO_3)_2 \cdot 3H_2O$  в такой концентрации, чтобы содержание CuO в готовом продукте составляло 5 мас. %. Затем образны сушили, прогревали на воздухе, повышая температуру до 500°С со скоростью 10°С/мин, и выдерживали при 500°С в течение 1 ч.

Удельную поверхность образцов находили методом БЭТ по низкотемпературной адсорбции аргона. Дифрактограммы записывали на приборе ДРОН-3М ("Буревестник", Россия) в диапазоне углов 20 от 8° до 90°. Фазовый состав и параметры решетки определяли, сопоставляя полученные дифрактограммы с данными из международной картотеки JCPDS [13]. Средний размер кристаллитов оценивали по формуле Дебая—Шерера для линии с максимальной интенсивностью. По линиям дифрактограммы образца вычисляли параметры элементарной ячейки и рассчитывали их среднюю величину [14].

Реакцию окисления СО кислородом в избытке водорода проводили на установке проточного типа. Образец (смесь, содержащую 50 мг порошка катализатора и 70 мг кварца фракции 0.10-0.25 мм) помещали в кварцевый реактор (трубка с внутренним диаметром 3 мм) и прокаливали в токе кислорода при 500°С в течение 20 мин. Затем реактор охлаждали до 40°С и заменяли поток кислорода на реакционную смесь с объемным составом 98% H<sub>2</sub>, 1% CO и 1% O<sub>2</sub>. Смесь подавали в реактор со скоростью 20 мл/мин. Активность катализатора оценивали по конверсии СО в СО<sub>2</sub> при разных температурах. Температуру повышали ступенчато с шагом 20°С. Продукты реакции разделяли на колонках с молекулярными ситами 13Х и силикагелем и регистрировали с помощью детектора по теплопроводности на хроматографе Кристалл 2000 М ("Хроматэк", Россия). Конверсии СО (ү, %) и  $O_2$  ( $\beta$ , %) определяли из отношений

$$\gamma = ([CO]_{Hay} - [CO]_{KOH})/[CO]_{Hay} \times 100\%$$

И

$$3 = (([O_2]_{Hay} - [O_2]_{KOH}) / [O]_{Hay} \times 100\%$$

исходя из концентраций  $[CO]_{\text{нач}}, [CO]_{\text{кон}}$  и  $[O_2]_{\text{нач}}, [O_2]_{\text{кон}}$  на входе и на выходе из реактора.

Взаимодействие образцов с водородом изучили методом  $T\Pi B-H_2$  в потоке смеси 6%  $H_2$  с Ar (30 мл/мин) при нагревании образца со скоростью 5°С/мин в области от 30 до 700°С. Навеску образца 100 мг помещали в U-образный реактор, прокаливали в потоке кислорода при 500°С в течение 10 мин, охлаждали до 30°С, заменяли поток кислорода на водородную смесь и регистрировали профиль ТПВ-Н<sub>2</sub>, используя детектор по теплопроводности. Количество поглошенного водорода определяли по площади пика ТПВ, сопоставляя ее с соответствующей величиной, полученной для стандарта (NiO). Образующуюся при восстановлении оксидов воду удаляли с помощь поглотителя  $Mg(Cl_4)_2$ . Ловушку с поглотителем устанавливали между реактором и детектором. Перед опытом поглотитель обезвоживали в вакууме при P = 0.1 Па и  $T = 150^{\circ}$ С в течение 1 ч.

Адсорбцию и окисление СО исследовали методом ТПД СО в вакууме. Навеску образца 100 мг предварительно вакуумировали при 20°C, прогревали при температуре 500°C и остаточном давлении 10<sup>-4</sup> Па в течение 1 ч, после чего напускали в реактор кислород до давления  $P = 3 \times 10^2 \Pi a$  и выдерживали в течение 20 мин, а затем охлаждали до комнатной температуры и вакуумировали. Полученный катализатор далее называется окисленным. После этого на нем при 20°С в течение 10 мин адсорбировали СО при  $P = 3.3 \times 10^3$  Па, откачивали газ в течение 20 мин и записывали профили ТПД СО в условиях постоянного вакуумирования при скорости нагрева образца 10°С/мин. Изменение давления в профиле ТПД отражает зависимость скорости десорбции (w) от температуры (Т). Давление регистрировали манометром Пирани с автоматической записью показаний [15]. Чтобы разделить на кривой ТПД пики десорбции СО и продукта окисления СО<sub>2</sub>, диоксид углерода вымораживали в U-образной ловушке, размещенной между образцом и манометром и охлаждаемой жидким азотом. Такая методика позволяла регистрировать профили совместной десорбции СО + + СО<sub>2</sub> и, отдельно, десорбции СО, а вычитая второй профиль из первого, получать кривую десорбции СО<sub>2</sub>. Количество десорбированного СО<sub>2</sub>  $\left(N_{\mathrm{CO}_2}^{\mathrm{aec}}
ight)$  определяли по давлению  $\mathrm{CO}_2$  после его размораживания, а количество десорбированного CO  $\left(N_{CO}^{\text{дес}}\right)$  рассчитывали с помощью уравнения баланса:  $N_{\rm CO}^{\rm Aec} = N_{\rm CO+CO_2}^{\rm Aec} - N_{\rm CO_2}^{\rm Aec}$ . При проведении расчета исходили из общего количества десорбированного газа  $(N_{\rm CO+CO_2}^{\text{дес}})$ , найденного в отдельном ТПД-опыте в замкнутом реакторе без вакуумирования. Точность определения  $N_{\rm CO+CO_2}^{\rm dec}$  и N<sub>CO</sub><sup>адс</sup> соответствовала точности измерения давления газа и составляла 20%. Продукты десорбции

Интенсивность, усл. ед.



**Рис. 1.** Дифрактограммы образцов  $CeO_2$  (1),  $Ce_{0.8}Pr_{0.2}O_y$  (2),  $Ce_{0.5}Pr_{0.5}O_y$  (3),  $Ce_{0.2}Pr_{0.8}O_y$  (4) и  $PrO_y$  (5).

также анализировали на масс-спектрометре MX-7303 (СССР) методом отбора пробы через капилляр; СО, СО<sub>2</sub> и О<sub>2</sub> регистрировали по ионным пикам масс-спектров 28, 44 и 32 а.е. м. соответственно.

Для проведения адсорбционных исследований газы CO и O<sub>2</sub> получали в вакуумных условиях по методикам, описанным в руководстве [16]. Для устранения неконтролируемых примесей газы CO и O<sub>2</sub> вводили на образец через ловушку, охлаждаемую жидким азотом.

#### ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

#### Характеристики образцов

На рис. 1 представлены дифрактограммы синтезированных образцов Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> c x = 0-1. Из дифрактограмм 1-5 видно, что образцы имеют кубическую модификацию (**K**) [13, 17]. При повышении содержания Pr в образцах рефлексы смещаются в область меньших значений углов 20 из-за увеличения параметра решетки *a* (Å) элементарной ячейки куба. На рис. 2 приведена зависимость *a* от *x*. Величина *a* изменяется от 5.41 Å для кубической структуры CeO<sub>2</sub> до 5.47 Å для кубической структуры Pr<sub>6</sub>O<sub>11</sub>. Рост значения *a* с повышением *x* свидетельствует об образовании твердых растворов, в которых присутствуют катионы Pr<sup>3+</sup> и Pr<sup>4+</sup>.

Из табл. 1 следует, что с возрастанием содержания Pr в Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> от нуля до x = 0.8 удельная поверхность образцов ( $S_{ya}$ ) сокращается от 120 до 13 м<sup>2</sup>/г, размер кристаллитов (L) увеличивается от 5 до 15 нм. Образец PrO<sub>y</sub> имеет поверхность 40 м<sup>2</sup>/г и L = 10 нм. Нанесение оксида меди уменьшает удельную поверхность твердых растворов на 5-20% и не влияет на размер кристаллитов. Дифрактограммы образцов 5%CuO/Ce<sub>1 - x</sub>Pr<sub>x</sub>O<sub>y</sub> аналогичны таковым для носителей Ce<sub>1 - x</sub>Pr<sub>x</sub>O<sub>y</sub>. Отсутствие в них рефлексов оксида CuO свидетельствует о его высокой дисперсности. Взаимо-



**Рис. 2.** Изменение параметра решетки *a* (Å) от содержания празеодима *x* в образцах  $Ce_{1-x}Pr_xO_y$  и 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>.

действие оксида меди с носителем не меняет зависимость параметров элементарной ячейки носителей от величины *x* (рис. 2).

Влияние содержания Pr на свойства кислорода в  $Ce_{1-x}Pr_xO_y$  и 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> было исследовано методом ТПВ-H<sub>2</sub>.

## Термопрограммированное восстановление водородом образцов Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> и 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>

На рис. 3 приведены профили ТПВ-H<sub>2</sub> предварительно окисленных образцов Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub>. Для оксида церия характерен широкий профиль поглощения водорода в области 300-600°C с максимумами при  $T_{\rm max} = 325$ , 400 и 530°C (профиль *I*). Природа низкотемпературного пика при 325°C неясна. Вероятно, его следует отнести к поглощению водорода на дефектных структурах. Поглощение H<sub>2</sub> при 400°C связывают с восстановлением поверхности, а пик при 530°C соответствует

образованию нестехиометрического оксида [18]. Суммарное количество поглощенного водорода на квадратном метре оксида  $(N_{\rm H_2})$  определяли как отношение количества поглощенного водорода одним граммом катализатора к величине его удельной поверхности. Как видно из табл. 1, для  $CeO_2$  оно составляет  $0.1 \times 10^{-4}$  моль/м<sup>2</sup>. Так как окисление водорода кислородом из объема оксида CeO<sub>2</sub> протекает при  $T > 700^{\circ}$ C, то эту величину следует отнести к окислению водорода кислородом поверхности [18, 19]. В профилях смешанных оксидов Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>v</sub>, Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>v</sub> и Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>v</sub>, как и в профиле 5 оксида  $PrO_{\nu}$ , пики поглощения  $H_2$ также расположены в интервале от 300 до 600°С. Профиль 2 образца Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>v</sub> содержит три пика при 353, 443 и 512°С. В профиле 3 образца Се<sub>0.5</sub> Pr<sub>0.5</sub> O<sub>v</sub> интенсивность этих пиков увеличивается. Основной пик имеет максимум при 432°С, а два дополнительных плохо разрешенных пика – в области температур 385 и 460°С. В профиле 4 образца Се<sub>0.2</sub> Pr<sub>0.8</sub> O<sub>v</sub> наблюдаются разделенные пики при 389 и 460°С и интенсивный пик при 503°С. Пики при 389 и 460°С могут соответствовать восстановлению частиц фазы оксида празеодима (рис. 3, профиль 5), которые, вероятно, присутствуют в образце вместе с частицами твердого раствора. С уменьшением содержания празеодима в катализаторах их интенсивность понижается. Частицы твердого раствора в образцах Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>v</sub> и Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>v</sub> восстанавливаются водородом при 430-440°С, а в случае образца  $Ce_{0.2}Pr_{0.8}O_{\nu}$  – при 503°С. Повышение температуры восстановления до 503°С свидетельствует об увеличение прочности связи кислорода в Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>v</sub>, которое может быть связано с возрастанием размера кристаллитов (табл. 1).

Поглощение водорода твердыми растворами  $(0.3 \times 10^{-4} - 1.7 \times 10^{-4} \text{ моль/м}^2)$  и оксидом  $\text{PrO}_y$   $(0.42 \times 10^{-4} \text{ моль/м}^2)$  в разы превышает количе-

| Образец                   | $S_{ m yg},{ m M}^2/{ m \Gamma}$ | Размер кристаллитов, нм | $N_{\mathrm{H}_2} 	imes 10^4$ , моль/м $^2$ | $N_{\rm p} \times 10^4$ , моль/м <sup>2</sup> | $N_{\rm H_2}/N_{\rm p}$ |
|---------------------------|----------------------------------|-------------------------|---------------------------------------------|-----------------------------------------------|-------------------------|
| CeO <sub>2</sub>          | 120                              | 6                       | 0.1                                         | —                                             | -                       |
| $Ce_{0.8}Pr_{0.2}O_y$     | 95                               | 8                       | 0.13                                        | _                                             | _                       |
| $Ce_{0.5}Pr_{0.5}O_y$     | 53                               | 9                       | 0.3                                         | _                                             | _                       |
| $Ce_{0.2}Pr_{0.8}O_y$     | 13                               | 15                      | 1.7                                         | _                                             | _                       |
| PrO <sub>y</sub>          | 40                               | 10                      | 0.42                                        | _                                             | _                       |
| CuO/CeO <sub>2</sub>      | 103                              | 6                       | 0.18                                        | 0.06                                          | 3                       |
| $CuO/Ce_{0.8}Pr_{0.2}O_y$ | 86                               | 8                       | 0.19                                        | 0.07                                          | 2.7                     |
| $CuO/Ce_{0.5}Pr_{0.5}O_y$ | 56                               | 9                       | 0.4                                         | 0.1                                           | 4                       |
| $CuO/Ce_{0.2}Pr_{0.8}O_y$ | 9.4                              | 15                      | 2.9                                         | 0.65                                          | 3                       |

Таблица 1. Характеристики образцов  $Ce_{1-x}Pr_xO_y$  и 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>

Прочерки означают, что образцы не содержат оксид меди.

КИНЕТИКА И КАТАЛИЗ том 62 № 1 2021

Поглощение Н<sub>2</sub>, усл. ед.



**Рис. 3.** Профили ТПВ-H<sub>2</sub> для образцов CeO<sub>2</sub> (*1*), Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>y</sub> (*2*), Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> (*3*), Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>y</sub> (*4*) и PrO<sub>y</sub> (*5*).

ство водорода, окисленного кислородом поверхности оксида  $\text{CeO}_2$  (0.1 × 10<sup>-4</sup> моль/м<sup>2</sup>) (табл. 1). Такое различие позволяет полагать, что на твердых растворах и оксиде  $\text{PrO}_y$  окисление водорода протекает, вероятно, с участием кислорода приповерхностного слоя.

Профили ТПВ- $H_2$  для 5% CuO/Ce<sub>1-x</sub> Pr<sub>x</sub>O<sub>y</sub> на рис. 4 отличаются от соответствующих профилей носителей Ce<sub>1 – </sub>, Pr<sub>v</sub>O<sub>v</sub> по форме и расположению в температурных областях. В табл. 1 приведены экспериментально определенные количества поглощенного водорода N<sub>H2</sub> катализаторами 5% CuO/Ce<sub>1 – x</sub> $Pr_xO_y$  и рассчитанные количества водорода N<sub>p</sub>, необходимого для восстановления оксида меди в них по реакции CuO +  $+ H_2 = Cu^0 + H_2O$  в предположении, что все катионы меди в окисленных образцах находятся в состоянии Cu<sup>2+</sup> согласно [5]. Из отношения  $N_{\rm H_2}/N_{\rm p}$ видно, что количества поглощенного водорода образцами с x = 0 - 1 больше того, что необходимо для восстановления в них оксида меди, в 2.7-5 раз. Избыточное поглощение Н2 указывает на восстановление оксида меди вместе с носителями.

В профиле образца 5%СиО/СеО2 имеется два пика при  $T_{\text{max}} = 144$  и 178°С, что ниже температуры восстановления частиц моноклинной фазы CuO(M), составляющей 320°С (рис. 4, профили 1 и 6). Эти пики относят к восстановлению высокодисперсного оксида CuO, сильно взаимодействующего с носителем [20-25]. Авторы [20] полагают, что при 140°С восстанавливается только CuO, а при 180°С – СиО вместе с СеО<sub>2</sub>. Понижение температуры восстановления взаимодействующих оксидов CuO и CeO<sub>2</sub> по сравнению с температурой восстановления их фаз (T<sub>max</sub> > 300) рассматривается как синергический эффект. Низкотемпературное восстановление носителя, неактивного в адсорбции H<sub>2</sub> при 180°C, протекает легче атомами водорода при их спилловере с меди, ко-



**Рис. 4.** Профили ТПВ-H<sub>2</sub> для образцов 5% CuO/CeO<sub>2</sub> (1), 5% CuO/Ce<sub>0.8</sub> Pr<sub>0.2</sub>O<sub>y</sub> (2), 5% CuO/Ce<sub>0.5</sub> Pr<sub>0.5</sub>O<sub>y</sub> (3), 5% CuO/Ce<sub>0.2</sub> Pr<sub>0.8</sub>O<sub>y</sub> (4), 5% CuO/PrO<sub>y</sub> (5) и CuO (6).

торая образуется при 140°С [21]. В профиле 2 образца 5% CuO/Ce<sub>0.8</sub> Pr<sub>0.2</sub>O<sub>v</sub> пики поглощения водорода смещены в область больших температур относительно пиков в профиле 1. Две формы оксида меди восстанавливаются в водороде при  $T_{\rm max} =$ = 190 и 216°С. Согласно [9, 26] при 190°С восстанавливается высокодисперсный оксид CuO, сильно взаимодействующий с носителем, а при 216°С крупные частицы оксида меди, у которых связь с носителем слабее, чем у высокодисперсного СиО. Для образца 5%СиО/Се<sub>0.5</sub>Рг<sub>0.5</sub>О<sub>v</sub> наблюдается один пик поглощения водорода при 260°С (профиль 3). На кривой ТПВ-Н<sub>2</sub> катализатора 5%CuO/Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>v</sub> можно выделить два широких пика при 276 и  $382^{\circ}$ С (профиль 4), а в профиле 5 образца 5%CuO/PrO, присутствует один пик при 290°С. Поглощение водорода в области температур 260-290°С связано с восстановлением небольших частиц фазы CuO на поверхности катализаторов, размер кристаллитов которых меньше, чем у частиц моноклинной фазы CuO(M) с L = 30 нм, восстанавливающихся при  $320^{\circ}$  C. Форма оксида меди, которая восстанавливается при 380°С, неясна. Отметим, что в этой температурной области может восстанавливаться носитель (рис. 3) и фаза оксида Cu<sub>2</sub>O [23].

Представленные данные показывают, что в области 300-600°С водород окисляется кислородом поверхности CeO<sub>2</sub> и, вероятно, приповерхностного слоя образцов Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> с x = 0.2-1. В образцах 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> наблюдается синергический эффект – взаимодействующие оксид меди и носители легче восстанавливаются водородом (100-290°С), чем их отдельные фазы (300-600°С). С возрастанием в смешанных оксидах содержания катионов Pr повышается температура совместного восстановления оксида меди и носителей вследствие увеличения прочности связи кислорода катализатора.



Рис. 5. Зависимость конверсии CO в CO<sub>2</sub> от температуры окисления CO кислородом в избытке водорода на образцах 5%CuO/CeO<sub>2</sub> (1), 5%CuO/CeO<sub>8</sub>Pr<sub>0.2</sub>O<sub>y</sub> (2), 5%CuO/CeO<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> (3), 5%CuO/CeO<sub>2.2</sub>Pr<sub>0.8</sub>O<sub>y</sub> (4), CeO<sub>2</sub> (5), CuO (6) и PrO<sub>y</sub> (7).



Рис. 6. Зависимости конверсии CO и O<sub>2</sub> от температуры для образцов 5%CuO/CeO<sub>2</sub> (1, I') и 5%CuO/PrO<sub>y</sub> (2, 2').

## Окисление СО кислородом в избытке $H_2$ на 5%СиО/Се $_{1-x}$ Pr $_xO_y$

На рис. 5 приведены зависимости конверсии СО в СО<sub>2</sub> ( $\gamma$ ) от температуры (T) для катализаторов 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> (x = 0.2-0.8). Непосредственно для этих катализаторов дан ряд активности в водородсодержащей смеси  $CO + O_2 + H_2$ . Видно, что для 5%СиО/СеО2 конверсия СО увеличивается до максимального значения  $\gamma_{max} = 98-$ 100% при изменении температуры от 40 до 160°С (кривая 1). При дальнейшем повышении Т конверсия уменьшается и при 220°С становится равной 70%. Подобные зависимости  $\gamma(T)$  наблюдаются для других образцов (кривые 2-4). Из сравнения этих данных видно, что с возрастанием доли Pr в катализаторах от 0.2 до 0.8 температура реакции повышается с одновременным понижением конверсии  $\gamma_{max}$ . Зависимость  $\gamma_{max}(T)$  от содержания Pr в катализаторах позволяет получить для них ряд активности: 5%CuO/CeO<sub>2</sub> (~100%, 100–160°C) > 5%CuO/Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>y</sub> (98%, 160°C) > 5%Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> (91%, 180°C) > 5%CuO/Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>y</sub> (65%, 220°C).

Для чистых оксидов зависимость  $\gamma_{\text{max}}(T)$  на рис. 5 дает следующий ряд активности: CeO<sub>2</sub> (80%, 250°C) > CuO (57%, 240°C) > PrO<sub>v</sub> (50%, 300°C).

Высокая активность оксидных систем 5% CuO/  $Ce_{1-x}Pr_xO_y$  при низких температурах по сравнению с таковой для чистых оксидов свидетельствует о протекании реакции на оксиде меди, взаимодействующем с носителем.

Одновременно с конверсией СО измеряли конверсию  $O_2(\beta)$ . Зависимости  $\gamma(T)$  и  $\beta(T)$  для образцов 5%CuO/CeO<sub>2</sub> и 5%CuO/PrO<sub>v</sub> приведены на рис. 6. Так, на образце 5%CuO/CeO<sub>2</sub> реакция окисления СО начинается при 40°С. При повышении температуры до 110°С она протекает со 100% селективностью, так как при этих условиях отношение количеств расходуемых молекул СО и О2 соответствует их отношению, полученному из уравнения реакции  $CO + 0.5O_2 \rightarrow CO_2$  (кривые 1 и 1'). В интервале 100-120°С поглощение кислорода замедляется с уменьшением содержания СО в потоке. При 110°С конверсия О<sub>2</sub> составляет ~50% при конверсии СО близкой к 100%. С повышением температуры до 160°С конверсия О<sub>2</sub> увеличивается из-за участия кислорода в окислении водорода. В соответствии с данными ТПВ-Н<sub>2</sub> (рис. 4) в этой температурной области начинается поглощение водорода катализатором. Конверсия СО не изменяется и остается равной ~100%. При  $T \ge$ ≥ 160°С кислород из смеси полностью расходуется в двух реакциях. В условиях конкуренции за кислород конверсия СО понижается до 70% при 220°С из-за возрастающей скорости расходования кислорода в реакции с водородом ( $V_{\rm H_2}$ ) относительно скорости его расходования в реакции с оксидом углерода ( $V_{CO}$ ). В случае образца 5% CuO/PrO<sub>v</sub> окисление СО начинается при 100°С. В интервале 100-160°С кислород расходуется только на окисление CO, а при  $T > 160^{\circ}$ C он участвует и в окислении Н<sub>2</sub>. Из-за протекания конкурирующих реакций, когда  $V_{\rm H_2} > V_{\rm CO}$ , конверсия СО достигает максимального значения 93% при 200°С. В этом случае в интервале температур 180-240°С селективность образования СО<sub>2</sub> ниже 100%. Следует отметить, что в реакции окисления СО катализатор 5%CuO/PrO<sub>v</sub> (93%, 200°С) с высокой удельной поверхностью ( $S_{v_{II}} = 37 \text{ M}^2/\Gamma$ ) может быть активнее, чем 5%CuO/Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>v</sub> (65%, 220°C) с  $S_{\rm vn} = 9.4 \, {\rm M}^2/{\rm \Gamma}$ , из-за большего количества в нем активных центров оксида меди. Кроме того, согласно данным ТПВ- $H_2$  в образце 5% CuO/Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>v</sub> кислород более прочно связан в медьсодержащих центрах.

Таким образом, активность оксидных систем 5% CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> в реакции окисления CO кислородом в избытке водорода при низких температурах связана с оксидом меди, взаимодействующим с носителем. При увеличении содержания катионов Pr в CeO<sub>2</sub> активность катализаторов падает: повышается температура начала реакции, уменьшается конверсия  $\gamma_{max}(T)$  со смещением ее в высокотемпературную область. Понижение  $\gamma_{max}(T)$  обусловлено конкуренцией за кислород в реакци-ях окисления CO и H<sub>2</sub>.

Для образцов 5% CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> разный вид зависимости конверсии CO от температуры на начальной стадии окисления CO может быть обусловлен влиянием температуры на превращения поверхностных интермедиатов, образующихся при адсорбции CO. С этой целью была исследована термостабильность адсорбционных комплексов на катализаторах методом ТПД CO.

## Окисление СО кислородом катализаторов 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>v</sub>

На рис. 7 приведены профили ТПД СО для окисленных образцов 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> после адсорбции на них СО при  $P = 3.3 \times 10^3$  Па в течение 10 мин и вакуумирования в течение 20 мин при 20°С. В продуктах десорбции присутствуют СО и СО<sub>2</sub>. Они образуются при разложении адсорбционных комплексов, связанных с медьсодержащими центрами, так как после адсорбции СО на носителях Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> количества десорбии СО на носителях Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> количества десорбии сО на носителях Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> количества десорбии сО на носителях Се<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> количества десорбии области 30–500°С значительно меньше таковых для катализаторов 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> (3 × 10<sup>20</sup>–0.7 × 10<sup>20</sup> г<sup>-1</sup>).

Профиль 1 образца 5%CuO/CeO<sub>2</sub> содержит пик десорбции CO при  $T_{max} = 110^{\circ}$ C и по крайней мере два сложных пика CO<sub>2</sub> в области 150 и 350°C. Как было установлено в [5], десорбция CO обусловлена разложением линейных карбонильных комплексов Cu<sup>+</sup>–CO, а десорбция CO<sub>2</sub> сопровождается разложением мостиковых, моно- и бидентатных карбонатных комплексов, которые обра*w*, отн. ед.



**Рис.** 7. Профили ТПД СО, полученные после адсорбции СО при 20°С на окисленных образцах 5%CuO/CeO<sub>2</sub> (1), 5%CuO/CeO<sub>8</sub>Pr<sub>0.2</sub>O<sub>y</sub> (2), 5%CuO/CeO<sub>5</sub>Pr<sub>0.5</sub>O<sub>y</sub> (3) и 5%CuO/PrO<sub>y</sub> (4).

зуются на центрах адсорбции и окисления, связанных с кластерами оксида меди.

Из сравнения профилей 1-4 на рис. 7 и соответствующих данных в табл. 2 видно, что при увеличении содержания Pr в образцах количество десорбированного CO в области  $30-200^{\circ}$ C уменьшается от  $0.85 \times 10^{18}$  до  $0.04 \times 10^{18}$  м<sup>-2</sup>, а количество десорбированного CO<sub>2</sub> в области  $50-500^{\circ}$ C снижается от  $2.4 \times 10^{18}$  до  $1.5 \times 10^{18}$  м<sup>-2</sup>. Температура максимальной скорости десорбири CO<sub>2</sub> ( $T_{max}$ ) повышается от 140 до 260°C. Способность центров хемосорбировать CO падает, так как  $\eta$  – отношение концентрации нанесенных катионов [Cu<sup>2+</sup>] к концентрациям десорбированных молекул [CO + + CO<sub>2</sub>] – возрастает от 1.3 для образца 5% CuOCeO<sub>2</sub> до 6.3 для катализатора 5% CuO/PrO<sub>y</sub> (табл. 2).

В соответствии с [27] можно полагать, что на однотипных катализаторах 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> реакция окисления CO кислородом медьсодержащих центров протекает через формирование одинаковых поверхностных комплексов. Следовательно, по аналогии с 5%CuO/CeO<sub>2</sub>, на модифицированных образцах 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> при

| · · · •                                                  | 2                  |                                          | -                  | · I X X y                                 |                                     |     |
|----------------------------------------------------------|--------------------|------------------------------------------|--------------------|-------------------------------------------|-------------------------------------|-----|
| Образец                                                  | $T_{\rm max}$ , °C | $[CO] \times 10^{-18},  \mathrm{m}^{-2}$ | $T_{\rm max}$ , °C | $[CO_2] \times 10^{-18}, \mathrm{m}^{-2}$ | $[Cu^{2+}] \times 10^{-18}, m^{-2}$ | η*  |
| 5%CuOCeO <sub>2</sub>                                    | 110                | 0.85                                     | 150                | 1.9                                       | 3.7                                 | 1.3 |
| 5%CuO/Ce <sub>0.8</sub> Pr <sub>0.2</sub> O <sub>2</sub> | 100                | 0.12                                     | 140                | 2.4                                       | 4.4                                 | 1.8 |
| 5%CuO/Ce <sub>0.5</sub> Pr <sub>0.5</sub> O <sub>2</sub> | 90                 | 0.04                                     | 215                | 1.8                                       | 6.7                                 | 3.6 |
| 5%CuO/PrO <sub>2</sub>                                   | 74                 | 0.08                                     | 260                | 1.5                                       | 10                                  | 6.3 |
| 21                                                       |                    |                                          |                    |                                           |                                     |     |

Таблица 2. Десорбция CO и CO<sub>2</sub> по данным ТПД CO образцов 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>v</sub>

\*  $\eta = [Cu^{2+}]/[CO + CO_2].$ 



**Рис. 8.** Кривые десорбции кислорода, полученные в опытах ТПД СО при вымораживании CO<sub>2</sub> после адсорбции СО при 20°С на окисленных образцах 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> (1), 5%CuO/PrO<sub>y</sub> (2) и в экспериментах ТПД O<sub>2</sub> с окисленных образцов 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> (3) и 5%CuO/PrO<sub>y</sub> (4).

адсорбции СО на центрах адсорбции и окисления образуются карбонильные и карбонатные комплексы соответственно, которые разлагаются с десорбцией СО и СО<sub>2</sub>. Взаимодействие празеодима с центрами изменяет их способность к формированию и разложению адсорбционных комплексов. Для выяснения структуры этих комплексов необходимы дополнительные исследования.

Из рис. 7 следует, что профили З и 4 образцов 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и 5%CuO/PrO<sub>y</sub> содержат пики O<sub>2</sub> при  $T_{\text{max}} = 376$  и 320°С. Десорбция кислорода не наблюдается в профилях 1 и 2 катализаторов 5%CuO/CeO<sub>2</sub> и 5%CuO/Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>v</sub>. На рис. 8 сопоставлены кривые десорбции кислорода, полученные в опытах ТПД СО, с кривыми ТПД О<sub>2</sub> с окисленных образцов 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>v</sub> и 5%CuO/PrO<sub>v</sub>. Видно, что формы профилей *1*, *3* и 2, 4 похожи, но профили 3 и 4 смещены относительно профилей 1 и 2 в высокотемпературную область на 30 и 50°С соответственно при сохранении их формы. Такой сдвиг может происходить из-за увеличения прочности связи кислорода в катализаторах в результате их восстановления в процессе десорбции СО2. Сравнение площадей под кривыми десорбции показывает, что количества десорбированного кислорода в опытах ТПД СО на ~10-20% меньше, чем в экспериментах ТПД О2. Причина таких изменений неясна. Возможно, это связано с участием небольшой части кислорода в окислении СО.

В профилях 3 и 4 на рис. 8 можно выделить перекрывающиеся пики в областях 160-300 и 300-500°C, которые соответствуют по крайней мере двум формам кислорода катализаторов с разной энергией связи. В образцах 5%CuO/PrO<sub>y</sub> и 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> присутствует форма кислорода с низкой прочностью связи, которая

разлагается при  $T_{\text{max}} \approx 270^{\circ}$ С. В катализаторе 5%СuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> вторая форма кислорода с более прочной связью характеризуется температурой разложения ~350°С. Скорость десорбции O<sub>2</sub> с катализатора 5%CuO/PrO<sub>y</sub> в области 350–500°С монотонно возрастает и, вероятно, достигает максимального значения при  $T_{\text{max}} \ge 500^{\circ}$ С. В этом случае энергия связи кислорода должна быть выше, чем в образце 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub>.

Профили ТПД О<sub>2</sub> для носителей Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и PrO<sub>y</sub> не отличаются от соответствующих профилей *3* и *4* катализаторов 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и 5%CuO/ PrO<sub>y</sub> на рис. 8. Следовательно, различие в прочности связи кислорода в образцах 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и 5%CuO/PrO<sub>y</sub> обусловлено Ce-Pr-взаимодействием. Следует также отметить, что Ce-Pr-взаимодействие облегчает окисление образца. Так, при выдерживании в кислороде при 20°C течение 20 мин образцов, предварительно восстановленных в опытах ТПД О<sub>2</sub>, запас кислорода в Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> восполняется на 70%, а в PrO<sub>y</sub> – только на 30%.

Таким образом, наблюдаемая десорбция кислорода с образцов 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и 5%CuO/PrO<sub>y</sub> генерируется носителями. Прочность связи кислорода в них зависит от Ce-Pr-взаимодействия, которое также способствует увеличению скорости реокисления кислородом образца 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> по сравнению с таковой для 5%CuO/PrO<sub>y</sub>.

### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Участие кислорода катализаторов 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> в реакциях окисления при низких температурах

С увеличением содержания Pr в носителях  $Ce_{1-x}Pr_xO_y$  их удельная поверхность сокращается от 120 до 13 м<sup>2</sup>/г. Рост количества катионов Pr<sup>3+</sup> в кристаллитах изменяет параметр элементарной ячейки куба *a* от 5.41 до 5.47 Å и способствует образованию анионных вакансий в носителях согласно [9, 28]. Наблюдаемая десорбция кислорода свидетельствует в пользу существования вакансий, так как Ce–Pr-взаимодействие катионов понижает прочность связи кислорода в них. С другой стороны, диффузией атомов кислорода по вакансиям из объема к поверхности катализатора объясняется участие кислорода в ТПВ-H<sub>2</sub> на твердых растворах и оксиде PrO<sub>v</sub>.

В катализаторах 5% CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> при сильном взаимодействии кластеров оксида меди с носителями образуется активный кислород, который участвует в окислении водорода при TПВ-H<sub>2</sub>, в хемосорбции CO при 20°C и в реакции окисления CO в смеси CO + O<sub>2</sub> + H<sub>2</sub> при температурах ниже температур протекания реакции на отдельных фазах CuO, CeO<sub>2</sub> и PrO<sub>y</sub>. В соответствии с [3, 29] температура гетерогенной реакции окисления зависит от энергии связи кислорода в катализаторе. Таким образом, повышение температуры окисления CO кислородом в смеси CO + O<sub>2</sub> + H<sub>2</sub> на начальной стадии реакции с ростом содержания Pr в образцах 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> свидетельствует о возрастании прочности связи кислорода в катализаторах. Оно может быть связано как с взаимодействием катионов Pr с кислородсодержащими центрами кластеров, так и с увеличением размера кластеров оксида меди при уменьшении поверхности катализаторов, обусловленного повышением в них доли празеодима.

Из данных на рис. 6 видно, что кислород образца 5%CuO/CeO<sub>2</sub> с  $S_{v\pi} = 100 \text{ м}^2/\Gamma$  участвует в окислении СО при 40-120°С. Его активность выше таковой для образца 5% CuO/PrO<sub>v</sub> с  $S_{v\pi} = 37 \text{ M}^2/\text{г}$ , ведущего реакцию в области 100-200°С. Изменение активности не связано с изменением величины удельной поверхности образцов, так как ранее в [30] мы установили, что для катализатора 5%CuO/CeO<sub>2</sub> с  $S_{yg}$  = 37 м<sup>2</sup>/г температура начала реакции повышается на 20°С, а температура достижения максимальной конверсии остается такой же, как и для образца 5%CuO/CeO<sub>2</sub> с  $S_{va}$  =  $= 100 \text{ м}^2/\Gamma -$ примерно 120°С. Это позволяет полагать. что при взаимодействии оксида меди с оксидом церия образуется кислород с менее прочной связью и более высокой активностью, чем в случае взаимодействия оксида меди с оксидом празеодима. Понижение активности образцов 5%CuO/Ce<sub>0.8</sub>Pr<sub>0.2</sub>O<sub>v</sub> и 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>v</sub> с увеличением в них содержания Pr по сравнению с таковой для 5%CuO/CeO<sub>2</sub> связано, как видно из рис. 5, с повышением энергии связи кислорода в результате взаимодействия катионов Pr с кислородсодержащими центрами, поскольку величины  $S_{\rm va}$  модифицированных образцов (86 и 56 м<sup>2</sup>/г соответственно) находятся в области значений 100-37 м<sup>2</sup>/г. в которой изменения активности от величины удельной поверхности катализатора 5%СиО/СеО2 невелики. Низкая активность образца 5%СиО/  $Ce_{0.2}Pr_{0.8}O_{v}c S_{va} = 9.4 \text{ м}^{2}/\Gamma$  в области 200–220°C по сравнению с таковой для 5%CuO/PrO<sub>y</sub>, вероятно, обусловлено уменьшением количества кислородсодержащих центров при укрупнении кластеров оксида меди на поверхности образца.

Участие кислорода носителей в окисления СО в смеси СО +  $O_2$  +  $H_2$  при низких температурах маловероятно, так как катализаторы 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> более активны в этой реакции, чем носители Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>. Так, например, активность кислорода кластеров оксида меди в образце 5%CuO/PrO<sub>2</sub> проявляется при 200°C. Она выше активности кислорода оксида PrO<sub>2</sub>, зафиксированной при 300°С, несмотря на то что десорбция кислорода с оксида празеодима наблюдается при  $T \ge 170^{\circ}$ С и совпадает с началом реакции окисления СО (сравни рис. 5 и 8). То есть кислород в анионных вакансиях в оксиде PrO<sub>2</sub> практически неактивен в окислении СО при ~200°С. Отметим, что разбавление оксида празеодима церием лишь незначительно повышает активность катализатора 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>v</sub> в реакции по сравнению с таковой для 5%CuO/PrO<sub>2</sub>, хотя прочность связи кислорода в носителях Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>v</sub> и PrO<sub>2</sub> различна, и первый реокисляется кислородом легче, чем второй (см. рис. 8). Это также может быть свидетельством в пользу низкой активности кислорода носителя в окислении СО при 200°С.

## О механизме реакции окисления СО кислородом в присутствии H<sub>2</sub> на 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>

В ряду исследованных катализаторов 5%СиО/  $Ce_{1-x}Pr_xO_y$  в реакции окисления CO в смеси CO + + О2 + Н2 наибольшая конверсия СО при наименьшей температуре получена на образце 5%CuO/ CeO<sub>2</sub> (~100%, 110°С). В работе [4] было показано, что активность катализаторов CuO/CeO<sub>2</sub> линейно растет с увеличением в них количества катионов Cu<sup>+</sup> в медьсодержащих центрах. Это означает, что лимитирующая стадия реакции протекает на катионах Cu<sup>+</sup>. В соответствии с [5] мы полагаем, что такой стадией может быть разложение мостиковых карбонатных комплексов с десорбцией СО<sub>2</sub> в области 20-160°С. Предшествующие ей стадии, связанные с адсорбцией СО на кластерах CuO, такие как восстановление катионов  $Cu^{2+}$  до Cu<sup>+</sup> при формировании карбонатных комплексов, формирование карбонильных комплексов  $Cu^+$ –CO, а также окисления CO карбонильных комплексов до мостиковых карбонатов при алсорбции кислорода, происходящее вместе с окислением катализатора, являются быстрыми, так как протекают при 20°С.

Можно оценить минимальное количество катионов меди в кластерах CuO для образца 5%CuO/ CeO<sub>2</sub> по количеству десорбированнного CO, полученного в опыте TПД CO при разложении карбонильных комплексов. Если полагать, что кластеры оксида меди на поверхности имеют одинаковый химический и количественный состав и на каждой из них образуются один карбонильный комплекс, то количество катионов меди в кластере равно отношению [Cu<sup>2+</sup>]/[CO]. Так, с использованием данных табл. 2, согласно которым [CO] =  $0.85 \times 10^{18}$  м<sup>-2</sup> и [Cu<sup>2+</sup>] =  $3.7 \times 10^{18}$  м<sup>-2</sup>, было установлено, что четыре катиона меди могут создать кластер с активным кислородом Cu<sub>4</sub>O<sub>x</sub>. В соответствие с работой [31] в кластерах образцов  $CuO_x/CeO_2$  катионы меди Cu<sup>+</sup> находятся в линейной или треугольной координации с ионами кислорода, в то время как Cu<sup>2+</sup> присутствует в тетрагональной и сильно искаженной октаэдрической координации. Отметим, что искаженная координация катионов Cu<sup>2+</sup>, расположенных внутри анионных вакансий или рядом с ними, может способствовать понижению прочности связи кислорода, локализованного на таких дефектах в оксиде CeO<sub>2</sub> [3].

В реакции окисления СО кислородом в присутствии водорода при  $T > 120^{\circ}$ С на 5% CuO/CeO<sub>2</sub> маршрут окисления СО карбонильных комплексов при адсорбции кислорода может быть не единственным. Так, в области 100–160°С, когда реакции окисления СО и H<sub>2</sub> конкурируют за кислород (рис. 6), высокое значение конверсии СО (~100%), возможно, поддерживается за счет дополнительной реакции разложения карбонатных комплексов на центрах окисления при этих температурах (рис. 7).

Согласно данным табл. 2, празеодим в образцах 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> ингибирует формирование карбонильных комплексов и снижает активность центров окисления в образовании карбонатных комплексов при адсорбции СО. Тогда уменьшение активности катализаторов в окислении СО кислородом в присутствии водорода при низких температурах обусловлено сокращением количества катионов Cu<sup>+</sup>, как это следует из зависимости активности образцов от содержания в них катионов Cu<sup>+</sup>. В этом случае реакция окисления СО может проходить на центрах окисления при образовании карбонатов с последующим их разложением с десорбцией CO<sub>2</sub> в температурной области, соответствующей области протекания реакции (рис. 5 и 7).

## ЗАКЛЮЧЕНИЕ

Катализаторы 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> синтезировали на основе оксидов CeO<sub>2</sub>, PrO<sub>2</sub> и твердых растворов Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> с x = 0.2-0.8, полученных при пиролизе гидроксидов.

Совместное восстановление водородом высокодисперсного оксида меди и носителей в катализаторах протекает значительно эффективнее (100–270°С), чем восстановление отдельных фаз СиО и Се<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> (300–600°С) вследствие их сильного взаимодействия. Этим взаимодействием обусловлено и образование активного кислорода, который участвует в окислении водорода, хемосорбции СО и низкотемпературной реакции окисления СО в смеси СО + O<sub>2</sub> + H<sub>2</sub>.

В реакции окисления CO в избытке водорода активность образцов 5%CuO/Ce<sub>1 – x</sub>Pr<sub>x</sub>O<sub>y</sub> с x = 0-0.8понижается при возрастании содержания Pr. По-

КИНЕТИКА И КАТАЛИЗ том 62 № 1 2021

вышение температуры начала реакции и уменьшение величины конверсии  $\gamma_{max}(T)$  со смещением ее в высокотемпературную область происходят в результате увеличения прочности связи кислорода в медьсодержащих центрах, взаимодействующих с катионами Pr.

Кислород анионных вакансий оксида  $PrO_y$  менее активен, чем кислород медьсодержащих центров в 5%CuO/PrO<sub>y</sub>. Разбавление оксида празеодима церием лишь незначительно повышает активность образца 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> по сравнению с таковой для 5%CuO/PrO<sub>y</sub>, хотя форма кислорода в носителях Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> и PrO<sub>2</sub> различается по прочности связи, и первый реокисляется кислородом легче, чем второй.

На основании данных по термостабильности комплексов CO, образующихся на медьсодержащих центрах окисления и адсорбции образцов 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>, рассмотрено их участие в реакции низкотемпературного окисления в водороде.

#### ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ФАНО России (тема V.46.13, 0082-2014-0007, № АААА-А18-118020890105-3).

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в настоящей работе.

## СПИСОК ЛИТЕРАТУРЫ

- Ола Д., Гепперт А., Пракаш С. Метанол и энергетика будущего. Когда закончатся нефть и газ. Москва: Бином, 2009. 416 с. (Olah G.A, Goeppert A., Prakash S. Beyond Oil and Gas: The Methanol Economy. Originally published by Wiley-VCH Verlag GmbH &Co, KGaA Boschstraße 12, D-69469 Weinheim, Federal Republic of Gemany.)
- 2. *Mishra A., Prasad R.* // Bull. Chem. React. Eng. Catal. 2011. V. 6. № 1. P. 1.
- 3. Yu K., Lou L.-L., Liu S., Zhou W. // Adv. Sci. 2020. V. 7. P. 1.
- Martinez-Arias A., Gamarra D., Hungria A.B., Fernandez-Garcia M., Munuera G., Hornes A., Bera P., Conesa J.C., Camara A.L. // Catalysts. 2013. V. 3. P. 378.
- 5. Ильичев А.Н., Матышак В.А., Корчак В.Н. // Кинетика и катализ. 2015. Т. 56. № 1. С. 125. (*Il'ichev A.N*, *Matyshak V.A., Korchak V.N.* // Kinet. Catal. 2015. V. 56. № 1. Р. 115.)
- Venkataswany P., Jampaiah D., Aniz C.U., Reddy B.M. // J. Chem. Sci. 2015. V. 127. № 8. P. 1347.
- 7. Kim H.J., Jang M.G., Shin D., Han J.W. // Chem-CatChem. 2020. V. 12. P. 11.
- Singhania A. // Ind. Eng. Chem. Res. 2017. V. 56. № 46. P. 13594.
- 9. Малютин А.В., Либерман Е.Ю., Михайличенко А.И., Аветисов И.Х., Кошкин А.Г., Конькова Т.В. // Катализ в промышленности. 2013. № 3.С. 54.

- 10. *GuoX., QiuZ., MaoZ.Q., Zhou R. //* Phys. Chem. Chem. Phys. 2018. V. 20. № 40. P. 25983.
- Zhao Z., Wang R., Zhao Q., Wang E., Su H., Zeng S. // Adv. Mater. Res. 2013. V. 773. P. 601.
- Ильичев А.Н., Фирсова А.А., Корчак В.Н. // Кинетика и катализ. 2006. Т. 47. № 4. С. 602. (*Il'ichev A.N.*, *Firsova A.A., Korchak V.N.* // Kinet. Catal. 2006. V. 47. № 4. Р. 585.)
- 13. *Powder Diffraction Fale*. Alphabetical Indexes. Inorganic phases, JCPDS, International Center for Diffraction Data, Pennsylvania, USA, 1983.
- Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М: Государственное издательство физико-математической литературы, 1961. 864 с.
- 15. Третьяков И.И., Шуб Б.Р., Скляров А.В. // Журн. физ. химии. 1970. Т. 44. С. 2112.
- Руководство по неорганическому синтезу / Под ред. Брауэра Г. Москва: Мир, 1985. Т. 2–3.
- 17. Narula C.K., Haack L.P., Chun W., Jen H.-W., Graham G.W. // J. Phys. Chem. B. 1999. V. 103. P. 3634.
- Фирсова А.А., Ильичев А.Н., Хоменко Т.И., Горобинский Л.В., Максимов Ю.В., Суздалев И.П., Корчак В.Н. // Кинетика и катализ. 2007. Т. 48. № 2. С. 298. (Firsova A.A., Ilichev A.N., Khomenko T.I., Gorobinskii L.V., Maksimov Yu. V., Suzdalev I.P., and Korchak V.N. // Kinet. Catal. 2007. V. 48. № 2. Р. 282.)
- Fornasiero P., Balducci G., Monte R.D., Kaspar J., Sergo V., Gubitosa G., Ferrero A., Graziani M. // J. Catal. 1996. V. 164. P. 173.
- Manzoli M., Monte R.D., Boccuzzi F., Coluccia S., Kaspar J. // Appl. Catal. B: Environ. 2005. V. 61. P. 192.

- 21. Luo M.F., Ma J.-M., Lu J.-Q., Song Y.-P., Wang Y.-J. // J. Catal. 2007. V. 246. P. 52
- 22. Gomez-Cortes A., Marquez Y., Arenas-Alatorre J., Diaz G. // Catal. Today. 2008. V. 133–135. P. 743.
- Polster C.S., Naier H., Baertsch C.D. // J. Catal. 2009. V. 266. P. 308.
- Moretti E., Storaro L., Talon A., Lenarda M., Riello P., Frattini R., Yuso M.V.M., Jimenez-Lopez A., Rodriguez-Gastellon E., Ternero F., Caballero A., Holgado J.P. // Appl. Catal. B: Enveron. 2011. V. 102. P. 627.
- Arango-Diaz A., Cecilia J.A., Moretti E., Talon A., Nunez P., Morrero-Jerez J., Jimenez-Jimenez J., Jimenez-Lopez A., Rodriguez-Gastellon E. // Int. J. Hydrogen Energy. 2014. V. 39. P. 4102.
- 26. Wang S.-P., Zheng X.-C., Wang X.-Y., Wang S.-R., Zhang S.-M., Yu L.-H., Huang W.-P., Wu S.-H. // Catal. Lett. 2005. V. 105. № 3-4. P. 163.
- 27. *Матышак В.А., Сильченкова О.Н.* // Кинетика и катализ. 2019. Т. 60. № 5. С. 578. (*Matyshak V.A., Sil'chenkova O.N.* // Kinet. Catal. 2019, V. 60. № 5. P. 573.)
- Иванова А.С. // Кинетика и катализ. 2009. Т. 50. № 6. С. 831.
- 29. *Крылов О.В.* Гетерогенный катализ. Москва Академкнига, 2004. 679 с.
- Ильичев А.Н., Быховский М. Я., Фаттахова З.Т., Шашкин Д.П., Федорова Ю.Е., Матышак В.А., Корчак В.Н. // Кинетика и катализ. 2019. Т. 60. № 5. С. 654. (Il'ichev A.N., Bykhovskii M.Ya., Fattakhova Z.T., Shashkin D.P., Matyshak V.A., Korchak V.N. // Kinet. Catal. 2018. V. 59. № 2. Р. 179.)
- Skarman B., Grandjean D., Benfield R., Hinz A., Andersson A., Wallenberg L. R. // J. Catal. 2002. V. 211. P. 119.

# Activity of 5%CuO/Ce<sub>1 – x</sub> $Pr_xO_y$ Catalysts in the Oxidation Reaction with Oxygen in Excess of Hydrogen

## A. N. Il'ichev<sup>1, \*</sup>, M. Ya. Bykhovsky<sup>1</sup>, Z. T. Fattakhova<sup>1</sup>, D. P. Shashkin<sup>1</sup>, and V. N. Korchak<sup>1</sup>

<sup>1</sup>Semenov Institute of chemical physics, Russian Academy of Sciences, Kosygina str., 4, Moscow, 119991 Russia

\*e-mail: Ilichev-alix@yandex.ru

5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> catalysts were synthesized on the basis of CeO<sub>2</sub>, PrO<sub>2</sub> oxides and solid solutions Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> with x = 0.2, 0.5 and 0.8. Highly dispersed copper oxide is contained in the catalysts 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub>. When interacting with carriers, it forms active oxygen, which participates in CO chemisorption and low-temperature CO oxidation reaction in the presence of hydrogen. The highest value of CO conversion in excess of H<sub>2</sub> ( $\gamma_{max}(T)$ ), close to 100%, was obtained at temperatures of 120–160°C on a 5%CuO/CeO<sub>2</sub> catalyst. When CeO<sub>2</sub> is modified with Pr cations, sample 5%Ce<sub>0.2</sub>Pr<sub>0.8</sub>O<sub>y</sub>, it decreases to 65% at 220°C due to an increase in the strength of the oxygen bond in copper-containing centers. On a sample of 5%CuO/PrO<sub>y</sub>, the maximum co conversion (93%) was recorded at 200°C. When modifying PrO<sub>2</sub> with Ce cations, the activity of 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> and 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> samples were studied using the TPD method. In the area of 170–500°C oxygen desorption of sample carriers of 5%CuO/Ce<sub>0.5</sub>Pr<sub>0.5</sub>O<sub>y</sub> and 5%CuO/PrO<sub>y</sub> is observed. The features of the reaction on 5%CuO/Ce<sub>1-x</sub>Pr<sub>x</sub>O<sub>y</sub> catalysts are discussed. Taking into account the properties of CO complexes formed on copper-containing oxidation and adsorption centers, their participation in the reaction of low-temperature oxidation in hydrogen is considered.

**Keywords:** oxides, solid solutions, low-temperature oxidation of CO in a mixture of  $CO + O_2 + H_2$