УДК 662.7

ГИБРИДНЫЙ КАТАЛИЗАТОР СЕЛЕКТИВНОГО СИНТЕЗА УГЛЕВОДОРОДОВ ТОПЛИВНОГО РЯДА МЕТОДОМ ФИШЕРА-ТРОПША

© 2021 г. Р. Е. Яковенко^{*a*, *}, И. Н. Зубков^{*a*}, А. П. Савостьянов^{*a*}, В. Н. Соромотин^{*a*}, Т. В. Краснякова^{*b*}, О. П. Папета^{*a*}, С. А. Митченко^{*a*, *b*}

^аФГБОУ ВО Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова, ул. Просвещения, 132, Новочеркасск, 346428 Россия

^bГУ Институт физико-органической химии и углехимии, ул. Р. Люксембург, 70, Донецк, 283114, Украина

*e-mail: jakovenko39@gmail.com

Поступила в редакцию 04.06.2020 г. После доработки 03.08.2020 г. Принята к публикации 16.08.2020 г.

Представлены результаты исследований по разработке гибридного катализатора для однореакторного синтеза жидких углеводородов по методу Фишера–Тропша. Катализатор получен смешением и формованием порошков катализатора Co–Al₂O₃/SiO₂, цеолита HZSM-5 и бемита. Промотирование цеолита палладием осуществляли ионным обменом (1.0 мас. %). Катализаторы охарактеризованы методами рентгенофазового анализа, БЭТ, сканирующей и просвечивающей электронной спектроскопии, термопрограммированной десорбции аммиака и водорода, испытаны при температуре 240°С, давлении 2.0 МПа, ОСГ 1000 ч⁻¹. Предлагаемый метод приготовления позволяет получать гибридный катализатор со стабильной структурой и средним размером частиц кобальта 8 нм, обладающий высокой производительностью и селективностью образования жидких углеводородов из CO и H₂.

Ключевые слова: синтез Фишера-Тропша, гибридный катализатор, цеолит, синтетические углеводороды, моторные топлива, производительность катализаторов

DOI: 10.31857/S0453881121010159

введение

В последнее время актуальным направлением развития топливно-энергетического комплекса является получение высококачественных моторных топлив без использования нефтяного сырья. Альтернативным сырьевым источником может служить попутный нефтяной газ (ПНГ), который в России преимущественно сжигается: в 2017 г. таким образом утилизировано около 2.5 млрд м³, тогда как в США, Канаде, Норвегии он почти полностью перерабатывается. Преобразование ПНГ в моторные топлива и масла, парафины и др. может осуществляться при каталитических превращениях полученного из него синтез-газа (смеси CO и H_2) – синтезе Фишера–Тропша (СФТ) [1–3]. В промышленном масштабе технология производства жидких синтетических углеводородов реализована на заводах компаний Shell и Sasol [4] по трехстадийной схеме: получение синтез-газа – СФТ – гидрооблагораживание (ГО) продуктов.

Для снижения капитальных и эксплуатационных затрат целесообразно объединение двух последних стадий посредством применения гибридных катализаторов, позволяющих получать в одном реакторе углеводороды с заданным фракционным и групповым составом [5-7]. Гибридные бифункциональные катализаторы имеют два типа активных центров: на одних синтезируются углеводороды (преимущественно неразветвленные парафины и α-олефины), на других осуществляются их гидрокрекинг и изомеризация. В качестве компонента катализатора ГО продуктов СФТ используют цеолиты разных типов [8-18]. Основным фактором, определяющим эффективность процесса и селективность образования целевых продуктов на гибридном катализаторе, является ми-

Сокращения и обозначения: РФА – рентгенофазовый анализ; БЭТ – метод, СЭМ – сканирующая электронная спектроскопия; ПЭМ – просвечивающая электронная спектроскопия, ТПД – термопрограммированная десорбция аммиака и водорода; ПНГ – попутный нефтяной газ; СФТ – синтез Фишера–Тропша; ГО гидрооблагораживание; GCCTM – технологии Chevron Gas Conversion Catalysis; ОСГ – объемная скорость газа; R(Co) – степень восстановления кобальта; $S_{yд}$ – удельная поверхность; $d(Co^0)$ – размер частиц кобальта Co⁰; БЭТ – метод Брунауэра–Эммета–Теллера; TOF – число оборотов реакции.

грация первичных продуктов СФТ к кислотным центрам цеолита, на которых происходит их последующее ГО. Для этого необходимо обеспечить тесный контакт между каталитическими центрами синтеза углеводородов и их гидрооблагораживания, что реализуется путем применения мелкодисперсных порошков компонентов гибридного катализатора. Однако в промышленных целях использование физической смеси мелкодисперсных порошков невозможно, поскольку они создают существенное гидродинамическое сопротивление. Во избежание большого перепада давления вдоль слоя катализатора СФТ в трубчатом реакторе с неподвижным слоем оптимальными являются частицы катализатора размером 1–3 мм [19].

Среди большого количества разнообразных гибридных катализаторов единственная коммерчески жизнеспособная каталитическая система, которая обеспечивает производство жидких углеводородов в одном реакторе, содержащая одновременно катализатор СФТ и цеолитный компонент, была предложена как часть технологии Chevron Gas Conversion Catalysis (GCCTM) [15]. Эта технология включает изготовление экструдатов необходимого размера из связанного оксидом алюминия цеолита с последующей их пропиткой раствором кобальта. При таком способе приготовления кобальт селективно наносится на связующее (оксид алюминия) с образованием гибридного катализатора, в котором в пределах одного экструдата компонент СФТ (т.е. Co/Al_2O_3) отделен от частиц цеолита, но находится в наноразмерной близости к нему. Эта гибридная каталитическая система обеспечивает высокую селективность по углеводородам C₅₊ и исключает появление твердых восков при умеренных условиях 1-3 МПа, 210-225°С, H₂/CO = 1.5-2.0, однако процесс протекает при относительно низкой конверсии синтез-газа (около 40%) для защиты гибридного катализатора от высокого давления водяного пара [15].

В настоящей работе применяется подобная GCCTM методика получения гибридного катализатора, но с использованием уже сформированного предварительно катализатора СФТ с нанесенным на силикагель кобальтом. Ранее нами был разработан кобальтсиликагелевый катализатор СФТ [20]. содержащий 1 мас. % промотирующей добавки оксида алюминия, распределение частиц кобальта по размерам в котором было оптимальным для обеспечения высокой активности и селективности образования конденсированных углеводородов С₅₊ [21]. Помимо значительной производительности полученный катализатор продемонстрировал стабильную работу в реальных условиях СФТ при глубокой конверсии синтез-газа и, соответственно, высоком парциальном давлении воды [22]. Можно было полагать, что его использование в качестве компонента СФТ в гибридном бифункциональном катализаторе окажется плодотворным для применения в однореакторном синтезе жидких углеводородов топливного ряда. Цель представленной работы заключалась в проверке этой гипотезы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика приготовления катализаторов

Образцы гибридных катализаторов получали формованием смеси порошков (менее 0.1 мм) катализатора СФТ и цеолита со связующим веществом. В качестве катализатора СФТ использовали предварительно приготовленный кобальтовый катализатор, промотированный Al₂O₃ (1 мас. %), на силикагелевом носителе (1 мас. %) – Co–Al₂O₃/SiO₂ [20]. Для формирования кислотных центров в структуре гибридного катализатора был выбран цеолит марки ZSM-5 (Н-форма, Si/Al = 40) производства ООО "Ишимбайский специализированный химический завод катализаторов". Н-форму цеолита ZSM-5 получали термическим разложением аммонийной формы при температуре 550°С в течение 4 ч в атмосфере воздуха. В качестве связующего вещества применяли бемит ("Sasol", TH 80). Для пластификации в полученную смесь порошков прибавляли водно-спиртовой раствор триэтиленгликоля (0.03 моль на 1 моль бемита) и азотную кислоту (0.02 моль на 1 моль бемита). Формование гранул катализаторов осуществляли методом экструзии, затем сушили 24 ч при комнатной температуре и подвергали термообработке в режиме: 4 ч при 80°С, затем последовательно по 1 ч при 100, 120, 140°С и, наконец, 4 ч при 400°С.

Цеолит промотировали палладием методом ионного обмена из раствора $PdCl_2$ при температуре 70°C в течении 3 ч и постоянном перемешивании. Концентрация $PdCl_2$ в растворе составляла 6.5 мас. %. После ионного обмена раствор отфильтровывали, а цеолит промывали дистиллированной водой, нагретой до 60°C. Далее цеолит сушили при комнатной температуре в течение 12 ч, при температуре 110°C – 15 ч и прокаливали при температуре 550°C в течение 4 ч. Количество введенного в цеолит ZSM-5 палладия составило 1.0 мас. %.

С целью изучения влияния кислотной составляющей гибридного катализатора на состав образующихся углеводородов C_{5+} был приготовлен образец, в котором цеолит был заменен на инертный компонент (кварцевая крошка < 0.1 мм) с сохранением массовых отношений к другим компонентам в готовом катализаторе. Состав и обозначения образцов катализаторов приведены в табл. 1.

Методики исследования свойств катализаторов

Исследования каталитической активности осуществляли в проточном режиме в трубчатом реакторе (внутренний диаметр 16 мм) со стационарным слоем катализатора (10 см³, фракция 1-2 мм), разбавленного 30 см³ кварца (фракция 1– 2 мм), с использованием синтез-газа с соотношением $H_2/CO = 2$ при давлении P = 2.0 МПа, объемной скорости газа ОСГ = 1000 ч^{-1} , температуре $T = 240^{\circ}$ С. Предварительно катализаторы восстанавливали при $T = 400^{\circ}$ С. ОСГ = 3000 ч⁻¹ в токе H₂ в течение 1 ч. Катализаторы активировали синтез-газом с соотношением $H_2/CO = 2$ под давлением 2.0 МПа и ОСГ = $1000 \, \text{ч}^{-1}$ путем ступенчатого подъема температуры со скоростью 2.5°С/ч от 180 до 240°С. Балансовые опыты проводили в течение 100 ч, анализируя состав и количество газа на выходе из установки каждые 2 ч. Продолжительные исследования для определения стабильности работы катализатора были выполнены в течение 1000 ч. По окончанию опыта продукты синтеза разделяли и фракционировали.

Состав газообразных и жидкофазных продуктов синтеза анализировали хроматографическим и хромато-масс-спектрометрическим методами [22].

Рентгенофазовый анализ (РФА) осуществляли с использованием оборудования Европейского центра синхротронного излучения ("ESRF", Гренобль) в интервале углов 20 от 5° до 55° с длиной волны излучения $\lambda = 0.7121$ Å. Определение качественного фазового состава было выполнено с помощью PDF-2 [23] в программном комплексе Crystallographica.

Морфологию поверхности катализатора изучали методом сканирующей электронной микроскопии (СЭМ) на сканирующем электронном микроскопе JSM-6490LV ("JEOL", Япония, ускоряющее напряжение 30 кВ), который был оснащен энергодисперсионным детектором INCA Penta FET 3 ("Oxford Instruments", Великобритания).

Исследование катализаторов методом просвечивающей электронной микроскопии (ПЭМ) проводили на микроскопе Tecnai G2 Spirit BioTWIN ("FEI", США) с ускоряющим напряжением 120 кВ. Образец исходного катализатора предварительно восстанавливали азото-водородной смесью (5% H_2 + 95% N_2) при линейном нагреве от комнатной температуры до 500°C в течение 1 ч.

Для восстановленных катализаторов методом ПЭМ было рассчитано распределение кристаллитов кобальта по размерам. Средневзвешенный размер кристаллитов и стандартное отклонение вычисляли с использованием формул [24].

Термопрограммированную десорбцию аммиака (ТПД NH_3) и водорода (ТПД H_2), а также определение степени восстановления кобальта (R(Co)) импульсным окислением восстановленного обТаблица 1. Состав и обозначение образцов исследованных катализаторов

	Тип компонентов и их содержание, мас. %						
	катализатор ФТ	катализатор гидрооблагора- живания	*связующее				
Образец	35.0	30.0	35.0				
1	Co–Al ₂ O ₃ /SiO ₂	Кварцевая крошка	Al ₂ O ₃				
2		H-ZSM-5					
3		Pd-ZSM-5					

* Фаза Al₂O₃ образуется при разложении бемита на стадии термообработки катализаторов.

разца кислородом и удельной поверхности по методу БЭТ (S_{ya}) проводили с использованием анализатора ChemiSorb 2750 ("Micromeritics", США), оснащенного детектором по теплопроводности. Предварительно образцы выдерживали в токе гелия (20 мл/мин) в течение 1 ч при температуре 200°С для удаления влаги и других адсорбированных газов.

Значение S_{ya} находили с использованием аргоно-гелиевой смеси (10 об. %). ТПД H₂ осуществляли в интервале температур 25—500°С в токе гелия (20 мл/мин) после насыщения предварительно восстановленного водородом образца катализатора и удаления физически адсорбированного газа. Кислотность определяли после импульсного насыщения образца аммиаком при температуре 100°С, удаления физически адсорбированного аммиака в течение 1 ч при температуре 100°С в токе гелия (20 мл/мин). Десорбцию аммиака регистрировали в интервале температур 100–700°С при линейном нагреве со скоростью 20°С/мин.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Характеристика катализатора

Типичные СЭМ-изображения поверхности гибридного катализатора 2 в окисленной форме (рис. 1) показывают, что распределение кобальта по поверхности образца носит фрагментарный характер, тогда как кремний, алюминий и кислород распределены на ней более равномерно. По данным рентгеновского энергодисперсионного микроспектрального анализа содержание кобальта составляет 7.5 мас. %, что соответствует количеству компонента Co–Al₂O₃, введенного в состав гибридного катализатора Co–Al₂O₃/SiO₂.

Рентгенофазовый анализ гибридного катализатора 2 в окисленной форме показал (рис. 2), что кобальт входит в состав оксида Co₃O₄, представленного на дифрактограмме рефлексами в интер-

Рис. 1. СЭМ -изображения гибридного катализатора (образец 2).

вале $2\theta \approx 10^{\circ}-55^{\circ}$. Дифракционные максимумы в области малых углов ($2^{\circ}-12^{\circ}$) соответствуют цеолиту ZSM-5. Три рефлекса при $2\theta \approx 20.3^{\circ}$, 29.5° и 52.0° относятся к фазе Al₂O₃, образующейся при термическом разложении бемита. Оценка на основании уравнения Шеррера [25] среднего размера кристаллитов Co₃O₄, осуществленная по уширению наиболее интенсивного дифракционного максимума $2\theta = 16.8^{\circ}$, дает значение 10.7 нм, что согласуется с ожидаемым размеру кристаллитов Co⁰ в восстановленной форме катализатора 8 нм (табл. 2).

По данным ПЭМ (рис. 3) размер наночастиц кобальта в полученном гибридном катализаторе лежит в диапазоне 3–13 нм со средним значением около 8 нм (табл. 2), что совпадает с данными, приведенными в [26] для исходного катализатора Co–Al₂O₃/SiO₂. Таким образом, в процессе синтеза гибридного катализатора размеры нанесен-

Рис. 2. Дифрактограмма гибридного катализатора (образец 2).

ных на силикагель частиц кобальта не претерпевают существенных изменений, по-прежнему оставаясь оптимальными для обеспечения высокой производительности СФТ по конденсированным углеводородам.

Для всех катализаторов степень восстановления кобальта *R*(Со) примерно одинакова (табл. 2). Образец 1 имеет достаточно высокую кислотность, обусловленную, вероятно, присутствием в составе гибридного катализатора оксида алюминия как связующего. Замена инертного компонента (кварцевой крошки) цеолитом ZSM-5 (образец 2) способствует значительному увеличению кислотности. Меньшее значение этого показателя для допированного палладием катализатора 3 может быть обусловлено введением палладия ионным обменом, в ходе которого протоны замещаются на катионы Pd(II).

Каталитические испытания

В табл. 3 приведены значения конверсии СО и селективности реакции СФТ на трех приготовленных нами образцах. Замена инертной кварцевой крошки цеолитом в составе гибридного катализатора приводит к небольшому снижению конверсии СО, которое сильнее заметно при протекании реакции в присутствии катализатора 3, содержащего цеолит с нанесенным на него палладием. При этом селективности образования газообразных и конденсированных углеводородов С5+ остаются практически неизменными в реакциях на обоих гибридных катализаторах 2 и 3. Благодаря большей конверсии СО производительность по углеводородам C_{5+} на катализаторе 1 была несколько выше, чем на гибридных катализаторах 2 и 3. Таким образом, добавление цеолита или Pd/ZSM-5 в состав гибридного катализатора

ГИБРИДНЫЙ КАТАЛИЗАТОР

Образец	Размер частиц, нм			-	$P(C_{\alpha})$	Vuototuootu vuototu /r	$\mathbf{S} = \mathbf{v}^2 / \mathbf{r}$
	$d(\text{Co}_3\text{O}_4)^*$	$d(\mathrm{Co}^0)^*$	<i>d</i> (Co ⁰)**	<i>d</i> (Co ⁰)***	K(CO), %	Кислотность, мкмоль/г	З _{уд} , м /1
1	_	_	5.2	8 ± 2	49	260	_
2	10.7	8.0	5.1	8 ± 2	51	480	246
3	—	—	5.0	—	52	440	—

Таблица 2. Физико-химические характеристики катализаторов

* По результатам РФА;

** по результатам ТПД Н₂;

ию результатам ПЭМ. Примечание. R(Co) – степень восстановления; S_{yg} – площадь удельной поверхности; $d(Co^0)^*$ – размер частиц кобальта Co^0 . Прочерки означают, что соответствующие показатели не определяли.

Образец	Конверсия СО, %	$TOF \times 10^2$, c^{-1}	Селективность, %				Производительность по		
			CH_4	$C_2 - C_4$	C ₅₊	CO ₂	углеводородам C_{5+} , кг M_{Kat}^{-3} ч ⁻¹		
1	79	8.0	19.6	9.0	68.1	3.2	117		
2	77	7.8	18.5	11.8	67.3	2.4	108		
3	71	7.2	18.0	12.5	67.3	2.2	106		

Таблица 3. Показатели каталитической активности образцов*

Примечание. ТОF – число оборотов реакции. * Продолжительность испытаний – 100 ч.

оказывает незначительное влияние на кинетику $C\Phi T$ и селективность процесса в отношении как газообразных, так и C_{5+} -углеводородов.

Фракционный и групповой составы конденсированных углеводородов, полученных на катализаторах 1–3, существенно различаются (табл. 4, рис. 4). В продуктах, синтезированных на образце 1, превалируют углеводороды линейного строения (табл. 4), в незначительных количествах присутствуют изопарафины и олефины, около трети последних составляют α -олефины. Анализ группового состава продуктов синтеза на образце 2 показал, что вклад протекающих на кислотных центрах цеолита реакций ГО углеводородов довольно высок: наблюдается значительное по сравнению с образцом 1 увеличение содержания изопарафинов и олефинов (преимущественно разветвленных, α -олефины детектируются лишь в следовых количествах), а селективность по углеводородам С₁₉₊ снижается втрое. В продуктах синтеза на образце 3 зафиксировано почти трехкратное возрастание содержания изопарафинов и пятикратное умень-

Рис. 3. ПЭМ-изображение восстановленного гибридного катализатора 2 (а) и гистограмма распределения в нем частиц кобальта по размеру (б).

КИНЕТИКА И КАТАЛИЗ том 62 № 1 2021

ЯКОВЕНКО и др.

	FJ Ppandironnin		Пород	,				I
Образец	Группа уляродородор	Фракционный состав, мас. %			Cuanto		1120 / II	o /
	труппа углеводородов	C ₅ -C ₁₀	C ₁₁ -C ₁₈	C ₁₉₊	Сумма		из0/Н	0/11
1	<i>н</i> -Парафины	31.8	28.1	18.1	78.0	00 /		
	Изопарафины	3.5	4.7	2.2	10.4	00.4		
	Олефины	7.9	2.8	0.1	10.8	11.6	0.13	0.13
	Разв. Олефины	0.8	-	—	0.8	11.0		
	Сумма	44.0	35.6	20.4	1	00		
2	н-Парафины	12.5	18.4	5.2	36.1	58.1		
	Изопарафины	9.5	10.8	1.7	22.0			
	Олефины	18.3	2.3	—	20.6	41.0	0.76	0.72
	Разв. олефины	14.0	7.3	—	21.3	41.7		
	Сумма	54.3	38.8	6.9	100		1	
3	<i>н</i> -Парафины	20.7	15.5	7.1	43.3	01.0		
	Изопарафины	28.8	16.0	3.8	48.6	71.7		
	Олефины	3.8	0.8	—	4.6	<u> </u>	1.09	0.09
	Разв. олефины	2.9	0.6	—	3.5	0.1		
	Сумма	56.2	32.9	10.9	100			

Таблица 4. Групповой и фракционный состав углеводородов, полученных на катализаторах

Примечание. *изо/н* – отношение содержания углеводородов изостроения к содержанию углеводородов нормального строения; о/п – отношение содержания олефинов к содержанию парафинов. Прочерки означают отсутствие соответствующих углеводородов в продуктах.

шение содержания олефинов по сравнению с углеводородами, полученными на катализаторе 2. Однако выход восков C₁₉₊ тоже заметно вырастает.

Заметим, что при одинаковых условиях проведения процесса достигаются близкие значения конверсии СО на катализаторе Co(15 мас. %)/ ZSM-5 [27] и на гибридном катализаторе 2. Тот факт, что катализатор 2 содержит вдвое меньше кобальта, свидетельствует о его более высокой активности в СФТ. Примечательно, что он оказался также более активным по сравнению с катализатором Co/ZSM-5 [27] и в ГО углеводородов. Действительно, селективность по отношению к С₁₉₊ в реакции на катализаторе 2 (6.9%) почти в два раза ниже таковой для С₂₃₊ (11.6%) в работе [27], тогда как селективность образования углеводородов бензинового ряда С₅–С₁₀ на образце 2 (54.3%) была в 2.3 раза выше значения, достигнутого в [27] для углеводородов С₅–С₁₁ (23.9%).

Отметим, что длина углеродной цепи синтезированных углеводородов на трех изученных катализаторах не превышает тридцати С-атомов. Распределение *н*-парафинов С₅₊ для всех образцов является бимодальным с максимумами в области

Рис. 5. Изменение конверсии CO во времени в продолжительном испытании катализатора 2. Условия реакции: $T = 250^{\circ}$ C, P = 1.0 МПа, $H_2/CO = 2$, $OC\Gamma = 1000$ ч⁻¹.

бензиновой и дизельной фракций. В случае катализатора 1 максимумы приходятся на C_7-C_9 и $C_{15}-C_{17}$, а для образцов 2 и 3 они немного смещены в сторону более коротких цепей — C_7 и $C_{13}-C_{16}$ соответственно (рис. 4а). Для цеолитсодержащих каталитических систем 2 и 3 бимодальность распределения углеводородов C_{5+} имеет более сглаженный характер, чем для катализатора 1.

Важной характеристикой потенциального промышленного катализатора является стабильность его работы. Мы испытали активность гибридного катализатора 2 в течение 1000 ч в потоке (рис. 5); условия процесса приведены в подписи к рисунку. Конверсия СО постепенно снижается во времени, приближаясь к асимптоте при $X_{CO} \approx 51\%$. Эти результаты качественно согласуются с данными о скорости дезактивации компонента Фишера-Тропша гибридной каталитической системы Chevron [15]. Однако, несмотря на более жесткие условия процесса по сравнению с теми, что использовали в работе [15], в нашем случае общее падение конверсии СО оказалось намного меньше. Действительно, после 1000 ч в потоке потеря активности катализатора 2 составила всего 17-20%, тогда как в [15] снижение этого показателя за то же время реакции было почти втрое больше. Таким образом, составляющая СФТ в гибридном катализаторе 2 работает достаточно стабильно при высокой конверсии СО и, соответственно, при высоком парциальном давлении водяного пара: скорость его дезактивации заметно ниже, чем у гибридной каталитической системы Chevron.

Рис. 6. Изменение во времени соотношения *изо/н* для углеводородов C₄ (проанализировано с помощью газовой хроматографии в режиме онлайн), C₁₂ и C₁₆ (анализ продуктов, накопленных в течение 100 ч работы в потоке), полученных на гибридном катализаторе 2. Условия процесса: $T = 250^{\circ}$ C, P = 1.0 МПа, $H_2/CO = 2$, $OC\Gamma = 1000$ ч⁻¹.

Одной из главных проблем, связанных с промышленным применением цеолитсодержаших бифункциональных катализаторов, является стабильность и срок службы кислотного компонента по сравнению с компонентом СФТ [28]. Основные пути дезактивации цеолитной части гибридных катализаторов – закупоривание пор цеолита восковыми или углеродными отложениями и блокирование кислотных центров коксом [15, 28]. Разветвление первичных углеводородов СФТ может происходить только в результате реакции, катализируемой кислотной составляющей гибридного катализатора, что делает отношение изо/н удобным показателем эффективности цеолита [15]. Мы наблюдали, что степень разветвления, а также выход углеводородов С₁₉₊ остаются почти неизменными в течение 1000 ч работы катализатора 2 в потоке. Из рис. 6 видно, что отношения изо/н для углеводородов C₄, C₁₂ и C₁₆, полученных на гибридном катализаторе 2, практически постоянны в течение 1000-часового эксперимента. На основании полученных результатов можно заключить. что цеолитный компонент не вносит заметного вклада в общую дезактивацию гибридного катализатора 2.

Таким образом, гибридный катализатор 2 демонстрирует очевидные преимущества по сравнению с катализатором Шевроном. Во-первых, он стабильно работает при бо́льших значениях конверсии CO, что особенно важно для применения в мобильных модульных установках переработки попутного нефтяного газа на удаленных нефтяных месторождениях. Во-вторых, несмотря на работу при высоких конверсиях СО и, соответственно, высоком парциальном давлении паров воды, компонент СФТ гибридного катализатора 2 дезактивируется намного медленнее, чем в гибридной каталитической системе Шеврона [15].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Известно, что синтез углеводородов по методу Фишера-Тропша на монофункциональных катализаторах (к примеру, Co/SiO₂, Co/Al₂O₃ и др.) протекает по полимеризационно-конденсационному механизму, селективность образования продуктов подчиняется распределению Андерсона-Шульца-Флори [29] с унимодальным молекулярно-массовым распределением. Такое унимодальное распределение синтезированных углеводородов с максимумом при C₁₆-C₁₈ было получено в [14] на катализаторе Co/SiO₂ в условиях процесса, близких к нашим. Продукты были представлены углеводородами до С₅₀ включительно преимущественно линейного строения с незначительным количеством изопарафинов – продуктов вторичной изомеризации. Селективность процесса авторы объясняли отсутствием сильных кислотных центров на силикагелевом носителе, которые могли бы инициировать образование карбениевых ионов с последующей изомеризацией, β-элиминированием и образованием укороченных изомеров и линейных углеводородов [30, 31].

В наших экспериментах на катализаторе 1 образуются углеводороды с бимодальным распределением (рис. 4а) и существенно меньшей длиной цепи, до 30 С-атомов. Доля изопарафинов при этом вдвое выше ($u_{30}/\mu = 0.13$), чем в системе, исследованной в [14] (*изо/н* = 0.06). Эти факты свидетельствуют о заметном вкладе вторичных реакций гидрокрекинга углеводородов на кислотных центрах оксида алюминия, входящего в состав катализатора 1 [32]. Максимум на графике распределения углеводородов в области С15-С17 на рис. 4а практически совпадает с тем, что наблюдался для Co/SiO_2 при $C_{16}-C_{18}$ в работе [14]. По-скольку у катализатора Co/SiO_2 отсутствуют сильные кислотные центры, ответственные за реакции гидрокрекинга и изомеризации углеводородов, этот максимум можно считать присущим распределению углеводородов, образующихся в СФТ в указанных условиях проведения процесса.

Замена инертного кварца на цеолит H-ZSM-5 приводит к значительному увеличению выхода разветвленных парафинов и олефинов (при этом

 α -олефины обнаруживаются лишь в следовых количествах) и существенному снижению выхода углеводородов С₁₉₊ (табл. 3, рис. 4б). Продукты характеризуются более узким распределением вследствие подавления реакций образования углеводородов с длиной цепи более С₁₆. Такая ситуация обусловлена ростом количества кислотных центров при введении цеолита в состав катализатора (табл. 2).

Нанесенные гибридные катализаторы, как правило, проявляют более низкую активность в реакциях синтеза углеводородов. Так, причиной меньшей активности в СФТ на Co/ZSM-5 [27] по сравнению с катализатором 2 может быть сильное взаимодействие между активным металлом и цеолитом, приводящее к ухудшению восстанавливаемости кобальта [7]. С другой стороны, пропитка цеолита раствором кобальта способствует снижению активности также и компоненты ГО углеводородов за счет блокирования кислотных центров цеолита наносимым металлом, что уменьшает общую кислотность катализатора. Очевидно, эти факторы и обусловливают более высокую производительность катализатора 2 по сравнению с описанным в [27] катализатором Co/ZSM-5 как в СФТ, так и в ГО образующихся углеводородов.

В настоящее время установлены основные закономерности превращения углеводородов на кислотных центрах цеолита [31, 33]. Ключевыми интермедиатами превращений парафинов (изомеризация, крекинг, олигомеризация и др.) на кислотных катализаторах являются ионы карбения. Они легко образуются в присутствии следовых количеств олефинов за счет обратимого протонирования последних на бренстедовских кислотных центрах цеолита. Карбениевые ионы претерпевают скелетную перестройку, а последующее взаимодействие перегруппированных ионов со спилловерными формами водорода приводит к появлению изопарафинов и регенерации кислотного центра цеолита. Ионы карбения с числом атомов углерода 7 и более подвергаются β-расщеплению с получением алкенов и новых R⁺ с меньшим числом атомов углерода (реакция крекинга), а алкены легко реагируют с R⁺, давая ионы с более длинными углеродными цепями (реакция олигомеризации) [31].

Поскольку олефины, включая α -олефины, являются одними из продуктов синтеза на катализаторе 1 (рис. 4а), можно полагать, что промежуточные ионы карбения при использовании катализатора 2 образуются преимущественно путем протонирования олефинов, адсорбированных на бренстедовских кислотных центрах цеолита. Данное предположение подтверждается тем, что α -олефины в продуктах синтеза на образце 2 обнаружены только в следовых количествах. Спилловер водорода в гибридном катализаторе, вероятно, может способствовать ГО первичных углеводородов, генерируемых в СФТ [27]. Молекулы H_2 , диссоциативно адсорбированные на активных центрах Co⁰, в основном расходуются на синтез углеводородов, но некоторая их часть может перетекать с поверхности металла на носитель, а затем на ближайшие частицы цеолита. Различают две формы спилловерного водорода – гидридоподобный H_{so}^- и протоноподобный H_{so}^+ [33, 34]. Первый быстро гидрирует промежуточный ион карбения в парафин, а второй регенерирует бренстедовский кислотный центр [31, 33].

Однако водород, будучи диссоциативно адсорбированным на компоненте СФТ гибридного катализатора, преимущественно идет на синтез углеводородов, и его перетекание на цеолит недостаточно эффективно из-за пространственного разделения компонент СФТ (Co–Al₂O₃/SiO₂) и ГО углеводородов (H-ZSM-5). Адсорбированные на поверхности цеолита промежуточные ионы карбения при дефиците спилловерного водорода подвергаются β -расщеплению с образованием олефинов [31]. По-видимому, именно последними реакциями объясняется существенное увеличение доли олефинов на гибридном катализаторе 2.

Повышенная способность металлического палладия к диссоциативной сорбции водорода по сравнению с Co⁰ в сочетании с более тесным контактом Pd и цеолита благоприятствует возрастанию концентрации спилловерного водорода на поверхности ZSM-5. Это приводит к увеличению количества бренстедовских кислотных центров, и, как следствие, к росту поверхностной концентрации ионов карбения, являющихся ключевыми интермедиатами в процессе ГО углеводородов. В итоге гибридный катализатор 3, содержащий в своем составе Pd-ZSM-5, должен проявлять большую активность в реакциях ГО углеводородов по сравнению с катализатором 2. Действительно, сравнение продуктов синтеза, полученных на образцах 2 и 3 (табл. 3, рис. 4), подтверждает такое предположение. Продукты, синтезированные в присутствии катализатора 3, имеют более короткие цепи, до С₂₆ (рис. 4в), повышенное содержание изопарафинов (отношение изо/н увеличивается в полтора раза) и включают существенно меньшее количество непредельных углеводородов (отношение олефины/парафины (о/п) уменьшается в 8 раз). Наблюдаемые изменения в составе продуктов свидетельствуют о большей активности катализатора 3 в реакциях гидрокрекинга, гидроизомеризации и гидрирования первичных углеводородов по сравнению с образцом 2.

Вместе с тем, в продуктах синтеза на катализаторе 3 возрастает содержание углеводородов С19+ при несколько меньшей конверсии СО. Это объясняется тем, что водород в синтез-газе расходуется не только на получение углеводородов в СФТ, но и на их гидрокрекинг, что приводит к обеднению синтез-газа водородом. Известно [35], что снижение парциального давления водорода уменьшает скорость гидрирования СО, но увеличивает вероятность роста цепи, повышая в результате селективность образования длинноцепочечных углеводородов (табл. 4, рис. 4в). К такому же эффекту могут приводить и процессы ГО углеводородов, что связано с протеканием реакций их олигомеризации вследствие взаимодействия олефинов и ионов карбения [31].

ЗАКЛЮЧЕНИЕ

Разработан новый гибридный бифункциональный кобальтсодержащий катализатор синтеза Фишера-Тропша и гидрооблагораживания первичных продуктов с получением углеводородов топливной фракции, демонстрирующий большую каталитическую активность и стабильность работы по сравнению с литературными данными. Методика его приготовления предполагает использование готового катализатора Co-Al₂O₃/SiO₂, что устраняет потерю активного металла в виде трудновосстанавливаемых соединений Со и сохраняет оптимальные для высокой производительности в отношении конденсированных углеводородов размеры наночастиц кобальта 8 нм. С другой стороны, отсутствие стадии пропитки гибридного катализатора раствором кобальта предотвращает блокирование кислотных центров цеолита, сохраняя тем самым его активность в гидрооблагораживании первичных углеводородов. Размещение в наноразмерной близости кобальтового компонента СФТ и цеолитной составляющей обеспечивает повышенную активность гибридного катализатора как в СФТ, так и в гидрооблагораживании (гидрокрекинге/гидроизомеризации) углеводородов. Оксид алюминия в разработанной гибридной каталитической системе служит не только связующим веществом, но и катализатором гидрокрекинга/гидроизомеризации первичных углеводородов. Гибридный катализатор, содержащий нанесенный на цеолит палладий, проявляет или большую? активность в реакциях гидрооблагораживания углеводородов, следствием чего является более компактное распределение углеводородов, резкое уменьшение содержания олефинов и увеличение выхода изомерных соединений в продуктах синтеза, что улучшает эксплуатационные характеристики топлива.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках государственного задания, шифр заявки 2019-0990, а также гранта Президента РФ для молодых ученых-кандидатов наук МК-364.2019.3 с использованием оборудования ЦКП "Нанотехнологии" ЮРГПУ (НПИ) имени М.И. Платова.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- Tso W.W., Niziolek A.M., Onel O., Demirhan C.D., Floudas C.A., Pistikopoulos E.N. // Comput. Chem. Eng. 2018. V. 113. P. 222.
- Fu T., Chang J., Shao J., Li Z. // J. Energy Chem. 2017. V. 26. P. 139.
- 3. Савостьянов А.П., Нарочный Г.Б., Яковенко Р.Е., Астахов А.В., Земляков Н.Д., Меркин А.А., Комаров А.А. // Катализ в промышленности. 2014. № 3. С. 43. (Savost'yanov A.P., Narochnyi G.B., Yakovenko R.E., Astakhov A.V., Zemlyakov N.D., Merkin A.A., Komarov A.A. // Catalysis in Industry. 2014. V. 6. № 3. Р. 212.)
- 4. Яковенко Р.Е., Нарочный Г.Б., Зубков И.Н., Непомнящих Е.В., Савостьянов А.П. // Кинетика и катализ. 2019. Т. 60. № 2. С. 235. (Yakovenko R.E., Narochnyi G.B., Zubkov I.N., Nepomnyashchikh E.V., Savosť yanov A.P. // Kinet. Catal. 2019. V. 60. № 2. P. 212.)
- 5. Синева Л.В., Асалиева Е.Ю., Мордкович В.З. // Успехи химии. 2015. Т. 84. № 11. С. 1176. (Sineva L.V., Asalieva E.Y., Mordkovich V.Z. // Russ. Chem. Rev. 2015. V. 84. № 11. Р. 1176.)
- Flores C., Batalha N., Ordomsky V.V., Zholobenko V.L., Baaziz W., Marcilio N.R., Khodakov A.Y. // Chem-CatChem. 2018. V. 10. P. 2291.
- Adeleke A.A., Liu X., Lu X., Moyo M., Hildebrandt D. // Rev. Chem. Eng. 2020. V. 36. I. 4. P. 437.
- 8. *Yao M., Yao N., Liu B., Li S., Xu L., Li X.* // Catal. Sci. Technol. 2015. V. 5. P. 2821.
- Valero-Romero M.J., Sartipi S., Sun X., Rodríguez-Mirasol J., Cordero T., Kapteijn F., Gascon J. // Catal. Sci. Technol. 2016. V. 6. P. 2633.
- Kang J., Wang X., Peng X., Yang Y., Cheng K., Zhang Q., Wang Y. // Indus. Eng. Chem. Res. 2016. V. 55. P. 13008.
- 11. Nakanishi M., Uddin M.A., Kato Y., Nishina Y., Hapipi A.M. // Catal. Today. 2017. V. 291. P. 124.
- 12. Wang Y., Jiang Y., Huang J., Wang H., Li Z., Wu J. // RSC Adv. 2016. V. 6. P. 107498.
- 13. Kruse N., Machoke A.G., Schwieger W., Güttel R. // ChemCatChem. 2015. V. 7. P. 1018.

- Subramanian V., Zholobenko V.L., Cheng K., Lancelot C., Heyte S., Thuriot J., Paul S., Ordomsky V.V., Khodakov A.Y. // ChemCatChem. 2016. V. 8. P. 380.
- 15. Kibby C., Jothimurugesan K., Das T., Lacheen H.S., Rea T., Saxton R.J. // Catal. Today. 2013. V. 215. P. 131.
- Martínez A., Valencia S., Murciano R., Cerqueira H.S., Costa A.F., S.-Aguiar E.F. // Appl. Catal. A: General. 2008. V. 346. P. 117.
- 17. Martinez A., Rollan J., Arribas M., Cerqueira H., Costa A., Saguiar E. // J. Catal. 2007. V. 249. P. 162.
- 18. Tsubaki N., Yoneyama Y., Michiki K., Fujimoto K. // Catal. Commun. 2003. V. 4. P. 108.
- Rytter E., Tsakoumis N.E., Holmen A. // Catal. Today. 2016. V. 261. P. 3.
- Нарочный Г.Б., Яковенко Р.Е., Савостьянов А.П., Бакун В.Г. // Катализ в промышленности. 2016. № 1. С. 37. (Narochnyi G.B., Yakovenko R.E., Savosť yanov A.P., Bakun V.G. // Catalysis in Industry. 2014. V. 6. № 2. P. 139.)
- 21. *Diehl F., Khodakov A.Y.* // Oil & Gas Science and Technology Revue de l'IFP. 2008. V. 64. P. 11.
- Савостьянов А.П., Нарочный Г.Б., Яковенко Р.Е., Митченко С.А., Зубков И.Н. // Нефтехимия. 2018.
 Т. 58. № 1. С 80. (Savost'yanov A.P., Narochnyi G.B., Yakovenko R.E., Mitchenko S.A., Zubkov I.N. // Petrol. Chem. 2018. V. 58. № 1. Р. 76.)
- 23. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. web site: www.icdd.com (2014).
- Prieto G., Martínez A., Concepción P., Moreno-Tost R. // J. Catal. 2009. V. 266. P. 129.
- 25. Young R.A. The Rietveld Method. Oxford University Press, 1995. P. 298.
- Яковенко Р.Е., Зубков И.Н., Нарочный Г.Б., Папета О.П., Денисов О.Д., Савостьянов А.П. // Кинетика и катализ. 2020. Т. 61. № 2. С. 278. (Yakovenko R.E., Zubkov I.N., Narochniy G.B., Papeta O.P., Denisov O.D., Savost'yanov A.P. // Kinet. Catal. 2020. V. 61. № 2. P. 310.)
- 27. Wu L., Li Z., Han D., Wu J., Zhang D. // Fuel Process. Technol. 2015. V. 134. P. 449.
- Sartipi S., Makkee M., Kapteijn F., Gascon J. // Catal. Sci. Technol. 2014. V. 4. P. 893.
- 29. Anderson R.B., Friedel R.A., Storch H.H. // J. Chem. Phys. 1951. V. 19. P. 313.
- Komvokis V.G., Karakoulia S., Iliopoulou E.F., Papapetrou M.C., Vasalos I.A., Lappas A.A., Triantafyllidis K.S. // Catal. Today. 2012. V. 196. P. 42.
- 31. Ono Y. // Catal. Today. 2003. V. 81. P. 3.
- Gafurov M.R., Mukhambetov I.N., Yavkin B.V., Mamin G.V., Lamberov A.A., Orlinskii S.B. // J. Phys. Chem C. 2015. V. 119. P. 27410.
- 33. Fujimoto K. // Stud. Surf. Sci. Catal. 1999. V. 127. P. 37.
- 34. Ueda R., Kusakari T., Tomishige K., Fujimoto K. // J. Catal. 2000. V. 194. P. 14.
- Tristantini D., Lögdberg S., Gevert B., Borg Ø., Holmen A. // Fuel Process. Technol. 2007. V. 88. P. 643.

КИНЕТИКА И КАТАЛИЗ том 62 № 1 2021

The Hybrid Catalyst of the Selective Synthesis of Fuel Range Hydrocarbons by the Fischer–Tropsch Method

R. E. Yakovenko^{1, *}, I. N. Zubkov¹, A. P. Savost'yanov¹,

V. N. Soromotin¹, T. V. Krasnyakova², O. P. Papeta¹, and S. A. Mitchenko^{1, 2}

¹Platov South-Russian State Polytechnic University (NPI), Prosveshcheniya Str., 132, Novocherkassk, 346428 Russia ²Litvinenko Institute of Physical Organic Chemistry and Coal Chemistry, Donetsk, 83114 Ukraine *e-mail: jakovenko.39@gmail.com

The results of development of hybrid catalyst for one-pot synthesis of liquid hydrocarbons by Fischer– Tropsch method are performed. The catalyst was synthesized by mechanical mixing and molding powders of $Co-Al_2O_3/SiO_2$, zeolite HZSM-5 and boemite. The zeolite was promoted with palladium by ion exchange (1.0 wt %). The catalysts were characterized by the X-ray phase analysis, BET, scanning and transmission electron spectroscopy, thermoprogrammed desorption of ammonia and hydrogen, catalytic tests was at a temperature of 240°C, a pressure of 2.0 MPa, an GHSV of 1000 h⁻¹. Proposed preparation method allows to obtain a hybrid catalyst with a stable structure, with average cobalt particle size of 8 nm, which has high performance and selectivity for the formation of liquid hydrocarbons from CO and H₂.

Keywords: Fischer–Tropsch synthesis, hybrid catalyst, HZSM-5 zeolite, hydrocarbons, motor fuels, catalysts performance