УДК 542.973:547.262:547.264:546.824-31

ПОВЫШЕНИЕ СТАБИЛЬНОСТИ Ni/TiO₂-КАТАЛИЗАТОРОВ В РЕАКЦИИ Конденсации этанола гербе: влияние второго металлического компонента

© 2021 г. Shuaiqi Li^a, Xiaoxu Han^a, Hualiang An^{a, *}, Xinqiang Zhao^{a, **}, Yanji Wang^a

^a Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300000 China

> *e-mail: anhl@hebut.edu.cn **e-mail: zhaoxq@hebut.edu.cn Поступила в редакцию 20.02.2021 г. После доработки 10.04.2021 г. Принята к публикации 19.04.2021 г.

Конденсация этанола Гербе – это зеленый процесс получения н-бутанола. Разработка высокоэффективных твердых катализаторов для него по-прежнему является узким местом в реализации реакции. В настоящей работе методом совместной пропитки приготовлена серия многофункциональных катализаторов Ni-X/TiO₂ (X = Ru, Pt, Ir, Au, Cu, Mn, Co, Fe) с целью улучшения их каталитических характеристик, в особенности стабильности. Обнаружено, что введение второго металлического компонента изменяет кислотность и основность катализатора Ni/TiO₂. Количество кислотных центров влияет на конверсию этанола, в то время как количество основных центров – на селективность по *н*-бутанолу. Среди катализаторов Ni-X/TiO₂ наилучшими каталитическими характеристиками обладает Ni-Cu/TiO₂. Исследована зависимость каталитических характеристик Ni-Cu/TiO₂ от условий его приготовления. Найдены следующие оптимальные условия: массовое соотношение Ni/Cu = 59 : 1, загрузка Ni–Cu – 12.5 мас. %, температура прокаливания – 450° С, время прокаливания -2 ч, температура восстановления -400° С и время восстановления -4 ч. В условиях реакции при загрузке 10 мас. % катализатора, температуре реакции 210°С и времени реакции 10 ч конверсия этанола и селективность по н-бутанолу составляли 47.9 и 44.4% соответственно. Катализатор Ni-Cu/TiO₂ значительно стабильнее Ni/TiO₂ за счет взаимодействия Ni c Cu. Каталитическая активность Ni-Cu/TiO₂ существенно не снижалась после проведения трех каталитических циклов.

Ключевые слова: этанол, *н*-бутанол, реакция Гербе, катализатор Ni–Cu/TiO₂, стабильность **DOI:** 10.31857/S0453881121050026

ВВЕДЕНИЕ

Уменьшение запасов сырой нефти и рост загрязнения окружающей среды побуждают научные круги и промышленность уделять больше внимания производству жидкого биотоплива. Биоэтанол часто добавляют в бензин, исходя из двух вышеупомянутых проблем. В отличие от этанола плотность энергии и теплота испарения *н*-бутанола близки к таковым бензина, и его можно

смешивать в любых пропорциях с бензином без необходимости замены двигателя автомобиля. По этой причине н-бутанол называют "усовершенствованным биотопливом" с хорошими экологическими преимуществами [1]. Традиционное промышленное производство н-бутанола основано на процессах карбонилирования при низком давлении и биологической ферментации, недостатком которых являются жесткие условия реакции и низкая производительность. Напротив, синтез *н*-бутанола конденсацией этанола Гербе (КЭГ) характеризуется короткой технологической схемой, чистым процессом реакции и низкими производственными затратами [2]. Кроме того, ряд производных, включая сложные и простые эфиры, имеют большую прикладную ценность и могут применяться в самых разных отрас-

Сокращения и обозначения: КЭГ — конденсация этанола Гербе; ИСП — индуктивно-связанная плазма; NH₃-TПД — термопрограммированная десорбция NH₃, щелочности (CO₂-TПД — термопрограммированная десорбция CO₂; H₂-TПР — термопрограммированная реакция H₂; БЭТ — метод Брунауэра—Эммета-Теллера; ВЈН — метод Вагrett— Joyner—Halenda; ЕО — этанол; ВО — *н*-бутанол; ЕВ — 2-этилбутанол; НО — 1-гексанол; ЕН — 2-этил-1-гексанол; X — конверсия; Y — выход; S — селективность.

лях промышленности, включая нефтехимию, сельское хозяйство, медицину и косметику [3, 4].

Реакция КЭГ осуществляется в три этапа: дегидрирование этанола в ацетальдегид, альдольная самоконденсация ацетальдегида в 2-кротоновый альдегид и гидрирование 2-кротонового альдегида в *н*-бутанол [5]. Таким образом, катализаторы КЭГ должны обладать способностью катализировать реакции дегидрирования-гидрирования и альдольной конденсации, то есть они должны быть многофункциональными катализаторами. В работе [6] использовали $M-CeO_2/AC$ (M = Cu, Fe, Co, Ni, Pd) для катализа КЭГ и обнаружили, что Pd-CeO₂/AC был наиболее эффективным. Кроме того, добавление Pd улучшало стабильность катализатора за счет уменьшения накопления углерода на поверхности катализатора. Чистяков и др. [7] изучали реакцию самоконденсации этанола на катализаторе Au–Ni/Al₂O₃. Было показано, что добавление небольшого количества Ni способствует диспергированию металлического Au. Синергетический эффект Au-Ni может ингибировать спекание зерен Аи и улучшать стабильность катализатора. В работе [8] сравнивали характеристики Ni-, Cu- и Ni-Cu-катализаторов на носителе гидротальците (НТ) в КЭГ и нашли, что Ni-Cu/HT обладает самой высокой каталитической активностью и стабильностью. В [8] предположили, что превосходные характеристики Ni-Cu/HT обусловлены однородным распределением Ni-Cu, образованием сплава Ni-Cu и меньшим, чем в катализаторах Ni/HT и Cu/HT, количеством кислотных центров. Авторы настоящей работы оценили каталитические характеристики катализатора Ni/TiO₂ в КЭГ [9]. Селективность по спиртам С₄-С₈ достигала почти 70% (41.4% н-бутанола) при почти 50% конверсии этанола при 210°С за 10 ч. Однако при повторном использовании катализатора Ni/TiO₂ конверсия этанола снижалась с 49.2 до 36.2%, а селективность по н-бутанолу уже в третьем цикле уменьшалась с 41.7 до 36.8%. Анализ катализатора методом масс-спектрометрии с индуктивно-связанной плазмой (ІСР) до и после использования показал, что катализатор Ni/TiO₂ дезактивировался из-за потери Ni в ходе реакции.

В настоящей работе серия многофункциональных катализаторов Ni–X/TiO₂ (X = Ru, Pt, Ir, Au, Cu, Mn, Co, Fe) была приготовлена методом совместной пропитки с целью улучшения каталитических характеристик, а также возможности их повторного использования. Проанализировано влияние второго металлического компонента на каталитические свойства Ni/TiO₂. После скрининга образец Ni–Cu/TiO₂ был выбран для исследования зависимости его каталитических характеристик от условий приготовления, а затем определена стабильность работы Ni–Cu/TiO₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализаторов Ni-X/TiO₂

В качестве примера рассмотрим приготовление катализатора Ni–Cu/TiO₂. Прекурсор TiO₂ синтезировали золь–гель-методом с бутилтитанатом в качестве источника титана. TiO₂ получали прокаливанием прекурсора при 450°C в течение 1 ч [10]. Катализатор Ni–Cu/TiO₂ готовили методом совместной пропитки. Полученное твердое вещество прокаливали в муфельной печи при 450°C в течение 2 ч и восстанавливали при 400°C в течение 4 ч в смеси водорода и азота с объемным соотношением $V_{N_2}: V_{H_2} = 60: 40$ [9]. Другие катализаторы Ni–X/TiO₂ синтезировали аналогичным способом.

Характеризация катализаторов

Удельную поверхность, объем пор и диаметр пор образцов измеряли на анализаторе удельной поверхности и пористости ASAP2020M + C ("Micromeritics", США). Удельную поверхность рассчитывали методом БЭТ, а объем и диаметр пор образцов – методом ВЈН. Фазовый анализ образцов проводили на рентгеновском дифрактометре D/max-2500 ("Rigaku", Япония). Содержание металлов в образцах анализировали с помощью атомно-эмиссионного спектрометра Optima 7300V ("PerkinElmer", США) с индуктивно связанной плазмой. Определение кислотности (NH₃-ТПД), щелочности (СО₂-ТПД) и восстановительной способности (Н2-ТПР) образцов выполняли на приборе для химической адсорбции AutoChem II-2920 ("Micromeritics", США). Энергию связи электронов каждого элемента на поверхности катализатора измеряли на фотоэлектронном спектрометре Axis Ultra DLD ("Kratos", Великобритания) и калибровали по стандартному значению $E_{CB}(C1s) = 284.6$ эВ. Конкретные операции по определению характеристик катализатора описаны в наших предыдущих работах [10, 11].

Методика проведения реакции КЭГ

Реакцию КЭГ проводили в автоклаве из нержавеющей стали объемом 100 мл, футерованном тефлоном. Типичная методика работы описана в предыдущей публикации [9]. Жидкие продукты (конденсируемые компоненты) анализировали количественно с помощью газового хроматографа GC-2018 ("Shimazu", Япония), оборудованного пламенно-ионизационным детектором (ПИД), работающим при 280°С. Компонентный состав рассчитывали количественно методом внутреннего стандарта (внутренний стандарт – толуол). Газовые продукты количественно анализировали на том же газовом хроматографе, оборудованном детектором по теплопроводности, при 150°С. Для количественного расчета использовали метод внешнего стандарта.

Конверсию этанола, выход и селективность по *н*-бутанолу находили следующим образом:

$$X_{\rm EO} = \frac{W_{\rm EO}^0 - W_{\rm EO}}{W_{\rm EO}^0},$$
$$Y_{\rm BO} = \frac{W_{\rm BO}}{W_{\rm EO}^0 \times 0.804},$$
$$S_{\rm BO} = \frac{Y_{\rm BO}}{X_{\rm EO}},$$

где $W_{\rm BO}$ – количество образовавшегося *н*-бутанола (г), $W_{\rm EO}$ – количество оставшегося этанола (г), $W_{\rm EO}^0$ – количество загруженного этанола (г); X – конверсия, Y – выход и S – селективность; 0.804 – моль образовавшегося *н*-бутанола на моль

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

превращенного этанола.

Скрининг второго металлического компонента

Катализаторы Ni $-X/TiO_2$ (X = Ru, Pt, Ir, Au, Си, Мп, Со или Fe) с массовым соотношением Ni: X = 39 : 1 и содержанием Ni-X равным 12.0 мас. % были приготовлены прокаливанием при 450°С в течение 2 ч с последующим восстановлением при 400°С в течение 4 ч в атмосфере $V_{\rm H_2}: V_{\rm N_2} = 40: 60.$ Характеристики катализаторов Ni-X/TiO₂ в КЭГ иллюстрирует рис. 1. Конверсия этанола на катализаторах Ni-X/TiO₂ с благородным металлом (Ru, Pt, Ir, Au) выше, чем на катализаторах с неблагородным металлом (Cu, Mn, Со, Fe). Однако селективность по *н*-бутанолу и суммарная по спиртам в присутствии Ni-Pt/TiO₂, Ni-Ir/TiO₂, Ni-Au/TiO₂, Ni-Co/TiO₂, Ni-Fe/TiO₂ и $Ni-Mn/TiO_2$ ниже, чем на катализаторе Ni/TiO_2 . Автогенное давление в автоклаве было соответственно 4.2, 4.9, 4.2, 4.0 и 4.1 МПа, что больше, чем давление 3.6 МПа над катализатором Ni/TiO₂. Данные указывают на то, что добавление этих шести металлов не только улучшает характеристики гидрирования, но также способствует разрыву связи С–С, что приводит к образованию большего количества побочных газообразных продуктов. В присутствии катализатора, полученного совместной пропиткой Ni и Cu, селективность по н-бутанолу и общая селективность по всем спиртам была самой высокой, поэтому в качестве второго металла был выбран Си.

Чтобы проанализировать влияние второго металлического компонента на каталитические характеристики Ni/TiO₂, образцы Ni–X/TiO₂ были исследованы методами CO₂-TПД и NH₃-TПД

(рис. SI-1, дополнительные материалы). Данные по кислотно-основным центрам приведены в табл. 1. Сильные кислотные центры обнаружены в катализаторах Ni-Ru/TiO₂, Ni-Pt/TiO₂, Ni-Ir/TiO₂ и Ni–Au/TiO₂, кислотные центры средней силы – в Ni-Ru/TiO2 и Ni-Au/TiO2, а слабые кислотные центры – только в образце Ni-Pt/TiO₂. Отметим, что в других катализаторах присутствуют лишь кислотные центры средней силы. В образцах Ni-Cu/TiO₂ и Ni-Ru/TiO₂ имеются слабые, средне сильные и сильные основные центры. В катализаторах Ni-Co/TiO₂ и Ni-Ir/TiO₂ найдены только слабые осно́вные центры. В других катализаторах существуют как сильные, так и средние основные центры. Петролини (Petrolini) и др. [12] добавляли Си в MgAlO, и CaAlO_x для катализа КЭГ. Было обнаружено, что кислотные центры могут активировать этанол, в то время как основные центры больше способствуют образованию н-бутанола, а синергический катализ на кислотно-осно́вных центрах благоприятствует КЭГ. В настоящей работе катализатор Ni-Pt/TiO₂ с наибольшим количеством кислотных центров обеспечил самую высокую конверсию этанола, в присутствии Ni-Co/TiO₂ и Ni-Fe/TiO₂ с близким количеством кислотных центров значения конверсии этанола были тоже близки. Общее количество кислотных центров в катализаторах Ni–Pt/TiO₂, Ni–Ir/TiO₂, Ni– Ru/TiO₂, Ni–Au/TiO₂, Ni–Co/TiO₂ и Ni–Fe/TiO₂ больше, чем в Ni/TiO₂ (234.4 мкмоль Γ^{-1}), и конверсия этанола на этих образцах была относительно высокой. Таким образом, мы полагаем, что количество кислотных центров в основном влияет на конверсию этанола. Катализаторы Ni-Ru/TiO₂ и Ni-Cu/TiO₂ с большим количеством осно́вных центров характеризуются более высокой селективностью по *н*-бутанолу, в то время как Ni-Pt/TiO₂, Ni-Ir/TiO₂, Ni-Au/TiO₂, Ni-Mn/TiO₂, Ni-Co/TiO₂ и Ni-Fe/TiO₂ с меньшим числом осно́вных центров, чем в Ni/TiO₂ (185.5 мкмоль r^{-1}), демонстрируют относительно более низкую селективность по н-бутанолу, чем катализатор Ni/TiO₂. Катализаторы Ni-Pt/TiO₂, Ni-Au/TiO₂ и Ni-Fe/TiO₂ с одинаковым количеством основных центров обладают одинаковой селективностью по н-бутанолу. Следовательно, можно полагать, что количество щелочных центров влияет на

Влияние условий приготовления на каталитические свойства Ni–Cu/TiO₂

селективность по н-бутанолу.

Исследовано влияние условий приготовления (массовое соотношение Ni/Cu, загрузка Ni–Cu, температура прокаливания, время прокаливания, температура восстановления и время восстанов-

Рис. 1. Характеристики катализаторов Ni–X/TiO₂ в КЭГ. Условия реакции: $m_{\text{кат}}$: $m_{\text{этанол}} = 1$: 10, $T = 210^{\circ}$ C, t = 10 ч.

ления) на каталитические характеристики катализатора Ni–Cu/TiO₂ (табл. 2). По мере сокращения массового отношения Ni/Cu конверсия этанола снижалась, но селективность по *н*-бутанолу возрастала, тогда как выход *н*-бутанола сначала падал, а затем стабилизировался. При увеличении содержания Ni–Cu конверсия этанола сначала была стабильной, а затем уменьшалась, селективность по *н*-бутанолу увеличивалась, а выход *н*-бутанола сначала рос, а затем снижался. С повышением температуры прокаливания конверсия этанола возрастала, в то время как селективность по *н*-бутанолу, выход *н*-бутанола и селективность по общему количеству спиртов сначала увеличивались, а затем уменьшалась. Влияние температуры прокаливания на селек-

Катализатор	Кол-во	кислотных і	центров, мкм	юль г $^{-1}$	Кол-во осно́вных центров, мкмоль г ⁻¹					
	слабые (150–200°С)	средние (200-300°С)	сильные (300–450°С)	всего кислотных центров	слабые (150–200°С)	средние (200–300°С)	сильные (300-450°С)	всего осно́вных центров		
Ni-Ru/TiO ₂	_	156.2	86.6	242.8	69.2	66.7	62.2	198.1		
Ni-Pt/TiO ₂	170.5	_	84.3	254.8	_	104.6	74.4	179.0		
Ni–Ir/TiO ₂	_	_	247.1	247.1	142.6	_	_	142.6		
Ni-Au/TiO ₂	_	208.9	31.7	240.6	_	105.7	74.1	179.8		
Ni-Cu/TiO ₂	_	191.6	_	191.6	80.0	74.1	49.1	203.2		
Ni-Mn/TiO ₂	_	203.3	_	203.3	_	92.9	31.1	124.0		
Ni–Co/TiO ₂	_	235.9	_	235.9	157.8	_	_	157.8		
Ni-Fe/TiO ₂	_	235.1	_	235.1	—	123.2	57.0	180.2		

Таблица 1. Кислотные и основные свойства катализаторов Ni-X/TiO₂

Прочерки означают, что соответствующие кислотные/основные центры в катализаторе отсутствуют.

		Все спирты	70.1	70.3	73.8	71.1	71.0	66.0	6.69	70.7	66.4	68.7	67.2	68.8	67.5	67.1	68.8	68.5	- конверсия;
		EH	3.8	3.3	4.1	3.5	3.0	2.9	3.0	2.9	3.5	3.2	4.3	3.5	2.9	3.0	2.8	2.9	-гексанол; Х-
	<i>S</i> , %	ОН	7.2	7.0	7.0	6.2	5.6	6.5	6.6	6.6	7.0	6.5	6.5	6.7	6.6	6.4	6.3	6.4	Н — 2-этил-1-
		EB	16.0	16.3	18.0	14.9	15.8	15.1	15.9	16.6	15.8	15.6	16.6	16.3	16.3	14.2	15.4	15.3	-гексанол; ЕІ
		BO	43.1	43.7	44.7	46.5	46.6	41.5	44.4	44.6	40.1	43.4	39.8	42.3	41.7	43.5	44.3	43.9	анол; НО – 1
Vi-Cu/TiO ₂		$Y_{ m BO}, \%$	21.9	21.5	17.5	16.9	17.0	20.6	21.3	20.9	19.1	21.2	18.6	20.4	20.9	16.9	19.8	19.1	8 — 2-этилбут
геристики №		$X_{ m EO},\%$	50.9	50.0	39.0	37.4	37.0	49.6	47.9	46.9	47.7	48.8	46.7	48.2	50.0	38.8	44.6	43.5	н-бутанол; Еl
ские характ	Время восстанов- ления, ч		4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	5	танол; ВО-
а каталитиче	Темпера- тура	иура восстанов ления, °С	400	400	400	400	400	400	400	400	400	400	400	400	350	450	400	400	= 10 ч. ЕО – э
товления на	Время	прокали- вания, ч	2	2	2	2	2	2	2	2	2	2	1	3	2	2	2	2	$T = 210^{\circ}\text{C}; t =$
ювий приго	Темпера- тура	тура прокалива ния, °С	450	450	450	450	450	450	450	450	400	500	450	450	450	450	450	450	\mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T}
злияние усл	Загрузка	металла, мас. %	12.0	12.0	12.0	12.0	12.0	11.5	12.5	13.0	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	сции: <i>т</i> _{кат} : <i>т</i> – селективно
Таблица 2. I	iC . iN	Mac. : Mac.	119:1	59:1	39:1	29:1	19:1	59:1	59:1	59:1	59:1	59:1	59:1	59:1	59:1	59:1	59:1	59:1	Условия реак Y- выход; S

ПОВЫШЕНИЕ СТАБИЛЬНОСТИ Ni/TiO2-КАТАЛИЗАТОРОВ

КИНЕТИКА И КАТАЛИЗ том 62 № 5 2021

585

Ni : Cu/мас. : мас.	Энергия связи электронов, эВ										
		Ni	2+		Ni ⁰	Cu ²⁺	Cu ⁺	Cu ⁰			
119:1	855.1	860.5	872.4	879.2	852.0	942.7	_	933.3	952.7		
59:1	854.8	860.5	872.8	879.2	851.8	_	939.3	933.5	952.7		
39:1	854.8	860.3	872.6	879.3	851.6	941.7	—	933.8	952.8		
29:1	855.0	860.0	872.8	878.8	851.4	942.0	_	934.1	952.9		
19:1	854.7	860.2	872.2	878.8	851.0	942.3	_	934.2	952.9		

Таблица 3. Энергия связи электронов никеля и меди в катализаторах Ni–Cu/TiO₂ с различным массовым соотношением Ni/Cu

Прочерки означают, что состояния с соответствующими энергиями связи отсутствуют.

тивность н-бутанола в целом было незначительным. При увеличении продолжительности прокаливания конверсия этанола, селективность по *н*-бутанолу, выход *н*-бутанола и селективность по всем спиртам сначала возрастали, а затем снижались. При повышении температуры восстановления конверсия этанола падала, в то время как селективность по н-бутанолу, выход н-бутанола и селективность по всем спиртам сначала росла, а затем уменьшались. Что касается побочных продуктов, то селективность по 2-этилбутанолу снижалась, в то время как селективность по н-гексанолу и 2-этилгексанолу сильно не изменялась. По мере увеличения времени восстановления конверсия этанола, селективность по н-бутанолу, выход н-бутанола и селективность по всем спиртам сначала повышалась, а затем снижалась. В результате для приготовления Ni-Cu/TiO₂ были приняты следующие условия: массовое соотношение Ni/Cu = 59 : 1, загрузка Ni–Cu – 12.5 мас. %, температура прокаливания — 450°С, время прокаливания – 2 ч, температура восстановления – 400° С, время восстановления — 4 ч.

На рис. SI-2 (дополнительные материалы) показаны рентгенограммы образцов Ni–Cu/TiO₂ с различным массовым соотношением Ni/Cu. Как видно из рис. SI-2a, дифракционные пики анатаза TiO₂ отчетливо видны при $2\theta = 26.0^{\circ}$, 37.8°, 48.1°, 52.4° и 62.1°, а дифракционные пики рутилового TiO₂ обнаружены не были. Кроме того, дифракционные пики Ni появляются при $2\theta = 44.5^{\circ}$ и 51.0°. Дифракционный пик Си не найден из-за малого содержания элемента. Как видно из рис. SI-26, положение и интенсивность дифракционного пика Ni ($2\theta = 44.5^{\circ}$) практически не изменяется для катализаторов с различным массовым соотношением Ni/Cu и соответствует стандартной карте PDF (04-0850) металлического Ni. Это указывает на то, что Ni и Cu не образуют фазу сплава.

Проведен РФЭС-анализ катализаторов Ni–Cu/TiO₂ с различным массовым соотношением

Ni/Cu (рис. SI-3, дополнительные материалы). Данные об энергии связи электронов каждого вида в катализаторах Ni-Cu/TiO₂ представлены в табл. 3. Согласно литературным источникам [13–15] энергии связи электронов $Ni^0 2p_{3/2}$ и $Ni^0 2p_{1/2}$ составляют 852.4 и 869.4 эВ, энергии связи Ni²⁺2p_{3/2} и Ni²⁺2p_{1/2} - 853.8 эВ и 879.2 эВ. Энергии связи Си⁰2*p*_{3/2} и Си⁰2*p*_{1/2} равны 939.4 и 942.3 эВ соответственно. Пики с центрами при 852.0, 851.8, 851.6, 851.4 и 851.0 эВ были отнесены к характеристическому пику $Ni^0 2p_{3/2}$, в то время как другие пики в спектрах РФЭС $Ni2p - \kappa$ характеристическому пику Ni²⁺ (табл. 3). Появление характеристического пика Ni²⁺ указывает на присутствие NiO. Однако при рентгеноструктурном анализе NiO обнаружен не был. Поэтому мы предположили, что NiO образовался в результате окисления поверхности Ni при контакте с кислородом воздуха в процессе анализа. Пики при 933.3, 933.5, 933.8, 934.1 и 934.2 эВ отнесены к характеристическому пику Cu⁰2*p*^{3/2}, а пики при 952.7, 952.8 и 952.9 эВ – к характеристическому пику Cu⁰2p_{1/2}. Пик при 939.3 эВ соответствует характеристическому пику Си⁺2*p*_{3/2}, а пики при 941.7, 942.0 и 942.3 эВ – характеристическому пику Cu²⁺2p_{3/2}. Таким образом, с увеличением массового отношения Ni/Cu энергия связи металлического Ni смещается в сторону меньших энергий связи на 0.4, 0.6, 0.8, 1.0 и 1.3 эВ, в то время как энергия связи металлической Си сдвигается в сторону больших энергий связи на 0.4, 0.6, 0.9, 1.2 и 1.3 эВ по сравнению с литературными данными об энергии связи электронов Ni⁰2 $p_{3/2}$ и Cu⁰2 $p_{3/2}$. Это подтверждает наличие взаимодействия Ni и Cu, т.е. изменение энергии связи электронов Ni и Cu. C повышение массового отношения Ni/Cu взаимодействие между Ni и Cu усиливается.

Текстурные свойства катализаторов Ni–Cu/TiO₂ с различным содержанием Ni–Cu представлены в табл. SI-1 (дополнительные материалы). При уве-

Рис. 2. Профили H₂-TПД образцов Ni/TiO₂ (a), Cu/TiO₂ (б) и Ni–Cu/TiO₂ (в).

личении загрузки Ni–Cu от 11.5 до 12.5 мас. % удельная поверхность и объем пор катализаторов возрастала, а диаметр пор уменьшался. Когда за-грузка Ni–Cu составляла 12.5 и 13.0 мас. %, струк-

КИНЕТИКА И КАТАЛИЗ том 62 № 5 2021

тура образцов и их каталитические характеристики были похожи.

На рис. SI-4 (дополнительные материалы) показаны рентгенограммы образцов Ni-Cu/TiO₂, прокаленные при разной температуре. Как видно из этого рисунка. лифракционные пики анатаза TiO₂ отчетливо видны при $2\theta = 26.0^{\circ}$, 37.8° , 48.1° , 52.4°, 62.1° и 77.3°, но дифракционные пики рутила ТіО₂ не обнаружены. Это указывает на то, что повышение температуры прокаливания от 400 до 500°С мало влияет на кристаллическую форму ТіО₂. Обнаружены дифракционные пики Ni при $2\theta = 44.5^{\circ}$ и 51.0°. Интенсивность дифракционного пика Ni постепенно возрастала с ростом температуры прокаливания в диапазоне 400-450°C, что указывает на слияние и постепенное увеличение зерен Ni. При повышении температуры прокаливания $>450^{\circ}$ C дифракционные пики TiO₂ и Ni cyщественно не менялись.

Текстурные свойства катализаторов Ni–Cu/TiO₂, прокаленных в течение разного времени, приведены в табл. SI-2 (дополнительные материалы). С увеличением времени прокаливания удельная поверхность и объем пор катализаторов сначала повышались, а затем снижались, а диаметр пор сначала уменьшался, а затем увеличивался. Это указывает на то, что частицы Ni и Cu равномерно распределены при оптимальном времени прокаливания, но слишком длительное прокаливание приводит к постепенному накоплению и росту зерен Ni. Таким образом, поры блокируются, и эффективность дегидрирования/гидрирования снижается.

На рис. 2 показан профиль Н₂-ТПД образцов Ni-Cu/TiO₂, восстановленных при различной температуре. Как видно из рис. 2a, для Ni/TiO₂ наблюдались три различимых пика восстановления вблизи 268.9, 275.3 и 382.8°С. Пики низкотемпературного восстановления вблизи 268.9 и 275.3°С соответствуют восстановлению свободного NiO, а пик высокотемпературного восстановления около 382.8°С - восстановлению NiO, взаимодействующего с TiO₂ [16]. В профиле Cu/TiO₂ присутствуют три различимых пика восстановления вблизи 128.2, 141.7 и 206.5°С (рис. 26). Пики ниже 200°С относятся к восстановлению дискретного и высокодисперсного CuO, тогда как пик восстановления около 206.5°С характеризует восстановление небольших объемных частиц CuO [17]. Как видно из рис. 2в, в случае Ni-Cu/TiO₂ можно различить четыре пика восстановления вблизи 178.8, 252.1, 275.8 и 365.5°С. Пик вблизи 178.8°С соответствует восстановлению дискретного и высокодисперсного CuO, пик вблизи 252.1°С - восстановлению больших объемных частиц CuO, пик вблизи 275.8°С – восстановлению NiO в свободном состоянии и пик

Рис. 3. Повторное использование катализатора Ni–Cu/TiO₂. Условия реакции: $m_{\text{кат}}$: $m_{\text{этанол}}$ = 1 : 10, T = 210°C, t = 10 ч.

вблизи 365.5°С — восстановлению NiO, взаимодействующему с TiO₂. Присутствие металлической Cu увеличивает восстанавливаемость частиц Ni из-за того, что на металлической меди молекула водорода способна диссоциировать на атомы, которые могут перетекать на поверхность соседнего NiO, что способствует снижению температуры восстановления NiO в Ni–Cu/TiO₂ [18].

Текстурные свойства катализаторов Ni–Cu/TiO₂ восстановленные в течение разного времени, приведены в табл. SI-3 (дополнительные материалы). При повышении времени восстановления удельная поверхность и объем пор катализатора сначала увеличивались, а затем уменьшались, а диаметр пор возрастал. Удельная поверхность и каталитическая активность катализатора достигали максимальных значений при времени восстановления 4 ч. При более длительном восстановлении (5 ч) удельная поверхность катализатора сокращалась, а доля крупных пор возрастала, что приводило к значительному увеличению среднего размера пор.

Повторное использование катализатора Ni–Cu/TiO₂

Исследована эффективность Ni—Cu/TiO₂ в реакции КЭГ (табл. SI-4, дополнительные материалы). Селективность по *н*-бутанолу достигала 44.4% при конверсии этанола 47.9% при загрузке катализатора 10 мас. %, температуре реакции 210°С и времени реакции 10 ч. По сравнению с катализатором Ni/TiO₂ конверсия этанола снизилась с 49.2 до 47.9%, но селективность по h-бутанолу повысилась с 41.7 до 44.4%, а выход hбутанола остался почти неизменным, что свидетельствует об увеличении полезности сырья.

После завершения реакции катализатор Ni-Cu/TiO₂ отделяли и трижды промывали безводным этанолом. Затем восстановленный катализатор сушили при 100°С и окончательно восстанавливали в течение 4 ч при 400°С в смеси водорода и азота с объемным соотношением $V_{\rm H_2}: V_{\rm N_2} = 40: 60.$ Регенерированный катализатор Ni-Cu/TiO2 повторно использовали в КЭГ в следующих условиях реакции: массовая доля катализатора – 10%, температура реакции – 210°C, время реакции – 10 ч (рис. 3). При повторном применении катализатора характеристики его постепенно ухудшались, но в меньшей степени, чем в случае Ni/TiO₂. После трех каталитических циклов конверсия этанола снизилась с 47.9 до 42.0% (на 5.9%), а селективность по *н*-бутанолу – с 44.4 до 42.4% (на 2%). После трех циклов работы катализатора Ni/TiO₂ конверсия этанола упала с 49.2 до 36.2% (на 13%), а селективность по *н*-бутанолу – с 41.7 до 36.8% (на 4.9%). Таким образом, стабильность при многократном использовании Ni-Cu/TiO₂ была значительно улучшена по сравнению таковой для Ni/TiO2. Отметим, что после 5 циклов работы катализатора Ni–Cu/TiO₂ конверсия этанола снизилась с 47.9 до 41.7% (на 6.2%), а селективность по h-бутанолу — с 44.4% до 37.6% (на 6.8%). Результаты анализа методом ІСР,

приведенные в табл. SI-5 (дополнительные материалы), показали, что содержание металлического Ni в катализаторе Ni–Cu/TiO₂ после 4-кратного использования снизилось с 12.3 до 11.1% (на 1.2%), а в катализаторе Ni/TiO₂ после третьего каталитического цикла уменьшилось с 12.0 до 9.8% (на 2.2%). Это указывает на то, что взаимодействие Cu с Ni может эффективно препятствовать потере металлического Ni и улучшать возможность многократного использования катализатора.

ЗАКЛЮЧЕНИЕ

Таким образом, среди биметаллических образцов Ni–X/TiO₂ (X = Ru, Pt, Ir, Au, Cu, Mn, Co или Fe) катализатор Ni–Cu/TiO₂ показал наилучшие каталитические характеристики. Результаты CO₂-TПД и NH₃-TПД указывают на то, что добавление второго металлического компонента изменяет кислотность и щелочность Ni/TiO₂. Количество кислотных центров влияет на конверсию этанола, а количество щелочных центров – на селективность по *н*-бутанолу.

Приняты следующие условия приготовления Ni–Cu/TiO₂: массовое соотношение Ni/Cu = 59 : 1, содержание Ni–Cu – 12.5 мас. %, температура прокаливания – 450°С, время прокаливания – 2 ч, температура восстановления – 400°С и время восстановления – 4 ч.

Селективность по *н*-бутанолу достигала 44.4% при конверсии этанола 47.9% при загрузке катализатора 10 мас. %, температуре реакции 210°С и времени реакции 10 ч. Благодаря взаимодействию Cu с Ni стабильность катализатора Ni–Cu/TiO₂ при многократном использовании была значительно выше, чем таковая для Ni/TiO₂.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Дополнительная информация включает профили NH_3 -TПД и CO_2 -TПД для катализаторов $Ni-M/TiO_2$, рентгенограммы образцов $Ni-Cu/TiO_2$ с различным массовым соотношением Ni/Cu, $P\Phi$ ЭС-спектры Ni2p и Cu2p образцов $Ni-Cu/TiO_2$ с различным массовым соотношением Ni/Cu, текстурные свойства катализаторов $Ni-Cu/TiO_2$ с разной загрузкой металлов, дифрактограммы образцов $Ni-Cu/TiO_2$, прокаленных при разной температуре, текстурные свойства катализаторов $Ni-Cu/TiO_2$, прокаленных в течение различного времени, текстурные свойства катализаторов $Ni-Cu/TiO_2$, прокаленных в течение различного времени, текстурные свойства катализаторов $Ni-Cu/TiO_2$, восстановленных в течение разного времени, каталитические свойства $Ni-Cu/TiO_2$ в процессе КЭГ и ICP-анализ содержания Ni и Cu в $Ni-Cu/TiO_2$ до и после реакции.

ФИНАНСИРОВАНИЕ

Работа поддержана Национальным фондом естественных наук Китая (грант № 21978066 и № 21476058), ключевой программой Фонда естественных наук провинции Хэбэй (В2020202048), Программой фундаментальных исследований провинции Хэбэй для Фонда естественных наук и ключевым проектом фундаментальных исследований (18964308D) и Фондом естественных наук провинции Хэбэй (В2018202220).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- Chatterjee A., Hu X., Lam L.Y. // Catal. Today. 2018. V. 314. P. 137.
- Benito P., Vaccari A., Antonetti C., Licursi D., Schiarioli N., Rodriguez-Castellon E., Galletti A., Maria R. // J. Clean. Prod. 2019. V. 209. P. 1614.
- Jiang D., Wu X., Mao J., Ni J., Li X. // Chem. Commun. 2016. V. 52. P. 13749.
- Manojveer S., Salahi S., Wendt O.F., Johnson M.T. // J. Org. Chem. 2018. V. 83. P. 10864.
- Quesadaa J., Arreola-Sáncheza R., Faba L., Diaz E., Renteria-Tapia V.M., Ordonez S. // Appl. Catal. A: Gen. 2018. V. 551. P. 23.
- Wu X., Fang G., Liang Z., Leng W., Xu K., Jiang D., Ni J., Li X. // Catal. Commun. 2017. V. 100. P. 15.
- 7. Chistyakov A.V., Zharova P.A., Nikolaev S.A., Tsodikov M.V. // Catal. Today. 2017. V. 279. P. 124.
- Zaccheria F., Scotti N., Ravasio N. // ChemCatChem. 2018. V. 10. P. 1526.
- 9. Li S.Q., Zhu X.H., An H.L., Zhao X.Q., Wang Y.J. // Chem. Select. 2020. V. 5. P. 8669.
- Zhao L.L., Wang Y., An H.L., Zhao X.Q. // Ind. Eng. Chem. Res. 2016. V. 55. P. 12326.
- 11. Zhao L.L., An H.L., Zhao X.Q., Wang Y.J. // ACS. Catal. 2017. V. 7. P. 4451.
- Petrolini D.D., Eagan N., Ball M.R., Burt S.P., Hermans I., Huber G.W., Dumesic J.A., Martins L. // Catal. Sci. Technol. 2019. V. 9. P. 2032.
- Legrand J., Gota S., Guittet M.J., Petit C. // Langmuir. 2002. V. 18. P. 4131.
- Velu S., Suzuki K., Vijayaraj M., Barman S., Gopinath C.S. // Appl. Catal. B: Environ. 2005. V. 55. P. 287.
- Ghodselahi T., Vesaghi M.A., Shafiekhani A., Baghizadeh A., Lameii M. // Appl. Surf. Sci. 2008. V. 255. P. 2730.
- Lazaro M.J., Echegoyen Y., Alegre C., Suelves L., Moliner R., Palacios J.M. // Int. J. Hydrogen. Energ. 2008. V. 33. P. 3320.
- Roselin L.S., Chiu H.W. // J. Saudi Chem. Soc. 2018. V. 22. P. 692.
- 18. Shen Y., Lua A.C. // RSC. Adv. 2014. V. 4. P. 42159.

Improving the Catalytic Stability of Ni/TiO₂ for Ethanol Guerbet Condensation: Influence of Second Metal Component

Shuaiqi Li¹, Xiaoxu Han¹, Hualiang An^{1, *}, Xinqiang Zhao^{1, **}, and Yanji Wang¹

¹Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300000 China

*e-mail: anhl@hebut.edu.cn

**e-mail: zhaoxq@hebut.edu.cn

Ethanol Guerbet condensation (EGC) is a green process for preparing *n*-butanol and the development of highly effective solid catalysts is still the bottleneck of this reaction. In this work, a series of multifunctional catalysts Ni–X/TiO₂ (X = Ru, Pt, Ir, Au, Cu, Mn, Co, Fe) were prepared by a co-impregnation method in order to improve the catalytic performance, especially the stability. It was found that the addition of the second metal component changed the acidity and alkalinity of Ni/TiO₂ catalyst. What is more, acid site number affected ethanol conversion while alkali site number affected *n*-butanol selectivity. Among the Ni–X/TiO₂ catalysts, Ni–Cu/TiO₂ showed the best catalytic performance. The effects of preparation conditions on the catalytic performance of Ni–Cu/TiO₂ were investigated and the results showed that the suitable preparation conditions were as follows: a Ni/Cu mass ratio of 59 : 1, a Ni–Cu loading of 12.5 wt %, a calcination temperature of 450°C, a calcination time of 2 h, a reduction temperature of 400°C, and a reduction time of 4 h. At a 10 wt % of catalyst loading, a reaction temperature of 210°C and a reaction time of 10 h, the ethanol conversion and the selectivity of *n*-butanol were 47.9 and 44.4%, respectively. Moreover, the stability of Ni–Cu/TiO₂ catalyst: the catalytic activity of Ni–Cu/TiO₂ did not decline significantly for reuse in three cycles.

Keywords: ethanol, n-butanol, Guerbet reaction, Ni-Cu/TiO₂ catalyst, stability