_____ IV Российский конгресс по катализу "Роскатализ" (20–25 сентября 2021 г., Казань, Россия)

УДК 544.478.01:544.478.1

ВЛИЯНИЕ ТЕМПЕРАТУРЫ ПРОКАЛИВАНИЯ НА СВОЙСТВА Mn–Zr–Ce-КАТАЛИЗАТОРОВ В ОКИСЛЕНИИ СО

© 2022 г. Т. Н. Афонасенко^{а,} *, Д. В. Глыздова^а, В. П. Коновалова^b, А. А. Сараев^b, Е. Е. Айдаков^b, О. А. Булавченко^{b,} **

а Центр новых химических технологий ИК СО РАН, ул. Нефтезаводская, 54, Омск, 644040 Россия

^bФГБУН Институт катализа им. Г.К. Борескова СО РАН, просп. Акад. Лаврентьева, 5, Новосибирск, 630090 Россия

*e-mail: atnik@ihcp.ru **e-mail: obulavchenko@catalysis.ru Поступила в редакцию 15.02.2022 г. После доработки 23.03.2022 г. Принята к публикации 24.03.2022 г.

Изучено влияние температуры прокаливания катализаторов $MnO_x - ZrO_2 - CeO_2$ на их структурные свойства и активность в реакции окисления CO. Исследованы тройные оксидные системы с соотношением катионов Mn : Zr : Ce = 0.3 : 0.35 : 0.35, приготовленные методом соосаждения. Согласно данным РФА, ТПВ-H₂ и РФЭС повышение температуры прокаливания от 400 до 800°C вызывает структурную трансформацию твердого раствора $Mn_yZr_xCe_{1-y}O_{2-\delta}$. При 400–600°C происходит выход катионов марганца из его структуры в виде высокодисперсных частиц MnO_x , при 700–800°C – распад исходного твердого раствора $Mn_yZr_xCe_{1-y}O_{2-\delta}$ с формированием двух смешанных оксидов на основе CeO_2 и ZrO_2 , а также окристаллизованной фазы Mn_3O_4 . Наибольшая каталитическая активность в реакции окисления CO наблюдается при температурах прокаливания 500–600°C, что, вероятно, обусловлено присутствием марганца как в структуре твердого раствора, так и в виде высокодисперсных частиц MnO_x на его поверхности.

Ключевые слова: катализаторы Mn–Zr–Ce, термостабильность, окисление CO **DOI:** 10.31857/S0453881122040013

введение

Среди катализаторов на основе переходных металлов оксиды марганца являются одними из наиболее эффективных в процессах полного окисления углеводородов и СО, а, значит, они перспективны для очистки промышленных выбросов и выхлопных газов автотранспорта. Активность марганцевых катализаторов в вышеуказанных реакциях напрямую коррелирует с их окислительно-восстановительными свойствами, позволяющими обратимо присоединять и отдавать кислород в ходе реакции [1]. Ионы марганца способны легко менять степень окисления, образуя оксиды в различном окисленном состоянии – MnO₂, Mn₅O₈, Mn₂O₃, Mn₃O₄, MnO, в результате чего обеспечивается высокая подвижность кислорода.

Комбинирование марганца с оксидом церия дает возможность получать существенно более

каталитически активные системы по сравнению с массивными оксидами марганца [2, 3]. Благодаря легкому переходу между Се³⁺ и Се⁴⁺ и высокой подвижности ионов O²⁻ в решетке, CeO₂ модифицирует окислительно-восстановительную активность марганца, стабилизируя его в более высоких степенях окисления при низких температурах и облегчая миграцию кислорода при повышении температуры [4]. Оксид церия за счет образования лабильных кислородных вакансий, которые облегчают активацию и перенос кислорода, обладает значительной емкостью для хранения кислорода и сам проявляет активность в окислительных реакциях, например, в окислении сажи [5]. Известно [4, 6], что включение циркония в решетку СеО₂ не только улучшает термическую стабильность CeO₂, но из-за создания дефектной структуры способствует еще большему возрастанию подвижности кислорода и увеличению его общего количества, которое может быть обратимо обменено между твердым веществом и окружающей атмосферой. Terribille с соавт. [4] установили, что самая высокая степень восстановления и самые низкие температуры восстановления до-

Сокращения и обозначения: РФА — ренгенофазовый анализ; ТПВ-H₂ — температурно-программированное восстановление водородом; РФЭС — рентгеновская фотоэлектронная спектроскопия; ОКР — область когерентного рассеяния.

стигаются при эквимолярном отношении церия и циркония ($Ce_{0.5}Zr_{0.5}O_2$).

Свойства катализаторов Mn-Zr-Ce широко изучены в реакциях полного окисления О-. Clсодержащих летучих органических веществ и СО [7-10], окисления сажи [11, 12], селективного удаления NO_x аммиаком [13-15]. Марганец в катализаторах Mn–Zr–Ce в зависимости от способа приготовления может располагаться как на поверхности твердого раствора ZrO₂-CeO₂ [15], так и входить в его структуру [7]. В первом случае каталитическая активность Mn-Zr-Ce определяется присутствием высокодисперсных частиц MnO_x и их сильным взаимодействием с поверхностью носителя, благодаря чему обеспечивается легкость их восстановления [16]. Во втором случае каталитическая активность обусловлена подвижностью решеточного кислорода, которая еще больше возрастает при внедрении ионов Мп в решетку ZrO₂-CeO₂ с образованием твердого раствора Mn–Zr–Ce [17]. Большинство работ по исследованию таких систем посвящены определению влияния соотношения компонентов [7, 15], содержания марганца [9, 16] на их структурные и каталитические свойства, либо сопоставлению свойств Mn-Zr-Ce со свойствами оксидов Mn-Ce и Mn-Zr [8, 18, 19]. При этом сведения об изучении поведения катализаторов Mn-Zr-Ce при изменении температуры прокаливания весьма ограничены [14, 20], хотя представляют большой интерес. Ранее нами было показано [21], что при варьировании температуры прокаливания MnO_x-ZrO₂ наибольшая каталитическая активность в реакции окисления СО достигается в результате обработки при 650-700°С, что соответствует пределу существования твердого раствора на основе кубической фазы ZrO₂. При этом максимальная каталитическая активность, наблюдаемая для $Mn_{0.4}Zr_{0.6}O_2 - Mn_{0.6}Zr_{0.4}O_2$, обусловлена, помимо дисперсности частиц самого твердого раствора, присутствием на его поверхности высокодисперсных частиц MnO_x, не вошедших в его состав.

Целью настоящей работы являлось изучение структурных превращений, происходящих в системе $MnO_x - ZrO_2 - CeO_2$ при повышении температуры прокаливания, и влияния данных факторов на каталитическую активность образцов в реакции окисления СО.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализаторов

Образцы катализаторов готовили методом осаждения. К совместному раствору солей $ZrO(NO_3)_2$, $Ce(NO_3)_3$ и $Mn(NO_3)_2$ при его постоянном перемешивании постепенно добавляли раствор NH_4OH до достижения pH 10. Осаждение

КИНЕТИКА И КАТАЛИЗ том 63 № 4 2022

осуществляли при 80°С. После завершения осаждения перемешивание полученной суспензии продолжали в течение 1 ч, затем прикапывали к ней H_2O_2 в количестве, соответствующем мольному отношению H_2O_2 : (Mn + Zr + Ce) = 1, что обеспечивало полноту осаждения [20]. После этого суспензию выдерживали без перемешивания в течение 2 ч. Полученный осадок отфильтровывали, промывали водой на фильтре до pH 6–7. Образцы высушивали при 120°С в течение 2 ч, затем прокаливали в муфельной печи при 400–800°С в течение 4 ч. Мольное отношение Mn : Zr : Се в приготовленных образцах составляло 0.3 : 0.35 : 0.35. Образцы фракционировали, для каталитических испытаний использовали фракцию 0.4–0.8 мм.

Образцы были обозначены как Mn-Zr-Ce-T, где T – температура прокаливания.

Физико-химические методы исследования катализаторов

Удельную площадь поверхности катализаторов (S_{yd}) определяли по методу Брунауэра—Эммета— Теллера (БЭТ) с помощью изотерм адсорбции азота, измеренных при температуре жидкого азота. Исследования проводили с применением автоматизированной системы ASAP 2400 ("Micromeritics Instrument Corp.", США).

Рентгенофазовый анализ (РФА). Дифрактограммы катализаторов Mn–Ce–Zr с соотношением Mn : Ce : Zr = 30 : 35 : 35 были получены на дифрактометре D8 Advance ("Bruker", Германия) в диапазоне углов 15°–90° по 2 θ с шагом 0.05° и временем накопления 4 с на длине волны Cu K_{α} 1.5418Å.

Термопрограммируемое восстановление водородом (**TПВ-H**₂) выполняли в кварцевом реакторе с использованием проточной установки с детектором по теплопроводности. Смесь газов (10 об. % H₂ в Ar) подавали со скоростью 40 мл/мин. Скорость нагрева от комнатной температуры до 900°С составляла 10°С/мин.

Ренттенфотоэлектронная спектроскопия (РФЭС) было проведена на фотоэлектронном спектрометре Surface Nano Analysis GmbH ("SPECS", Германия). Спектрометр оснащен полусферическим анализатором PHOIBOS-150-MCD-9, рентгеновским монохроматором FOCUS-500 и источником рентгеновского характеристического излучения XR-50M с двойным Al/Ag-анодом. Для записи спектров использовали немонохроматизированное излучение Al K_{α} (hv = 1486.61 эВ). Калибровку шкалы энергий связи (E_{cB}) осуществляли методом внутреннего стандарта по пику Ce3 $d_{3/2}$ -u^{III} церия, входящего в состав носителя ($E_{cB} = 916.7$ эВ). Относительные концентрации элементов в зоне анализа определены на основании интегральных интенсивностей РФЭС-линий с учетом сечения фотоионизации соответствующих термов [22]. Для детального анализа выполняли разложение спектров на индивидуальные составляющие. После вычитания фона по методу Ширли [23] экспериментальную кривую раскладывали на ряд пиков, соответствующих фотоэмиссии электронов из атомов в различном химическом окружении. Обработку данных производили с помощью пакета программ CasaXPS [24]. Форма пиков аппроксимирована симметричной функцией, полученной суммированием функций Гаусса и Лоренца.

Каталитические испытания

Образцы испытывали в реакции окисления СО на установке проточного типа в стеклянном реакторе (170 × Ø 10 мм). Исходная газовая смесь имела состав: 1% СО, 99% воздух, ее общий расход составлял 487 мл/мин. Анализ реакционной смеси до и после реактора осуществлялся на хроматографе ЛХМ-8МД (Россия) с разделением смеси на насадочной колонке, заполненной цеолитом СаА (3 м). С помощью детектора по теплопроводности определяли непрореагировавшее количество СО. Навеску катализатора 0.500 г смешивали с кварцем до объема 3 мл. Температуру в слое катализатора контролировали и регулировали с использованием хромель-алюмелевой термопары, соединенной с терморегулятором "Варта" (Россия). Степень превращения СО (Х_{СО}) рассчитывали по формуле:

$$\begin{split} X_{\rm CO} = \\ = \left[(P_{\rm CO}/P_{\rm N_2})_{\rm MPC} - (P_{\rm CO}/P_{\rm N_2})_{\rm C\Pi P} \right] / \left(P_{\rm CO}/P_{\rm N_2} \right)_{\rm MPC}, \end{split}$$

где $P_{\rm CO}$, $P_{\rm N_2}$ – площади пиков CO и азота до (ИРС) и после (СПР) реакции (площадь $P_{\rm N_2}$ была использована в качестве внутреннего стандарта).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структурные и микроструктурные свойства

На рис. 1 приведены дифракционные картины исследуемых катализаторов. Видно, что для катализаторов, прокаленных при 400–700°С рентгенограммы похожи, наблюдаются широкие пики с максимумами при $2\theta = 28.9^{\circ}$, 33.5° , 48.2° , 57.2° , 60.0° , 70.5° , 78.0° , 80.4° , 89.3° , соответствующие рефлексам 111, 002, 022, 113, 222, 004, 133, 024, 224 оксида CeO₂ со структурой флюорита (PDF № 431002). Можно заметить, что при $2\theta = 36.3^{\circ}$ присутствует слабый пик, положение которого характерно для наиболее интенсивного рефлекса Mn_3O_4 (PDF № 240734). При повышении температуры прокаливания интенсивность рефлекса оксида марганца увеличивается. В случае Mn–

Zr-Ce-800 происходят довольно значительные изменения в дифракционных картинах — проявляются рефлексы Mn_3O_4 и отмечается расщепление рефлексов флюорита.

Структурные характеристики катализаторов, рассчитанные методом Ритвельда, приведены в табл. 1. Как видно, значение параметра решетки CeO₂ варьируется в диапазоне 5.182(1)–5.371(1) Å, что меньше, чем для "чистого" CeO₂, для которого характерна величина 5.411 Å (PDF № 431002). Изменение параметра решетки свидетельствует о формировании твердого раствора типа $Mn_yZr_xCe_{1-y}O_{2-\delta}$. Так как ионные радиусы катионов циркония и марганца меньше, у церия ($Mn^{2+} - 0.097$ нм, $Mn^{3+} - 0.065$ нм, $Mn^{4+} - 0.053$ нм, $Zr^{4+} - 0.084$ нм, $Ce^{4+} - 0.097$ нм), то внедрение этих элементов ведет к наблюдаемому сокращению параметров решетки.

При повышении температуры прокаливания $(T_{\text{прокал}})$ от 400 до 600°С происходит уменьшение параметра решетки от 5.337(1) до 5.316(1) Å, сопровождаемое увеличением содержания оксида марганца, а при 700°С появляется дополнительная фаза. Вероятно, происходит развал твердого раствора, при котором катионы Mn выходят из состава исходного оксида и появляется "новый" твердый раствор типа $Mn_{\nu 2}Zr_{x2}Ce_{1-\nu 2}O_{2-\delta 2}$. Для катализаторов, полученных в результате прокаливания при 700-800°С, параметры решетки равны 5.345(1)-5.371(1) и 5.182(3)-5.214(1) Å, данные величины стремятся к значениям для "чистых" оксидов. Можно предположить, что формируется два смешанных оксида, первый на основе оксила церия, второй – на основе оксила циркония. Кроме того, нельзя исключать некой неоднородности по составу для катализаторов, синтезированных при меньших температурах. С ростом Т_{прокал} наблюдается закономерное увеличение средних размеров области когерентного рассеяния (ОКР) от 130 до 340 Å для Mn₃O₄ и от 50 до 130 Å для смешанного оксида.

При повышении температуры прокаливания удельная поверхность образцов Mn–Zr–Ce закономерно уменьшается, коррелируя с фазовыми трансформациями (табл. 1). При 400°C ее значение составляет 146 м²/г. В температурной области преимущественного существования твердого раствора она практически линейно снижается по мере увеличения $T_{прокал}$ и при 700°C составляет 63 м²/г, а при 800°C падает до 12 м²/г.

$T\Pi B-H_2$

Метод ТПВ-H₂ был использован для оценки изменения окислительно-восстановительных свойств Mn–Zr–Ce при повышении температуры прокаливания. Как видно из рис. 2, для всех образцов на

Рис. 1. Дифрактограммы образцов Mn-Zr-Ce, прокаленных при различных температурах.

кривых ТПВ-H₂ в области температур восстановления 650–900°С присутствует широкое гало. Оно характерно для образцов на основе CeO₂ и обусловлено частичным восстановлением церия от 4+ до 3+ [18, 25, 26]. Согласно [27, 28] восстановление CeO₂ представляет собой двухэтапный процесс удаления кислорода – сначала с поверхности, а затем из объема частицы CeO₂, и характеризуется двумя пиками при ~460 и 700°С.

Для катализаторов, прокаленных при 400– 700°С, профили ТПВ- H_2 имеют схожий вид. Они представляют собой два частично неразделенных пика в диапазоне 100–500°С. Для Mn–Zr–Ce-400 максимумы пиков наблюдаются при 257 и 366°С. С ростом $T_{прокал}$ до 600°С их положение существенно не меняется, однако в области низких температур появляется дополнительная интенсивность, вследствие чего первый пик уширяется. Для Mn–Zr–Ce-700 низкотемпературный пик становится размытым со слабо выраженным максимумом при 267°С, а второй пик смещается до 375°С. Наличие вышеуказанных пиков обусловлено последовательными фазовыми превращениями оксидов марганца, сопровождающимися потерей кислорода в ходе восстановления. Первый пик соответствует переходу $MnO_2/Mn_2O_3 \rightarrow$ → Mn₃O₄, а второй – дальнейшему восстановлению Mn₃O₄ до MnO [14, 17]. Но, поскольку, согласно результатам РФА, часть марганца присутствует в составе твердого раствора $Mn_{\nu}Zr_{x}Ce_{1-\nu}O_{2-\delta}$, эти пики также могут быть связаны с последовательным изменением степени окисления катионов марганца в структуре $Mn_v Zr_x Ce_{1-v}O_{2-\delta}$. Ранее нами [29] при изучении фазовой трансформации твердого раствора MnO_x-ZrO₂, происходящей при его восстановлении, было установлено, что первый пик соответствует восстановлению катионов марганца, находящихся в составе твердого раствора: $Mn^{4+/3+} \to Mn^{3+/2+}$, а второй – дальнейшему восстановлению марганца до Mn^{2+} : $Mn^{2+/3+} \rightarrow$ \rightarrow Mn²⁺, которое сопровождается выходом катионов марганца из объема твердого раствора и их сегрегацией на поверхности.

Для образца Mn-Zr-Ce-800 профиль $T\Pi B-H_2$ принципиально отличается от таковых для катализаторов, прокаленных при меньших температурах. Кривая $T\Pi B-H_2$ содержит интенсивный

Образец	Фазовый состав	Параметры решетки, Å	OKP, Å	$S_{ m yg},{ m m}^2/{ m r}$
Mn-Zr-Ce-400	Мп _y Zr _x Ce _{1 - y} O _{2 - δ} следы Mn ₃ O ₄	5.337(1)	50 130	146
Mn-Zr-Ce-500	Мп _y Zr _x Ce _{1 - y} O _{2 - δ} следы Mn ₃ O ₄	5.335(1)	50 130	110
Mn-Zr-Ce-600	Мп _y Zr _x Ce _{1 - y} O _{2 - δ} следы Mn ₃ O ₄	5.316(1)	50 140	88
Mn-Zr-Ce-700	$ \begin{array}{l} Mn_{y}Zr_{x}Ce_{1-y}O_{2-\delta} \\ Mn_{3}O_{4} \\ Mn_{y2}Zr_{x2}Ce_{1-y2}O_{2-\delta2} \end{array} $	5.345(1) - 5.182(3)	60 270 60	63
Mn-Zr-Ce-800	$ \begin{array}{l} Mn_{y}Zr_{x}Ce_{1-y}O_{2-\delta} \\ Mn_{3}O_{4} \\ Mn_{y2}Zr_{x2}Ce_{1-y2}O_{2-\delta2} \end{array} $	5.371(1) - 5.214(1)	130 340 80	12

Таблица 1. Структурные и микроструктурные характеристики катализаторов

Прочерки означают, что соответствующие показатели не определяли.

пик с максимумом при 485°С, который можно отнести к восстановлению окристаллизованных частиц Mn_3O_4 (табл. 1). Кроме того, в области ~260°С наблюдается слабое поглощение H_2 , которое можно объяснить присутствием незначительного количества ионов марганца $Mn^{4+/3+}$ в структуре твердых растворов, образовавшихся после распада исходного $Mn_{\nu}Zr_{x}Ce_{1-\nu}O_{2-\delta}$ [21].

Общее поглощение водорода с ростом температуры прокаливания закономерно уменьшается. При 400–600°С оно незначительно изменяется от 2.24 до 2.17 ммоль/г, при 700°С составляет 2.09 ммоль/г, а при 800°С резко снижается до 1.87 ммоль/г.

Сопоставление данных РФА и ТПВ-Н2 позволяет предположить, что возможной причиной появления низкотемпературного поглощения водорода при 150-300°С и "размытия" первого пика восстановления при повышении температуры прокаливания Mn-Zr-Ce от 400 до 600°С является присутствие высокодисперсных частиц MnO_x, которые могли образоваться на поверхности твердого раствора $Mn_vZr_xCe_{1-v}O_{2-\delta}$ в ходе его постепенного распада. Gutiérrez-Ortiz с соавт. [30] наблюдали подобные широкие пики на профилях $T\Pi B-H_2 Mn-ZrO_2$ в диапазоне температур 100-220°С и относили их к нестехиометрическим дисперсным фазам MnO_x на поверхности ZrO₂. Разложение профилей ТПВ-Н₂ аналитическими функциями показало, что для образца, покаленного при 400°С, доля низкотемпературной компоненты ($T_{\text{восст}} \sim 200^{\circ}$ C) составляет ~ 3% от общего поглощения водорода. С ростом температуры прокаливания до 500-600°С она увеличивается

до ~12%, а при дальнейшем повышении Т_{прокал} уменьшается. Таким образом, наибольшее значение доли низкотемпературной компоненты в профиле ТПВ-Н2 наблюдается для образцов Мп-Zr-Ce-500 и Mn-Zr-Ce-600, что соответствует состояниям твердых растворов перед "распадом" и может указывать на формирование высокодисперсных рентгеноаморфных частиц MnO_x. Из рис. 2 видно, что с ростом $T_{прокал}$ катализаторов профиль ТПВ-Н₂ усложняется, на кривых, характеризующих восстановление Mn-Zr-Ce-600 и Mn-Zr-Ce-700, появляется дополнительная компонента с максимумом при 430° C, возможно, связанная с наложением пика поверхностного восстановления СеО₂ с профилем восстановления марганца [31] или с формированием "второго" твердого раствора $Mn_{\nu 2}Zr_{x2}Ce_{1-\nu 2}O_{2-\delta 2}$ и восстановлением катионов марганца из его структуры.

РФЭС

Для оценки изменения электронных свойств и соотношения элементов на поверхности катализаторов Mn–Ce-Zr был использован метод РФЭС. Относительные концентрации (атомные соотношения) элементов в приповерхностном слое образцов, определенные на основании данных РФЭС, представлены в табл. 2. Спектры Zr3*d*, Ce3*d*, O1*s* и Mn2*p* приведены на рис. 3.

Спектры Zr3d описываются одним дублетом Zr3 $d_{5/2}$ -Zr3 $d_{3/2}$ с энергий связи Zr3 $d_{5/2}$ равной 181.9 эВ, что характерно для циркония в состоянии Zr⁴⁺ [16]. По мере повышения $T_{\text{прокал}}$ до 700°С относительное содержание циркония [Zr]/[Mn +

Рис. 2. Кривые ТПВ-H₂ образцов Мп–Zr–Ce, прокаленных при различных температурах.

+ Ce + Zr] на поверхности уменьшается от 0.25 до 0.21, а при 800°С составляет 0.27. Спектры Ce3*d* исследованных катализаторов в результате спинорбитального взаимодействия имеют сложную форму. Результаты разложения их на индивидуальные составляющие позволили сделать вывод, что церий находится преимущественно в виде Ce^{4+} , при этом доля ионов Ce^{3+} с повышением температуры прокаливания от 400 до 700°C снижается с 16 до 9%, а при 800°C возрастает до 14% (табл. 2). В спектре O1s наблюдается несколько пиков с энергией связи в районе 529.2–529.4,

Образец	Mn2p _{3/2}				[O]/[Me]	[7 r]/[Ma]	C_{2}^{3+} 07	[O _a]/
	[Mn]/[Me]	Mn ²⁺ , %	Mn ³⁺ , %	Mn ⁴⁺ , %			Ce ² , %	$[O_a + O_b]$
Mn–Zr–Ce-400	0.274	11	39	50	2.37	0.25	16	0.76
Mn-Zr-Ce-500	0.291	11	41	48	2.27	0.22	11	0.80
Mn-Zr-Ce-600	0.317	12	41	47	2.45	0.22	9	0.80
Mn–Zr–Ce-700	0.369	10	44	46	2.21	0.21	9	0.81
Mn-Zr-Ce-800	0.318	21	41	38	2.43	0.27	14	0.77

Таблица 2. Атомные отношения элементов в приповерхностном слое образцов

Примечение. [Me] = [Mn + Ce + Zr]; O_a – решеточный кислород; O_b – адсорбированные кислородсодержащие группы.

КИНЕТИКА И КАТАЛИЗ том 63 № 4 2022

Рис. 3. Спектры РФЭС образцов Mn–Zr–Ce, прокаленных при различных температурах.

531.5 и 533.4 эВ, относящихся к решеточному кислороду (O_a), адсорбированным кислородсодержащим группам (O_b), а также адсорбирован-

ным ОН-группам и воде соответственно [17]. Решеточный кислород является преобладающей формой кислорода во всех катализаторах, отно-

Рис. 4. Температурные зависимости конверсии CO в реакции его окисления на катализаторах Mn-Zr-Ce-T.

шение $[O_a]/[O_a + O_b]$ слабо зависит от температуры прокаливания и варьируется от 0.76 до 0.81.

Спектр Mn2p представляет собой дублет $Mn2p_{3/2}-Mn2p_{1/2}$, интегральные интенсивности линий которого соотносятся как 2 : 1. Разложение спектра Mn2p исследованных образцов на индивидуальные составляющие показало (рис. 3), что марганец в приповерхностном слое находится в трех состояниях: Mn^{2+} , Mn^{3+} и Mn^{4+} с энергией связи $Mn2p_{3/2}$ равной 639.9, 640.7 и 641.4 эВ соответственно [15, 19]. Доля Mn²⁺ в образцах, прокаленных при 400-700°С, равна 10-12%, а в катализаторе, прокаленном при 800°C, она возрастает до 21%. Отношение Mn^{4+}/Mn^{3+} с повышением $T_{\text{прокал}}$ постепенно сокрашается от 1.3 до 0.9. Что касается общего содержания марганца в приповерхностном слое, то, как видно из данных табл. 2, с ростом температуры прокаливания до 700°С соотношение [Mn]/[Mn + Ce + Zr] увеличивается, а при 800°С – уменьшается. Обогащение поверхности катализатора марганцем диапазоне температур прокаливания 400-700°С находится в согласии с данными ТПВ-Н₂ и, вероятно, обусловлено формированием высокодисперсных поверхностных частиц MnO_x в процессе распада твердого раствора $Mn_{\nu}Zr_{\kappa}Ce_{1-\nu}O_{2-\delta}$. Снижение значения [Mn]/[Mn+ + Ce + Zr] при 800°С вызвано спеканием этих частиц с образованием, по данным РФА, кристаллической фазы Mn₃O₄.

Каталитические свойства

Результаты каталитических испытаний образцов Mn-Zr-Ce-T в реакции окисления СО при варьировании T_{прокал} представлены на рис. 4. С увеличением температуры прокаливания от 400 до 500°С кривая превращения СО сдвигается в более низкотемпературную область, температура достижения 50%-ной конверсии CO ($T_{50\%}$) изменяется от 185 до 164°С, что указывает на возрастание активности катализатора. Повышение Т_{прокал} до 600°С не вызывает значимых изменений каталитических свойств, для Mn-Zr-Ce-500 и Mn-Zr-Ce-600 кривые превращения СО очень близки, значения T_{50%} совпадают. Дальнейшее повышение *Т*_{прокал} приводит к снижению каталитической активности, для Mn-Zr-Ce-700 значение *T*_{50%} составляет 178°С. В случае Mn−Zr−Ce-800 кривая превращения существенно смещается в сторону высоких температур, и T_{50%} возрастает до 314°С. Таким образом, зависимость каталитической активности Mn-Zr-Ce в реакции окисления СО от температуры прокаливания образцов проходит через максимум, где наибольшая каталитическая активность достигается при $T_{\text{прокал}} =$ $= 500 - 600^{\circ}$ C.

Сопоставление результатов каталитических испытаний с данными РФА, РФЭС и ТПВ-H₂ указывает на то, что рост каталитической активности при повышении температуры прокаливания Mn–Ce–Zr от 400 до 600°C, вероятно, обу-

словлено постепенным распадом твердого раствора Mn_vZr_xCe_{1 – v}O_{2 – б} с выделением на его поверхности высокодисперсных частиц МпО,, подвижный кислород которых, как известно [16. 32], проявляет высокую активность в реакциях окисления. При увеличении Т_{прокал} от 600 до 700°С образец лишь незначительно теряет активность в окислении СО. при этом Mn–Ce–Zr-700 более активен, чем Mn-Ce-Zr-400. Появление низкотемпературного поглощения водорода при 150-300°С по результатам ТПВ-Н₂ (рис. 2), обогащение поверхности катионами марганца по данным РФЭС (Mn/Ce + Zr) и наблюдаемые тенденции в эволюции фазового состава (расслоение твердого раствора $Mn_{\nu}Zr_{r}Ce_{1-\nu}O_{2-\delta}$) могут свидетельствовать об образовании высокодисперсных частиц MnO_r. Падение каталитической активности, наблюдаемое после прокаливания образца при 800°C, обусловлено присутствием марганца преимущественно в виде окристаллизованных объемных частиц Мп₃O₄.

Таким образом, изменения каталитической активности Mn-Zr-Ce, наблюдаемые при повышении температуры прокаливания, согласуются с фазовыми трансформациями твердого раствора $Mn_yZr_xCe_{1-y}O_{2-\delta}$. По всей видимости, каталитическая активность в Mn-Zr-Ce определяется присутствием марганца как в структуре твердого раствора, так и в виде высокодисперсных частиц MnO_x .

ЗАКЛЮЧЕНИЕ

Изучено влияние температуры прокаливания катализатора катионного состава Mn_{0.3}Zr_{0.35}Ce_{0.35} на его структурные свойства и каталитическую активность в реакции окисления СО. Методами РФА и ТПВ-Н₂ показано, что после прокаливания при 400°С образуется твердый раствор $Mn_vZr_xCe_{1-v}O_{2-\delta}$, а также присутствуют следовые количества Mn₃O₄. При повышении температуры прокаливания от 400 до 600°С вероятен постепенный распад твердого раствора $Mn_v Zr_x Ce_{1-v}O_{2-\delta}c$ выходом катионов марганца из его структуры в виде высокодисперсных частиц MnO_x, что обуславливает наблюдаемое увеличение каталитической активности. При 700-800°С твердый раствора $Mn_vZr_xCe_{1-v}O_{2-\delta}$ распадается с образованием двух смешанных оксидов на основе CeO₂ и на основе ZrO₂ а также окристаллизованной фазы Mn₃O₄, что вызывает снижение каталитической активности. Таким образом, наибольшей каталитической активностью в реакции окисления СО обладают образцы, прокаленные при 500-600°С, что, вероятно, связано с присутствием марганца как в структуре твердого раствора, так и в виде высокодисперсных частиц MnO_x на его поверхности.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского научного фонда, грант № 21-73-10218.

БЛАГОДАРНОСТИ

Авторы благодарят к.х.н. В.А. Рогова за проведение ТПВ-экспериментов. Рентгеноструктурные и РФЭС исследования выполнены на оборудовании Центра коллективного пользования "Национальный центр исследования катализаторов".

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ.

- Frey K., Iablokov V., Sáfrán G., Osán J., Sajó I., Szukiewicz R., Chenakin S., Kruse N. // J. Catal. 2012. V. 287. P. 30.
- 2. Tang X., Li Y., Huang X., Xu Y., Zhu H., Wang J., Shen W. // Appl. Catal. B: Env. 2006. V. 62. P. 265.
- Mousavi S.M., Niaei A., Gómez M.J.I., Salari D., Panahi P.N., Abaladejo-Fuentes V. // Mater. Chem. Phys. 2014. V. 143. P. 921.
- Terribile D., Trovarelli A., Leitenburg C., Primavera A., Dolcetti G. // Catal. Today. 1999. V. 47. № 1–4. P. 133.
- 5. *Machida M., Murata Y., Kishikawa K., Zhang D., Ikeue K. //* Chem. Mater. 2008. V. 20. № 13. P. 4489.
- Nelson A.E., Schulz K.H. // Appl. Surf. Sci. 2003. V. 210. P. 206.
- Azalim S., Franco M., Brahmi R., Giraudon J.-M., Lamonier J.-F. // J. Hazar. Mater. 2011. V. 188. P. 422.
- Gallegos M.V., Garbarino G., Colman Lerner J.E., Finocchio E., Busca G., Sambeth J.E., Peluso M.A. // Lat. Am. Appl. Res. 2021. V. 51. № 2. P. 81.
- 9. Zhu L., Li X., Liu Z., Yao L., Yu P., Wei P., Xu Y., Jiang X. // Nanomater. 2019. V. 9. P. 675.
- Kaplin I. Yu., Lokteva E.S., Bataeva S.V., Maslakov K.I., Fionov A.V., Shumyantsev A.V., Isaikina O.Ya., Kamaev A.O., Golubina E.V. // Pure Appl. Chem. 2021. V. 93. № 4. P. 447.
- 11. Alinezhadchamazketi A., Khodadadi A.A., Mortazavi Y., Nemati A. // J. Env. Sci. 2013. V. 25. № 12. P. 2498.
- Sánchez Escribano V., Fernández López E., Gallardo-Amores J.M., del Hoyo Martínez C., Pistarino C., Panizza M., Resini C., Buscac G. // Combust. Flame. 2008. V. 153. P. 97.
- Cao F., Xiang J., Wang P., Sun L., Hu S., Lei S. // Chem. Eng. J. 2014. V. 243. P. 347.
- Sun W., Li X., Mu J., Fan S., Yin Z., Wang X., Qin M., Tade M., Liu S. // J. Colloid Interface Sci. 2018. V. 531. P. 91.
- Shen B., Wang Y., Wang F., Liu T. // Chem. Eng. J. 2014. V. 236. P. 171.
- Hou Z., Feng J., Lin T., Zhang H., Zhou X., Chen Y. // Appl. Surf. Sci. 2018. V. 434. P. 82.

КИНЕТИКА И КАТАЛИЗ том 63 № 4 2022

- 17. Long G., Chen M., Li Y., Ding J., Sun R., Zhou Y., lerod A.,
- *Huang X., Han G., Zhao W. //* Chem. Eng. J. 2019. V. 360. P. 964.
- Shen B., Zhang X., Yao Y., Liu T. // J. Env. Sci. 2013. V. 25. № 4. P. 791.
- 19. *Rao T., Shen M., Jia L., Hao J., Wang J. //* Catal. Commun. 2007. V. 8. P. 1743.
- Либерман Е.Ю., Клеусов Б.С., Наумкин А.В., Загайнов И.В., Конькова Т.В., Симакина Е.А., Изотова А.О. // Перспективные материалы. 2020. № 9. С. 75.
- Афонасенко Т.Н., Булавченко О.А., Гуляева Т.И., Цыбуля С.В., Цырульников П.Г. // Кинетика и катализ. 2018. Т. 59. №1. С. 127.
- 22. Scofield J.H. // J. Electron Spectros. Relat. Phenomena. 1976. V. 8. № 2. P. 129.
- 23. Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709.
- 24. Fairley N. // www.casaxps.com.
- Moretti E., Storaro L., Talona A., Lenarda M., Riello P., Frattini R., del Valle Martínez de Yusoc M., Jiménez-Lópezc A., Rodríguez-Castellónc E., Ternerod F., Cabal-

lerod A., Holgadod J.P. // Appl. Catal. B: Env. 2011. V. 102. P. 627.

- Azalim S., Brahmi R., Agunaou M., Beaurain A., Giraudon J.-M., Lamonier J.-F. // Chem. Eng. J. 2013. V. 223. P. 536.
- 27. Tang L., Yamaguchi D., Burke N., Trimm D., Chiang K. // Catal. Commun. 2010. V. 11. P. 1215.
- 28. Jampaiah D., Venkataswamy P., Tur K.M., Ippolito S.J., Bhargava S.K., Reddy B.M. // Z. Anorg. Allg. Chem. 2015. V. 641. № 6. P. 1141.
- 29. Bulavchenko O.A., Vinokurov Z.S., Afonasenko T.N., Tsyrul'nikov P.G., Tsybulya S.V., Saraev A.A., Kaichev V.V.// Dalton Trans. 2015. V. 44. P. 15499.
- Gutiérrez-Ortiz J.I., De Rivas B., López-Fonseca R., Martín S., González-Velasco J.R. // Chemosphere. 2007. V. 68. P. 1004.
- Zhong L., Fang Q., Li X., Li Q., Zhang C., Chen G. // Appl. Catal. A: Gen. 2019. V. 579. P. 151.
- 32. Kantzer E., Dobber D., Kiessling D., Wendt G. // Stud. Surf. Sci. Catal. 2002. V. 143. P. 489.

Effect of Calcination Temperature on the Properties of Mn–Zr–Ce Catalysts in CO Oxidation

T. N. Afonasenko^{1, *}, D. V. Glyzdova¹, V. P. Konovalova², A. A. Saraev², E. E. Aydakov², and O. A. Bulavchenko^{2, **}

¹Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Neftezavodskaya st. 54, Omsk, 644040 Russia

²Federal Research Center Boreskov Institute of Catalysis, 5 Lavrentiev Ave., Novosibirsk, 630090 Russia

*e-mail: atnik@ihcp.ru

**e-mail: obulavchenko@catalysis.ru

The effect of calcination temperature of $MnO_x - ZrO_2 - CeO_2$ catalysts on their structural properties and activity in the CO oxidation reaction has been studied. Triple oxide systems with the cation ratio Mn : Zr : Ce = 0.3 : 0.35 : 0.35 prepared by co-precipitation have been investigated. According to the XRD, TPR-H₂ and XPS data, an increase in the calcination temperature from 400 to 800°C causes a structural transformation of the $Mn_yZr_xCe_{1-y}O_{2-\delta}$ solid solution. At 400–600°C, manganese cations leave structure of solid solution in the form of highly dispersed MnO_x particles; at 700–800°C, the initial solid solution $Mn_yZr_xCe_{1-y}O_{2-\delta}$ decomposes with the formation of two mixed oxides based on CeO_2 and ZrO_2 , as well as a crystallized phase Mn_3O_4 . The highest catalytic activity in the CO oxidation reaction is exhibited by $MnO_x - ZrO_2 - CeO_2$ catalysts calcined at 500–600°C, which is probably due to the presence of manganese both in the structure of the solid solution and in the form of highly dispersed MnO_x particles on its surface.

Keywords: Mn-Zr-Ce catalysts, thermal stability, CO oxidation