КИНЕТИКА И КАТАЛИЗ, 2022, том 63, № 5, с. 661–668

_____ IV Российский конгресс по катализу "Роскатализ" _____ (20-25 сентября 2021 г., Казань, Россия)

УДК 532:541.135.1

ОСОБЕННОСТИ ГИДРОЛИЗА КОНЦЕНТРИРОВАННЫХ ВОДНО-ЩЕЛОЧНЫХ РАСТВОРОВ NaBH₄ НА КАТАЛИЗАТОРЕ Co/TiO₂

© 2022 г. С. И. Шабуня^{*a*}, В. Г. Минкина^{*a*, *}, В. И. Калинин^{*a*}

^аИнститут тепло- и массообмена имени А.В. Лыкова Национальной академии наук Беларуси, ул. П. Бровки, 15, Минск, 220072 Республика Беларусь

**e-mail: minkina@dnp.itmo.by* Поступила в редакцию 01.03.2022 г. После доработки 25.03.2022 г. Принята к публикации 14.04.2022 г.

Представлены результаты кинетических экспериментов гидролиза концентрированных водных и водно-щелочными растворов NaBH₄ с катализатором Co/TiO₂. Эксперименты в водных растворах NaBH₄ проведены с моляльными концентрациями 0.25, 1 и 4 моль/кг. В водно-щелочных растворах с моляльными концентрациями NaBH₄ 0.25 и 1 моль/кг моляльные концентрации NaOH варьировали в интервале 0.05–8 моль/кг. Определены энергии активации в водном (64.3 кДж/моль) и водно-щелочном (53.6 кДж/моль) растворах. Обсуждаются особенности кинетических кривых и возможные кинетические схемы.

Ключевые слова: борогидрид натрия, каталитический гидролиз, кобальт, схемы сорбционных и кинетических процессов

DOI: 10.31857/S0453881122050112

введение

Внимание к гидролизу щелочных растворов борогидрида натрия (NaBH₄) на кобальтовых катализаторах объясняется неожиданным и пока необъясненным эффектом – возрастанием скорости генерации водорода при добавлении щелочи в водный раствор NaBH₄ [1, 2]. Еще интереснее, что зависимость от концентрации щелочи немонотонная, максимальные значения скорости генерации водорода наблюдаются при моляльной концентрации NaOH 0.5-3 моль/кг, а дальнейшее увеличение концентрации ведет к уменьшению этой величины [3-10]. В то же время, в случае гомогенного гидролиза и каталитического гидролиза на основе благородных металлов Pt, Ru добавление щелочи приводит к монотонному понижению скорости генерирования водорода [11—13].

Диапазон моляльных концентраций растворов NaBH₄ 1-4 моль/кг, использованных в настояшей работе, объясняется ориентацией исследований на прикладные задачи, предусматривающие применение NaBH₄ в качестве источника водорода для топливных элементов. Моляльные концентрации NaOH варьировали от 0.05 до 8 моль/кг, чтобы охватить режимы и с ростом, и с падением скорости генерации водорода. Растворы с таким составом относятся к электролитам высокой концентрации, что является дополнительной особенностью при построении кинетических схем их гидролиза. В настояшее время отсутствуют не только кинетические схемы для таких процессов, сформулированные в виде математических соотношений, но и качественные объяснения, интерпретирующие все наблюдаемые эффекты с единой позиции [7, 14–16]. Авторы представленной статьи обсуждают возможные схемы сорбшионных и кинетических процессов для описания каталитического гидролиза концентрированных водно-щелочных растворов NaBH₄.

В качестве косвенного подтверждения роли сорбционных процессов проведены эксперименты и найдены энергии активации для водного раствора и водно-щелочного раствора NaBH₄. Значительное уменьшение этой величины в водно-щелочном растворе трактуется как эффект сорбционных характеристик катализатора. Опре-

Сокращения и обозначения: ξ — степень разложения NaBH₄; R — константа скорости (моль/с/м²); N_i — количество молей компонент; $Q_{\rm H_2}$ — скорость генерирования водорода (мл/мин/г_{саt}); $\varepsilon_{\rm empt}$ — доля свободной поверхности; ε_i — доля поверхности, занимаемая частицами сорта *i*; M_i — частицы сорта *i*, инициирующие десорбцию адсорбированных частиц; E_a — энергия активации (Дж/моль); R_g — универсальная газовая постоянная (Дж/моль/К); k — гидратационное число.

Рис. 1. Скорость генерирования водорода при 30°С в присутствии 0.05 г Co/TiO₂ в водных растворах с различной моляльной концентрацией NaBH₄: 0.25 (*1*), 1.0 (*2*) и 4.0 моль/кг (*3*).

деление энергии активации собственно гетерогенной реакции невозможно без учета процессов сорбции.

Целью настоящей работы является представление экспериментальных данных по каталитическому гидролизу водно-щелочных растворов NaBH₄, анализ специфики поведения кинетических кривых и обсуждение возможных механизмов процесса каталитического гидролиза для исследуемого типа катализатора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного компонента использовали гранулированный порошок NaBH₄ ("Sigma-Aldrich"), содержание основного вещества – 98%.

Катализатор Со был синтезирован методом химического восстановления и нанесен методом пропитки на микронный порошок TiO_2 ("Nanography Nano Technology") с чистотой 99.99%, размер частиц — 325 меш. [17]. Содержание кобальта на поверхности TiO_2 составляет 3.4 вес. %.

Эксперименты проводили в реакторе с максимальной герметичностью, все узлы и детали изготовлены из нержавеющей стали. Объем реактора составляет 182.5 см³, диаметр – 5 см. Температуру раствора в реакторе регистрировали датчиком с платиновым термосопротивлением Pt100 ("Autonics Corporation", Корея). В качестве измерителя давления использовали электронные датчики фирмы "Keller" (Швейцария) на рабочие давления 2.5 и 10 бар. Давление в реакторе изменяли от атмосферного до максимального, которое определяется количеством NaBH₄ в растворе. Ориентируясь на максимальное значение, выбирали датчик с соответствующим диапазоном измерения.

Эксперименты проводили в термостате, в котором устанавливали заданную температуру и помещали в него реактор с сухим порошком NaBH₄ и катализатором. После нагрева реактора до заданной температуры в него заливали необходимый объем дистиллированной воды или щелочного раствора и реактор герметизировали. Перемешивание реакционной смеси не применяли, так как раствор интенсивно перемешивается всплывающими пузырьками водорода. С момента заливки воды и до окончания гидролиза измеряли две функции – давление в реакторе, пропорциональное количеству выделяющегося водорода, и температура раствора, с помощью которых рассчитывали экспериментальные значения степени разложения ξ и объем генерируемого водорода. Во всех экспериментах использовали 0.05 г катализатора.

Три серии экспериментов по влиянию щелочи на скорость генерирования водорода выполнены при одной температуре 30°С, что упрощает первичный анализ, поскольку в таком случае кинетические характеристики являются просто константами.

Компоненты раствора характеризуем количествами частиц N_i (молей), при этом начальное количество воды всегда 1 кг, т.е. $N_{\rm H_2O}^0 \equiv 1000/18$. Начальный трехкомпонентный раствор описывается числами – $N_{\rm H_2O}^0$, $N_{\rm NaBH_4}^0$, $N_{\rm NaOH}^0$, т.е. $N_{\rm NaBH_4}^0$ и $N_{\rm NaOH}^0$ являются моляльными концентрациями NaBH₄ и NaOH в исходном растворе. По мере гидролиза происходит изменение количества не только разных ионов, содержащих бор, но и молекул воды, т.е. текущие числа N_i будут несколько отличаться от строгого определения моляльных концентраций.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ В ВОДНЫХ РАСТВОРАХ

На рис. 1 приведены графики скорости генерации водорода $Q_{\rm H_2}$ в экспериментах с водными растворами в зависимости от степени гидролиза ξ . Использование степени гидролиза вместо времени позволяет удобно сопоставлять результаты разных экспериментов, гидролиз которых занимает разное время.

Область $0 \le \xi \le 1$ на рис. 1 можно условно разделить на три подобласти: $\xi < 0.2$, $0.2 < \xi < 0.9$ и $\xi > 0.9$. В центральной области (основная часть гидролиза) скорость генерации водорода почти постоянная, а наблюдаемые отклонения от константы наиболее заметны для раствора с 4 молями NaBH₄, но и они небольшие. Падение скорости

662

генерации водорода на конечной стадии гидролиза можно связать с переходом процесса из кинетического в диффузионный режим. Особенности кинетики гидролиза растворов разной концентрации в наибольшей степени проявляются на начальном участке гидролиза.

В точке $\xi \approx 0$ измеренная скорость генерации водорода $Q_{\rm H_2}$ отражает не только кинетические особенности гидролиза, но и специфику методики наших экспериментов, поскольку в начальный момент идет растворение порошка NaBH₄ и установление циркуляции частиц катализатора в объеме раствора. С учетом сказанного, сравним измеренные значения $Q_{\rm H_2}$ (97, 350 и 1250 мл мин⁻¹ $\Gamma_{\rm cat}^{-1}$) с отношениями соответствующих концентраций. Отношение концентраций равно 4, а отношение скоростей ~3.6. Это дает основание предполагать, что в водных растворах в нулевом приближении

 $Q_{\mathrm{H}_2}(0) \sim N_{\mathrm{NaBH}_4}^0.$

Граница перехода от начального участка к "плато" $\xi = 0.2-0.3$ интересна тем, что три раствора в этой точке имеют разные концентрации, т.е. изменение режима генерации водорода обусловлено не общей концентрацией, а некоторой более тонкой характеристикой раствора. Значение ξ близкое к 0.25 дает основание предполагать, что точка перехода может быть связана с почти

полным гидролизом иона ВН₄⁻. Схема гидролиза NaBH₄ предполагает последовательность четырех необратимых реакций [18, 19]:

$$BH_{4}^{-} \xrightarrow{\uparrow_{H_{2}}} BH_{3}OH^{-} \xrightarrow{\uparrow_{H_{2}}} \rightarrow BH_{2}(OH)_{2}^{-} \xrightarrow{\uparrow_{H_{2}}} \rightarrow (I)$$
$$\rightarrow BH(OH)_{3}^{-} \xrightarrow{\uparrow_{H_{2}}} B(OH)_{4}^{-}.$$

Конечным продуктом гидролиза является раствор NaB(OH)₄.

Широко распространена гипотеза, что в гомогенном процессе самая медленная первая стадия: $BH_4^- \xrightarrow{\uparrow} H_2 \rightarrow BH_3OH^-$. Согласно данным [18] скорость третьей стадии примерно в 2 раза больше скорости гидролиза главного иона, а скорости второй и четвертой стадий примерно в 1000 раз больше первой. В большинстве предлагаемых кинетических моделей стадии 2–4 считаются быстрыми, т.е. мгновенными. В таком приближении гомогенный процесс после начального периода установления квазистационарного распределения компонент раствора протекает с самосогласованным монотонным уменьшением количества четырех ионов, содержащих бор: N_{BH} ,

$$N_{\rm BH_3OH^-}, N_{\rm BH_2(OH)_2^-}, N_{\rm BH(OH)_3^-}.$$

Можно предположить, что соотношение скоростей, характерное для гомогенного гидролиза,

КИНЕТИКА И КАТАЛИЗ том 63 № 5 2022

изменяется в случае гетерогенных реакций на рассматриваемом катализаторе Co/TiO₂. Самой медленной гетерогенной стадией может стать, например, третья: $BH_2(OH)_2^- \xrightarrow{\uparrow H_2} BH(OH)_3^-$. В таком случае до момента почти полного гидроли-

за иона BH₄⁻ скорость генерации водорода будет понижаться, а затем стабилизируется на значении, определяемом самой медленной стадией.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ В ВОДНО-ЩЕЛОЧНЫХ РАСТВОРАХ

На рис. 2 приведены графики изменения скорости генерации водорода $Q_{\rm H_2}$ в экспериментах с водно-щелочными растворами в зависимости от степени гидролиза ξ . Числа на линиях указывают моляльную концентрацию $N_{\rm NaOH}^0$.

Графики $Q_{\rm H_2}$ демонстрируют немонотонную зависимость как от N_{NaOH}^0 , так и от ξ . Максимальные значения $Q_{\rm H_2}$ наблюдаются при $N_{\rm NaOH}^0 \approx 1-2$ моля. Анализ кинетических кривых на рис. 2 можно разделить на три подобласти: $\xi < 0.1$, $0.1 < \xi < 0.8$ и $\xi > 0.8$. Поведение кинетических кривых в области начала гидролиза на рис. 2 принципиально отличается от поведения кривых на рис. 1 – рост против падения. Объяснение этому можно искать в особенностях процессов сорбции/десорбции в сильнощелочных растворах, но можно предположить и физическую причину. В рамках такой гипотезы наблюдаемый рост скорости генерации водорода в области ξ < 0.1 в большей мере связан с процессами растворения и формирования начальной циркуляции в растворе. Дело в том, что с увеличением концентрации щелочи растет вязкость раствора, в результате чего замедляются и растворение, и конвекция.

В области $0.1 < \xi < 0.8$ можно отметить общую тенденцию поведения функций $Q_{\rm H_2}(\xi)$ для растворов с $N_{\rm NaOH}^0 > 2$ – уменьшение генерации водорода с ростом ξ . Для растворов с $N_{\rm NaOH}^0 < 1$, наоборот, функции $Q_{\rm H_2}(\xi)$ или растут, или близки к константе. Поведение функций $Q_{\rm H_2}(\xi)$ в области $\xi > 0.8$ мы по-прежнему склонны объяснять переходом гидролиза в диффузионный режим.

Выявленные экспериментально особенности гидролиза водных и водно-щелочных растворов NaBH₄ являются материалом для построения кинетических схем процесса на исследуемом катализаторе.

Рис. 2. Скорость генерирования водорода при 30°С в присутствии 0.05 г Co/TiO₂ в водно-щелочных растворах с моляльной концентрацией NaBH₄ равной 0.25 (а) и 1.0 моль/кг (б). Цифры на линиях указывают моляльную концентрацию NaOH. Пунктиром на графиках изображены кривые с рис. 1 ($N_{NaOH} = 0$).

ОБСУЖДЕНИЕ ВОЗМОЖНЫХ СХЕМ КИНЕТИЧЕСКИХ ПРОЦЕССОВ

Ускорение каталитического гидролиза на кобальтовых катализаторах при добавлении щелочи неожиданный факт, поскольку при гомогенном гидролизе добавление щелочи к водному раствору всегда замедляет процесс. Введение NaOH в водный раствор NaBH₄ не изменяет список компонент раствора, но увеличивает количество ионов Na⁺ и OH⁻. В водных растворах NaBH₄ концентрация ионов OH⁻ устанавливается самосогласованно с химическими процессами гидролиза и изменяется с изменением ξ . В водно-щелочных растворах в рассматриваемом диапазоне N_{NaOH}^0 (0.05–8 моль) количество ионов OH⁻ практически равно количеству исходных молей NaOH, что влияет на равновесие обратимых реакций в растворе.

Главная гомогенная обратимая реакция в растворах NaBH₄ — это образование и разрушение метастабильного нейтрального комплекса $\left[BH_4^- \cdot H^+\right]$. Прямую реакцию можно записать двумя способами:

$$BH_{4}^{-} + H^{+} \longrightarrow \left[BH_{4}^{-} \cdot H^{+} \right], \qquad (II)$$

$$BH_4^- + H_2O \longrightarrow \left[BH_4^- \cdot H^+\right] + OH^-.$$
(III)

Аналогично, обратные процессы могут иметь два канала:

$$\left[BH_{4}^{-} \cdot H^{+}\right] + H_{2}O \longrightarrow BH_{4}^{-} + H_{3}O^{+}, \qquad (IV)$$

$$\begin{bmatrix} BH_4^- \cdot H^+ \end{bmatrix} + OH^- \longrightarrow BH_4^- + H_2O.$$
 (V)

Для сокращения записи далее будем использовать обозначение [Comp] = $[BH_4^- \cdot H^+]$. При записи равновесия реакций (II)–(V) количество комплексов $N_{[Comp]}$ будет пропорционально количеству ионов $N_{BH_4^-}$, а вот функциональная зависимость от количества ионов N_{OH^-} определяется соотношением скоростей реакций (II)–(V). Можно выделить три варианта:

— в случае преобладания реакций (III), (IV) зависимости $N_{[\text{Comp}]}$ от N_{OH^-} нет;

— в случае преобладания реакций (II), (IV) или (III), (V) $N_{\rm [Comp]}{}^\sim \! N_{\rm H,O}^{}/N_{\rm OH}^{};$

— в случае преобладания реакций (II), (V) $N_{[\text{Comp}]} \sim \left(N_{\text{H}_2\text{O}}/N_{\text{OH}^-}\right)^2$.

При гидролизе водных растворов $NaBH_4$ количество ионов N_{OH^-} устанавливается самосогласованно с количеством комплексов [Comp] и молекул борной кислоты, которая образуется в результате реакции диссоциации:

$$B(OH)_{4}^{-} + H_{2}O \xrightarrow{K_{2}} B(OH)_{3} + OH^{-} + H_{2}O.$$
 (VI)

В начале гидролиза при $\xi \approx 0$ борной кислоты нет, и количество ионов N_{OH^-} приблизительно

КИНЕТИКА И КАТАЛИЗ том 63 № 5 2022

664

равно количеству комплекса N_[Comp]. Соответственно, получаем три асимптотики: $N_{
m OH}$ pprox $pprox N_{[
m Comp]} \sim N_{
m NaBH_4}^0$, $N_{
m OH^-} \approx N_{[
m Comp]} \sim \sqrt{N_{
m NaBH_4}^0}$ и $N_{\rm OH^-} \approx N_{\rm [Comp]} \sim \sqrt[3]{N_{\rm NaBH_4}^0}$. В экспериментах, которые демонстрирует рис. 1, скорость генерации водорода при ξ ≈ 0 возрастала в 3.6 раз при увеличении $N_{\text{NaBH}_4}^0$ в 4 раза. Такой факт порождает гипотезу, что для расчета N_[Comp] надо использовать уравнения (III)-(V), причем процесс (IV) интенсивнее процесса (V). С другой стороны, специфика использованной методики экспериментов, обсуждавшаяся выше, может сильно сказываться на значениях $Q_{\rm H_2}(0)$, т.е. "маскировать" реальную асимптотику. Дополнительную информацию о поведении N_[Comp] при гидролизе водных растворов можно попытаться получить, разработав методику измерения рН этих растворов во время гидролиза.

В водно-щелочных растворах $N_{\text{OH}^-} \approx N_{\text{NaOH}}^0$, и это означает уменьшение $N_{[\text{Comp}]}$ с ростом N_{NaOH}^0 , исключая случай преобладания реакций (III), (IV), когда $N_{[\text{Comp}]}$ не зависит от N_{NaOH}^0 . Если количество комплексов в растворе уменьшается, то снижается их роль в процессах сорбции/десорбции.

Гетерогенные реакции протекают на адсорбированных катализатором нейтральных частицах раствора. Частицы различных сортов могут конкурировать друг с другом за адсорбционные цен-Увеличение начальной тры. концентрации $N_{{
m NaBH_4}}^0$ и/или $N_{{
m NaOH}}^0$ ведет к изменению концентраций компонент раствора, и соответственно, изменению долей адсорбированных частиц разного сорта. В водно-щелочных растворах NaBH₄ нейтральные частицы — это молекулы воды и борной кислоты, а также комплекс [Comp]. В ходе гидролиза с ростом ξ уменьшается количество комплексов N_[Comp] и увеличивается количество борной кислоты $N_{\mathrm{B(OH)}_2}$. Количество молекул воды тоже немного снижается. Хотя в растворе $N_{\mathrm{[Comp]}} \ll N_{\mathrm{BH_4^-}} \ll N_{\mathrm{H_2O}}^0$, в адсорбированном состоянии комплекс [Comp]^S может быть достаточно устойчивым и активным, чтобы воздействовать на гидролиз.

Для необратимых гетерогенных реакций можно предложить несколько вариантов реакций на адсорбированных молекулах воды H_2O^S и комплексах [Comp]^S, но нет вариантов реакций с участием молекул $B(OH)_3^s$, которые могут влиять на гидролиз пассивным образом – занимая адсорбционные центры катализатора. Для описания процессов сорбции/десорбции введем обозначения: ε_{empt} – доля свободной поверхности, ε_{H_2O} – доля поверхности, занятой молекулами H_2O^s , $\varepsilon_{B(OH)_3}$ – доля поверхности, занятой молекулами $B(OH)_3^s$, $\varepsilon_{[Comp]}$ – доля поверхности, занятой комплексом [Comp]^s.

$$\varepsilon_{\rm H_2O} + \varepsilon_{\rm [Comp]} + \varepsilon_{\rm B(OH)_3} + \varepsilon_{\rm empt} = 1.$$
 (1)

В случае, когда самая медленная реакция в цепочке (I) первая, достаточно рассматривать только гетерогенные процессы, связанные с ионом BH_4^- (остальные три реакции – быстрые). Необратимые реакции на H_2O^S и [Comp]^S можно записать в следующем виде:

$$H_{2}O^{S} + BH_{4}^{-} \rightarrow H_{2} + BH_{3}OH^{-},$$
(VII)

$$H_{2}O^{S} + \left[BH_{4}^{-} \cdot H^{+}\right] \rightarrow H_{2} + \left[BH_{3}OH^{-} \cdot H^{+}\right];$$
(VII)

$$\left[BH_{4}^{-} \cdot H^{+}\right]^{S} + OH^{-} \rightarrow H_{2} + BH_{3}OH^{-},$$
(VIII)

$$\left[BH_{4}^{-} \cdot H^{+}\right]^{S} + H_{2}O \rightarrow H_{2} + \left[BH_{3}OH^{-} \cdot H^{+}\right].$$
(VIII)

В такой модели и ионы ВН₄, и комплексы [Comp] существуют все время гидролиза, асимптотически стремясь к нулю в его конце. Скорость реакций (VII) пропорциональна количеству $\epsilon_{\rm H_{2}O}$ и потоку ионов BH₄ или комплексов [Comp] из раствора на катализатор. До тех пор, пока поток скорости гетерогенной реакции R_{H₀} будет меньше диффузионного потока инициирующих реакцию частиц (BH₄⁻ или [Comp]), реакция будет проходить в кинетическом режиме $Q_{\rm H_2} \sim \epsilon_{\rm H_2O} R_{\rm H_2O}$. Если же соотношение скоростей обратное, то процесс с самого начала будет идти в диффузионном режиме, тогда $Q_{\rm H_2} \sim \epsilon_{\rm H_2O} R_{\rm H_2O} N_{\rm BH_2}$. В любом случае завершение гидролиза по реакции (VII) будет протекать в диффузионном режиме. Скорость гетерогенной реакции $R_{\rm H,O}$ является функцией только температуры, и в изотермическом процессе это константа. Сорбционная характеристика $\epsilon_{H_{2}O}$ кроме температуры зависит и от соотношения сорбирующихся компонент раствора, т.е. и от начального состава раствора, и от степени гидролиза. Отметим также, что зависимости от температуры у $R_{\rm H_{2O}}$ и $\epsilon_{\rm H_{2O}}$ противоположные – с повышением температуры скорость растет, а адсорбция падает, т.е. влияние характеристики $\varepsilon_{H_{2}\Omega}$ будет выражаться в уменьшении энергии активации, определяемой по скорости выделения водорода.

В случае реакций (VIII) количество ионов ОН⁻ и молекул H₂O слабо изменяется в ходе гидролиза и не стремится к нулю, в то время как $\varepsilon_{[Comp]}$ падает, стремясь к нулю по мере роста степени гидролиза. Это значит, что генерация водорода по этому каналу, скорее всего, будет протекать в кинетическом режиме $Q_{H_2} \sim \varepsilon_{[Comp]} R_{[Comp]}$, но со скоростью, постоянно снижающейся пропорционально уменьшению $\varepsilon_{[Comp]}$, что будет выглядеть как реакция первого порядка.

Если же предположить, что в некотором интервале степеней гидролиза скорость третьей реакции в цепочке (I) меньше первой, то кинетическая схема усложняется, и необходимо моделировать эволюцию и иона BH_4^- , и иона $BH_2(OH)_2^-$. Ионы BH_3OH^- и $BH(OH)_3^-$ по-прежнему можно считать короткоживущими. Наиболее вероятным каналом гидролиза для иона $BH_2(OH)_2^-$ является (VII), т.е. на адсорбированных молекулах воды. Количество неизвестных кинетических констант увеличивается, и, соответственно, растет трудность настройки модели такого сорта. В любом случае, для моделирования каталитического гидролиза необходимо описывать процессы сорбции/десорбции, которые запишем в виде:

$$\begin{split} H_2O + \varepsilon_{empt} &\rightarrow H_2O^{s}, \\ H_2O^{s} + M_{H_2O} &\rightarrow H_2O + M_{H_2O} + \varepsilon_{empt}, \\ [Comp] + \varepsilon_{empt} &\rightarrow [Comp]^{s}, \\ [Comp]^{s} + M_{[Comp]} &\rightarrow [Comp] + M_{[Comp]} + \varepsilon_{empt}, \ (IX) \\ B(OH)_3 + \varepsilon_{empt} &\rightarrow B(OH)_3^{s}, \\ B(OH)_3^{s} + M_{B(OH)_3} &\rightarrow \\ &\rightarrow B(OH)_3 + M_{B(OH)_2} + \varepsilon_{empt}, \end{split}$$

где $M_{H_{2}O}$, $M_{[Comp]}$, $M_{B(OH)_{3}}$ – частицы инициирующие десорбцию адсорбированных частиц $H_{2}O^{S}$, $[Comp]^{S}$, $B(OH)_{3}^{S}$ соответственно.

Десорбция происходит в результате столкновения адсорбированных частиц с частицами раствора, причем вероятность десорбции будет зависеть от сорта частиц. Основные частицы — это молекулы воды. Роль ионов, содержащих бор, как инициаторов десорбции будем считать незначительной. В электролитах в результате гидратации ионов молекулы воды делятся на "свободные" H_2O^F и ассоциированные с ионами Na^+ и OH^- , для которых примем обозначение H_2O^I . Такое деление молекул воды является способом учета спе-

цифики электролитов высокой концентрации без помощи модели "активностей". Подобный подход применялся нами в [20] для расчета pH растворов метабората натрия. Количество молекул

 H_2O^1 зависит от количества ионов Na⁺ и OH⁻. Для упрощения модели можно использовать единое гидратационное число *k*:

$$N_{\rm H_{2}O} = N_{\rm H_{2}O^{\rm F}} + N_{\rm H_{2}O^{\rm I}}$$
$$N_{\rm H_{2}O^{\rm I}} = {\rm Min} \left[N_{\rm H_{2}O}, k \left(N_{\rm Na^{+}} + N_{\rm OH^{-}} \right) \right] \equiv \qquad (2)$$
$$\equiv {\rm Min} \left[N_{\rm H_{2}O}, k \left(N_{\rm NaBH_{4}}^{0} + 2N_{\rm NaOH}^{0} \right) \right],$$

где Min — функция, выбирающая минимальное значение из двух величин, указанных в квадратных скобках.

В (IX) для частиц инициаторов десорбции использованы обозначения M_{H_2O} , $M_{[Comp]}$ и $M_{B(OH)_3}$, которые могут являться индивидуальными комбинациями H_2O^F и H_2O^I . Простейший вариант — это для всех M_i принять единое выражение:

$$N_{M_{\rm i}} = N_{\rm H_2O^F} + \beta N_{\rm H_2O^I} = N_{\rm H_2O} + (\beta - 1) N_{\rm H_2O^I}, \quad (3)$$

где коэффициент β — отношение скоростей десорбции для молекул H_2O^I и H_2O^F . При $\beta > 1$ эффективность инициации десорбции у молекул H_2O^I выше, чем у H_2O^F , и в этом случае $N_{M_i} > 0$ для любых вариантов водно-щелочных растворов и гидратационных чисел k. При $\beta < 1$ в зависимости от значений параметров k и β может наступить ситуация, когда $N_{M_i} = 0$. Для ситуаций с такими значениями параметров k и β модель десорбции требует уточнения. В рассматриваемом случае водно-щелочных растворов ожидаются значения $\beta > 1$.

Уравнения сорбционных процессов (1) и (IX) представляют общий случай, описывающий все возможные комбинации интенсивностей этих процессов. В то же время существуют два предельных варианта, которые сокращают число не-известных констант. Самый простой вариант — это ситуация относительно малого заполнения поверхности катализатора активными частицами:

$$\varepsilon_{H_{2}O} + \varepsilon_{[Comp]} + \varepsilon_{B(OH)_3} \ll \varepsilon_{empt} \Rightarrow \varepsilon_{empt} \approx 1.$$
 (4)

В таком случае частицы не конкурируют между собой. Обратный случай — это максимальная конкуренция, когда свободных сайтов почти нет:

$$\varepsilon_{\rm H_2O} + \varepsilon_{\rm [Comp]} + \varepsilon_{\rm B(OH)_3} \gg \varepsilon_{\rm empt} \Rightarrow \varepsilon_{\rm empt} \approx 0.$$
 (5)

Приведенные выше принципы построения модели каталитического гидролиза отражают наш подход к этой проблеме.

Гетерогенные реакции протекают на поверхности катализатора, а точнее, на адсорбирован-

КИНЕТИКА И КАТАЛИЗ том 63 № 5 2022

Рис. 3. Зависимость объема генерируемого водорода от времени водного (а) и водно-щелочного раствора (б) при температурах 20 (1), 30 (2), 40 (3), 50 (4) и 60°С (5). Моляльные концентрации NaBH₄ и NaOH – 1.0 моль/кг, 0.05 г Со/ТіО₂.

ных из раствора частицах определенного сорта. На активных центрах катализатора могут сорбироваться разные частицы, т.е. существует конкуренция между частицами – инициаторами реакций и "инертными". Общепринятой практикой обобщения данных серии изотермических экспериментов является определение энергии активации (E_{a}) для модели Аррениуса скорости химической реакции $R = A \exp(-E_a/R_g/T)$, где R_g – универсальная газовая постоянная. В гомогенных процессах параметр Е_а характеризует энергетический барьер реакции. В случае каталитических гетерогенных реакций формальное определение энергии активации по выходу продукта не учитывает тот факт, что скорость выхода продукта R есть произведение поверхности, занятой "активными" частицами (ϵ_{a}), на собственно вероятность химиче-

Рис. 4. Графики зависимости логарифма скорости генерирования водорода от обратной температуры водного (*1*) и водно-щелочного раствора (*2*) в присутствии Co/TiO₂.

ской реакции, т.е. $R = \varepsilon \exp(-E_a/R_g/T)$. И если скорость гетерогенной реакции зависит только от температуры, то ε является функцией не только температуры, но и состава раствора (концентраций компонент).

При традиционной обработке кинетических данных с целью определения энергии активации принимается, что R — это функция только температуры. Понятно, что такая энергия активации скрытым образом зависит от сорбционных свойств поверхности и концентрации раствора.

Это означает, что при использовании бруттоподхода, т.е. без разделения характеристик сорбции и реакции, энергия активации будет разной для разных концентраций N_{NaBH}^0 и N_{NaOH}^0 .

Для демонстрации этого факта были проведены эксперименты в интервале температур 293– 333 К в водном и водно-щелочном растворе NaBH₄ с моляльной концентрацией 1.0 моль/кг. Моляльная концентрация щелочи – 1.0 моль/кг. Энергию активации определяли с помощью линейных аппроксимаций кинетических кривых на участке $\xi = 0.1-0.9$ (рис. 3). Рассчитанные скорости генерирования водорода использовали для получения аппроксимации коэффициентов Аррениуса (рис. 4). Значения энергии активации для водного и водно-щелочного растворов составили 64.3 и 53.6 кДж/моль соответственно. Как и ожидалось, имеет место зависимость энергии активации от состава раствора.

ЗАКЛЮЧЕНИЕ

Полученные зависимости скорости генерирования водорода от добавляемой щелочи демонстрируют немонотонный характер, как от концентрации щелочи, так и от степени разложения NaBH₄. Максимальные значения скорости генерирования водорода наблюдаются при $N_{\text{NaOH}}^0 \approx 1-2$ моля, что согласуется с существующими оценками этой величины для ряда катализаторов на основе кобальта [10, 21].

Представлена схема сорбционных и кинетических процессов для описания каталитического гидролиза концентрированных водно-щелочных растворов NaBH₄.

Найденные значения энергии активации, определяемые по скорости выделения водорода, являются брутто-характеристиками, поскольку не различают скорость гетерогенной реакции и сорбционные свойства поверхности катализатора. Степень заполнения поверхности катализатора активными частицами зависит не только от температуры, но и от состава раствора. В результате, в брутто-аппроксимации Аррениуса оба коэффициента оказываются функциями концентрации раствора. Определение энергии активации собственно гетерогенной реакции невозможно без учета процессов сорбции.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- Li Q., Hern Kim H. // Fuel Processing Technology. 2012. V. 100. P. 43.
- Chou C.C., Hsieh C.H., Chen B.H. // Energy. 2015. V. 90. № 2. P. 1973.

- Metin O., Ozkar S. // Energy & Fuels. 2009. V. 23. P. 3517.
- Ingersoll J.C., Mani N., Thenmozhiyal J.C., Muthaiah A. // J. Power Sources. 2007. V. 173. № 1. P. 450.
- 5. Li Q., Kim H. // Fuel Proc. Technol. 2012. V. 100. P. 43.
- Hansu T.A., Caglar A., Sahin O., Kivrak H. // Mater. Chem. Phys. 2020. V. 239. P. 122031.
- Ekinci A., Horoz S., Baytar O., Şahin Ö. // J. Optoelectron. Biomed. Mater. 2020. V. 12. № 2. P. 25.
- Didehban A., Zabihi M., Shahrouzi J.R. // Int. J. Hydrogen Energy. 2018. V. 43. № 45. P. 20645.
- 9. Xu J., Du X., Wei Q., Huang Y. // ChemistrySelect. 2020. V. 5. P. 6683.
- 10. *Wang L., Li Z., Zhang Y., Zhang T., Xie G. //* J. Alloys Compds. 2017. V. 702. P. 649.
- 11. *Shang Y., Chen R., Jiang G.* // Int. J. Hydrogen Energy. 2008. V. 33. № 22. P. 6719.
- 12. *Huang Y.-H., Su C.-C., Wang S.-C., Lu M.-C. //* Energy. 2012. V. 46. P. 242.
- Demirci U.B., Garin F. // J. Alloys Compds. 2008. V. 463. P. 107.
- 14. *Zhang Q., Wu Y., Sun X., Ortega J. //* Ind. Eng. Chem. Res. 2007. V. 46. P. 1120.
- Shen X., Wang Q., Wu Q., Guo S., Zhang Z., Sun Z., Liu B., Wang Z., Zhao B., Ding W. // Energy. 2015. V. 90. № 1. P. 464.
- 16. *Xie L., Wang K., Du G., Asiri A.M., Sun X.* // Int. J. Hydrogen Energy. 2017. V. 42. № 2. P. 30639.
- Шабуня С.И., Минкина В.Г., Калинин В.И., Санкир Н.Д., Алтаф С.Т. // Кинетика и катализ. 2021. Т. 62. № 3. С. 305.
- Мочалов К.Н., Хаин В.С. // Кинетика и катализ. 1965. Т. 6. № 4. С. 541.
- Kreevoy M.M., Hutchins J.E.C. // J. Am. Chem. Soc. 1972. V. 94. P. 6371.
- 20. Шабуня С.И., Минкина В.Г., Мартыненко В.В., Калинин В.И. // Изв. Акад. наук. Сер. хим. 2019. № 6. С. 1183.
- Wei Y., Wang R., Meng L., Wang Y., Li G., Xin S., Zhao X., Zhang K. // Int. J. Hydrogen Energy. 2017. V. 42. № 15. P. 9945.

Features of Hydrolysis of Concentrated Aqueous-Alkaline Solutions of NaBH₄ on Co/TiO₂ Catalyst

S. I. Shabunya¹, V. G. Minkina^{1, *}, and V. I. Kalinin¹

¹ Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovka 15. Minsk, 220072 Republic of Belarus *e-mail: minkina@dnp.itmo.by

The results of kinetic experiments of the hydrolysis of concentrated aqueous and aqueous-alkaline solutions of NaBH₄ using Co/TiO₂ catalyst are presented. Experiments in aqueous solutions of NaBH₄ were carried out with molal concentrations of 0.25, 1 and 4 mol/kg; in aqueous-alkaline solutions with molar concentrations of NaBH₄ 0.25 and 1 mol/kg, molal concentrations of NaOH varied in the range of 0.05–8 mol/kg. Activation energies were determined in aqueous – 64.3 kJ/mol and aqueous-alkaline – 53.6 kJ/mol solutions. The features of kinetic curves and possible kinetic schemes are discussed.

Keywords: sodium borohydride, catalytic hydrolysis, cobalt, schemes of sorption and kinetic processes