УДК 678.762.3:541.64

СИНТЕЗ НИЗКОМОЛЕКУЛЯРНЫХ ПОЛИМЕРОВ БУТАДИЕНА С ИСПОЛЬЗОВАНИЕМ КАТИОННЫХ КАТАЛИТИЧЕСКИХ СИСТЕМ НА ОСНОВЕ ДИЭТИЛАЛЮМИНИЙХЛОРИДА

© 2023 г. В. А. Розенцвет^{а, *}, Д. М. Ульянова^а, Н. А. Саблина^а, Р. В. Брунилин^b, П. М. Толстой^c

^а Институт экологии Волжского бассейна РАН – филиал ФГБУН Самарского ФИЦ РАН,

ул. Комзина, 10, Тольятти, 445003 Россия

^bФГБОУ ВО Волгоградский государственный технический университет,

просп. им. Ленина, 28, Волгоград, 400005 Россия

^сФГБОУ ВО Санкт-Петербургский государственный университет, Институт химии,

Университетская наб., 7—9, Санкт-Петербург, 199034 Россия

*e-mail: rozentsvet@mail.ru Поступила в редакцию 25.04.2022 г. После доработки 14.07.2022 г. Принята к публикации 17.07.2022 г.

Установлено, что катионная полимеризация бутадиена под действием каталитических систем на основе диэтилалюминийхлорида (AlEt₂Cl) в сочетании с третичными алкилгалогенидами (A Γ), такими как *трет*-бутилхлорид, *трет*-бутилбромид и 2-хлор-2-метилбутан, является эффективным методом получения полностью растворимых полимеров бутадиена при технологически удобной температуре процесса 20°С. Показано, что при увеличении продолжительности процесса полимеризации бутадиена существенно возрастают значения среднемассовых молекулярных масс и полидисперсности полимера при одновременном уменьшении ненасыщенности полибутадиена, что связано с протеканием в ходе полимеризации реакции передачи растущей цепи на двойную связь полимера. С использованием метода спектроскопии ЯМР¹³С установлено, что макромолекулы полибутадиена, синтезированного на каталитической системе AlEt₂Cl-*mpem*-бутилхлорид, состоят преимущественно из 1,4-*транс*-звеньев, содержат два типа начальных *трет*-бутильных звеньев и два вида концевых хлорсодержащих звеньев, образующихся в результате протекания реакции передачи растущей цепи на *трет*-бутилхлорид. По данным спектров ЯМР ¹³С полибутадиена разработана методика расчета конверсии бутадиена в ходе полимеризации, а также предложен механизм процесса катионной полимеризации бутадиена. Показано, что синтезированный "катионный" полибутадиен характеризуется высокими пленкообразующими свойствами и может являться перспективным компонентом при производстве лакокрасочных материалов.

Ключевые слова: бутадиен, катионная полимеризация, молекулярные характеристики, микроструктура, пленкообразующие свойства

DOI: 10.31857/S0453881123010069, EDN: KITIXS

введение

Полимеры и сополимеры 1,3-бутадиена, получаемые методами стереоспецифической, анионной или радикальной полимеризации, используются в промышленности в производстве шин, резинотехнических изделий, герметизирующих и клеевых композиций [1–5]. Значительно меньшее внимание уделяется исследованию катионной полимеризации бутадиена, что связано с протеканием в ходе процесса неконтролируемых побочных реакций с образованием сшитых нерастворимых полимеров [3-6]. В ряде публикаций [3-11] описаны характерные особенности катионной полимеризации бутадиена под действием каталитических систем на основе AlCl₃, AlBr₃, BF₃·OEt₂, SnCl₄, TiCl₄ и других кислот Льюиса и показано, что полностью растворимые полимеры бутадиена образуются только при невысоких выходах полимера. При увеличении конверсии мономера в составе полибутадиена, как правило, наблюдается образование нерастворимой фракции, что значительно ухудшает потребительские свойства полимера. Во всех случаях полимеры бутадиена, синтезированные методом

Сокращения и обозначения: $AlEt_2Cl - диэтилалюминий$ $хлорид; <math>A\Gamma - алкилгалогенид; TБХ, ^tBuCl - трет-бутил$ хлорид; ТББ - трет-бутилбромид; XMБ - 2-хлор-2-ме $тилбутан; HФ - нерастворимая фракция; <math>M_n$ - среднечисленная молекулярная масса; M_w - среднемассовая молекулярная масса; M_w/M_n - полидисперсность.

катионной полимеризации, характеризуются пониженной ненасыщенностью и преимущественно 1,4-*транс*-структурой ненасыщенной части полимерной цепи [3–6, 8, 10, 11].

В нашей недавней работе [12] был описан способ получения полностью растворимого полибутадиена с применением катионной каталитической системы TiCl₄-*трет*-бутилхлорид (ТБХ). Установлено, что использование избытка ТБХ в реакционной массе по отношению к тетрахлориду титана позволяет эффективно подавить побочную реакцию гелеобразования в ходе катионной полимеризации бутадиена. Процесс полимеризации бутадиена имеет первый порядок реакции по мономеру, при этом скорость полимеризации значительно увеличивается с ростом соотношения ТБХ к TiCl₄ и снижением температуры полимеризации [12]. Недостатком данного метода является низкая скорость полимеризации бутадиена при технологически удобной температуре 20°С, а также высокий расход кислоты Льюиса $(TiCl_4)$.

Целью настоящей работы является поиск новых эффективных методов получения растворимых полимеров бутадиена с использованием катионных каталитических систем, обеспечивающих высокие скорости полимеризации бутадиена в широком интервале температур процесса. Для этого подробно исследованы закономерности катионной полимеризации бутадиена под действием каталитических систем на основе диэтилалюминийхлорида (AlEt₂Cl) в сочетании с третичными алкилгалогенидами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе применяли бутадиен производства ООО "Тольяттикаучук" следующего состава (мас. %): бутадиен – 99.50; *цис*-бутен-2 – 0.20; *транс*бутен-2 - 0.16; изобутилен - 0.06; бутен-1 - 0.04; насыщенные углеводороды – остальное. Перед проведением экспериментов по полимеризации бутадиен очищали от следов воды и стабилизатора пропусканием в токе аргона через колонку с Al_2O_3 , собирали в охлажденную ловушку и смешивали с необходимым количеством алкилгалогенида и растворителя. Хлористый метилен (CH₂Cl₂, "Biosolve", 99.9%), *трет*-бутилхлорид (ТБХ, ^tBuCl, "Fluka", >99.5%), *трет*-бутилбромид (ТББ, "Aldrich", >98.5%), 2-хлор-2-метилбу-тан (ХМБ, "Aldrich" >99.0%) перегоняли в присутствии CaH₂ в токе аргона. Диэтилалюминийхлорид (AlEt₂Cl, "Acros Organics", 99%, раствор в гексане с концентрацией 1 моль/л), метанол ("Peaxим", >99.5%), N-изопропил-N'-фенилфенилендиамин-1,4 ("Bayer", >99.0%), низкомолекулярный полибутадиен марки "Бутарез-25"

(США) и сиккатив марки ЖК-1 использовали без дополнительной очистки.

Полимеризацию бутадиена проводили в атмосфере аргона в стеклянных ампулах, снабженных магнитной мешалкой. В типичном процессе полимеризации в ампулу загружали 2.3 мл раствора бутадиена (0.27 г, 5 ммоль) и трет-бутилхлорида (0.1158 г, 1.25 ммоль) в CH₂Cl₂. После термостатирования содержимого ампулы при 20°С в течении 10 мин вводили 0.2 мл раствора AlEt₂Cl (0.0015 г, 0.0125 ммоль) в CH₂Cl₂. В заданное время катализатор дезактивировали добавлением 0.1 мл метанола, а затем в ампулу вводили раствор стабилизатора – N-изопропил-N-фенилфенилендиамина-1,4 (0.0054 г) в CH₂Cl₂. Полимер выделяли отгонкой из ампулы непрореагировавшего мономера. *трет*-бутилхлорида и растворителя с последующей сушкой под вакуумом при 50°С до постоянного веса. Выход полибутадиена определяли гравиметрически в расчете на загруженный бутадиен. Конверсию бутадиена рассчитывали по разработанной методике (приведена ниже). учитывающей содержание начальных трет-бутильных и концевых хлорсодержащих звеньев в полибутадиене.

Содержание нерастворимой фракции (НФ) в полибутадиене находили экстракцией полимера толуолом в аппарате Сокслета в течении 24 ч. Молекулярные характеристики полимеров (M_n и M_w – среднечисленная и среднемассовая молекулярные массы, M_w/M_n – полидисперсность) определяли методом гель-проникающей хроматографии на жидкостном хроматографе Alliance GPCV-2000 ("Waters", США), снабженным рефрактометрическим и вискозиметрическим детекторами и набором из четырех стирогелевых колонок "Waters" с размерами пор 500 (HR-2), 10³ (HR-3), 10⁴ (HR-4) и 10⁵ (HR-5) Å. Элюент – толуол, скорость элюирования – 0.5 мл/мин, температура – 30°С.

Спектры ЯМР ¹Н и ¹³С (растворитель CDCl₃) регистрировали в ресурсном центре "Магнитнорезонансные методы исследования" Научного парка Санкт-Петербургского государственного университета на спектрометре Avance III 400 ("Bruker", Германия) с рабочими частотами 400.13 МГц (¹Н) и 100.62 МГц (¹³С) по методикам, описанным в работах [13–15]. Расчет содержания структурных звеньев в ненасыщенной части основной полимерной цепи полибутадиена проводили по методике [14].

Время высыхания пленок покрытий на основе полибутадиена определяли по ГОСТ 19007-73, прочность пленки при изгибе – по ГОСТ 6806-73.

AΓ	AΓ/AlEt ₂ Cl	t	Выход полимера, мас. %	Конверсия бутадиена, мас. %	N xa	<i>H</i> _c ,		
					$M_n imes 10^{-3},$ г/моль	$M_w imes 10^{-3},$ г/моль	M_w/M_n	мол. %
	0	240 мин	2.5	_	_	_	_	_
		15 c	64.0	52.0	1.8	5.0	2.8	62
ТБХ	100	30 c	70.2	58.1	1.9	6.8	3.6	60
		5 мин	77.2	65.1	2.0	7.7	3.9	57
		30 мин	95.8	83.8	2.3	9.6	4.2	53
		120 мин	106.3	92.9	3.1	19.7	6.4	50
ТББ		30 c	68.3	55.8	1.0	2.2	2.2	61
	100	5 мин	74.3	61.9	1.2	3.5	2.9	58
		30 мин	94.0	81.5	1.4	4.5	3.2	54
		120 мин	104.1	91.4	1.5	5.8	3.9	51
ХМБ	120	30 c	70.9	_	1.8	4.6	2.6	62
		5 мин	75.2	_	2.1	5.8	2.8	56
		30 мин	94.3	_	2.6	9.6	3.7	54
		120 мин	104.4	_	3.1	16.8	5.4	50

Таблица 1. Результаты полимеризации бутадиена в зависимости от природы алкилгалогенида (АГ), мольного соотношения АГ к AIEt₂Cl и продолжительности полимеризации (t)*

* Условия полимеризации: $[C_4H_6] = 4.0$ моль/л, $[AlEt_2Cl] = 5.0 \times 10^{-3}$ моль/л, $20^{\circ}C$, хлористый метилен. НФ во всех полимерах отсутствует.

Примечание: ТБХ – *трет*-бутилхлорид, ТББ – *трет*-бутилбромид, ХМБ – 2-хлор-2-метилбутан, *H*_c – ненасыщенность полимера. Прочерки означают отсутствие данных.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Влияние природы третичного алкилгалогенида на катионную полимеризацию бутадиена под действием AlEt₂Cl

Известно, что катионная полимеризация 1,3-диенов в среде бензола под действием AlEt₂Cl без добавок в реакционную массу инициаторов полимеризации (например, воды) протекает с чрезвычайно низкой скоростью [16]. Аналогичные результаты получены при изучении катионной полимеризации бутадиена под действием AlEt₂Cl в среде хлористого метилена (табл. 1).

Выход полимера бутадиена за 240 мин процесса в присутствии AlEt₂Cl составляет 2.5 мас. %, что говорит о высокой степени очистки исходных реагентов от микропримесей воды. Введение в реакционную массу третичных алкилгалогенидов (АГ), таких как *трет*-бутилхлорид (ТБХ), *трет*бутилбромид (ТББ) или 2-хлор-2-метилбутан (ХМБ) позволяет активировать процесс катионной полимеризации бутадиена. Независимо от природы используемых АГ полимеризация бутадиена протекает с приблизительно одинаковыми высокими скоростями и выходами полимера. Важно отметить, что во всех полученных полимерах бутадиена, характеристики которых пред-

КИНЕТИКА И КАТАЛИЗ том 64 № 1 2023

ставлены в табл. 1, отсутствует нерастворимая фракция (НФ).

В табл. 1 приведены значения конверсий бутадиена, которые заметно ниже, чем соответствующие им показатели выхода полимера. Например, в случае полибутадиена, синтезированного на каталитической системе AlEt₂Cl-TБХ за 120 мин процесса, выход полимера равен 106.3 мас. %, а конверсия бутадиена составляет 92.9 мас. %. Наблюдаемая разница связана с присутствием в макромолекулах полибутадиена значительного количества начальных *трет*-бутильных, а также концевых хлорсодержащих звеньев. Как будет показано ниже, начальные трет-бутильные звенья в полимере образуются в результате реакции инициирования катионной полимеризации бутадиена трет-бутильными катионами, а концевые хлорсодержащие звенья формируются в ходе реакции передачи растущей цепи на трет-бутилхлорид. Значения конверсий бутадиена рассчитывали по данным спектров ЯМР ¹³С полибутадиенов с применением разработанной в настояшей работе методики (приведена ниже), которая учитывает содержание начальных трет-бутильных и концевых хлорсодержащих звеньев в общей массе полибутадиена. Аналогичные результаты по конверсии бутадиена были получены для полимеров,

Рис. 1. Зависимости выходов полимера (1, 2) и конверсий бутадиена (1*A*) за 5 мин процесса полимеризации от мольного соотношения ТБХ к AlEt₂Cl (1, 1*A*) и ТББ к AlEt₂Cl (2). Условия полимеризации: 20°C, остальное см. в табл. 2.

синтезированных под действием каталитической системы AlEt₂Cl-TББ (табл. 1).

Независимо от природы третичных АГ, используемых в каталитических системах, средние молекулярные массы и полидисперсность полибутадиенов с ростом конверсии мономера заметно возрастают (табл. 1). Следует отметить более низкий уровень значений средних молекулярных масс и полидисперсности полимеров, синтезированных в присутствии каталитической системы AlEt₂Cl-ТББ, по сравнению с полибутадиенами, полученными на каталитических системах AlEt₂Cl-TБX и AlEt₂Cl-XМБ. При увеличении продолжительности процесса полимеризации ненасыщенность полибутадиенов уменьшается с 61-62 до 50-51 мол. %. В наших работах [12-14, 17-22] показано, что пониженная ненасыщенность полимеров, образующихся в ходе катионной полимеризации 1,3-диенов, объясняется протеканием реакции передачи растущей цепи на двойную связь полидиенов с образованием разветвленных и частично сшитых макромолекул.

Как видно из данных табл. 1, использование каталитических систем на основе $AlEt_2Cl$ в сочетании с третичными $A\Gamma$ обеспечивает высокие выходы полибутадиена за 2 ч процесса при технологически удобной температуре полимеризации 20°С. Это в значительной мере отличает изучаемые в настоящей работе процессы катионной полимеризации бутадиена от известного метода с применением каталитической системы TiCl₄—TБХ. Как показано в работе [12], при использовании "титановой" каталитической системы высокий выход полибутадиена при температуре полимеризации

 20° С достигается только за 24 ч процесса, при этом расход кислоты Льюиса (TiCl₄) в указанном методе в три раза выше, чем в процессах полимеризации под действием каталитических систем на основе AIEt₂Cl.

Влияние соотношения третичных АГ к AlEt₂Cl на катионную полимеризацию бутадиена

В табл. 2 представлены результаты полимеризации бутадиена при различном соотношении третичных $A\Gamma \kappa AlEt_2Cl$ в реакционной массе.

Как видно из данных табл. 1 и 2, с ростом соотношения ТБХ к AlEt₂Cl значения выходов полимера и конверсий бутадиена за одинаковое время процесса увеличиваются. Важно отметить, что при повышении содержания ТБХ в реакционной массе зависимость конверсий бутадиена заметно "отстает" от зависимости выходов полимера (рис. 1, кривые I и IA), что связано с увеличением доли начальных *трет*-бутильных и концевых хлорсодержащих звеньев в образующихся полибутадиенах.

С другой стороны, соотношение ТБХ к AlEt₂Cl в существенной степени определяет молекулярные характеристики формирующихся полимеров бутадиена. Так, наиболее высокие значения средних молекулярных масс полибутадиена наблюдаются при мольном соотношении ТБХ к AlEt₂Cl, равном 20:1 (табл. 2). С ростом продолжительности процесса полимеризации с 30 с до 30 мин значения M_n полибутадиенов возрастают с 2.0×10^3 до 5.2×10^3 г/моль, в то время как значения M_w увеличиваются более чем на порядок с 8.2×10^3 до 338.7×10^3 г/моль (табл. 2). На рис. 2 представлены хроматограммы полибутадиенов, полученных при различном времени проведения процесса.

С ростом продолжительности полимеризации с 30 с до 30 мин содержание высокомолекулярной фракции в составе полибутадиена значительно повышается (рис. 2, хроматограммы 1-3), что и объясняет существенное возрастание значений M_w и M_w/M_n образующихся полимеров. При увеличении продолжительности процесса до 60 мин в составе полибутадиена наблюдается формирование НФ в количестве 28.8 мас. % (табл. 2). При этом значения средних молекулярных масс и полидисперсности растворимой фракции полимера заметно уменьшаются (табл. 2). Очевидно, что образование НФ в полибутадиене связано с протеканием в ходе процесса полимеризации бутадиена сшивки наиболее высокомолекулярных макромолекул (рис. 2, хроматограмма 4).

Увеличение мольного соотношения ТБХ к AlEt₂Cl до 50 : 1 и выше обеспечивает формирование полностью растворимого полибутадиена во всем исследованном интервале выходов полиме-

			Выход	Молекулярные характеристики				
АΓ	AΓ/AlEt ₂ Cl	t	полимера, мас. %	<i>M_n</i> × 10 ⁻³ , г/моль	<i>M_w</i> × 10 ^{−3} , г/моль	M_w/M_n		
		30 c	46.7	2.0	8.2	4.1		
	20	5 мин	49.2	2.5	15.2	7.2		
		15 мин	54.1	3.8	62.1	16.3		
		30 мин	57.6	5.2	338.7	65.1		
		60 мин	60.9 ^a	3.6 ⁶	181.5 ⁶	50.4 ⁶		
		30 c	60.1	2.2	10.6	4.8		
	50	5 мин	65.1	2.3	13.7	6.0		
		60 мин	78.9	3.5	74.5	21.3		
ТБХ		120 мин	83.5	4.8	286.2	59.6		
	300	5 c	79.1	1.6	3.4	2.1		
		30 c	83.7	1.6	3.5	2.2		
		5 мин	102.8	1.7	3.7	2.2		
		60 мин	130.5	2.0	5.2	2.6		
	450	5 c	81.7	1.4	2.8	2.0		
		30 c	90.9	1.5	3.0	2.0		
	430	5 мин	107.0	1.6	3.2	2.0		
		60 мин	133.4	1.7	3.7	2.2		
		30 c	54.3	1.6	3.6	2.3		
	50	5 мин	58.7	1.9	5.8	3.1		
		60 мин	74.4	2.3	11.4	5.0		
ТББ		120 мин	81.7	2.9	18.0	6.2		
		30 c	65.0	0.8	1.7	2.1		
	200	5 мин	71.6	1.1	2.6	2.4		
	200	30 мин	92.8	1.2	3.1	2.6		
		120 мин	101.4	1.3	3.6	2.8		

Таблица 2. Результаты полимеризации бутадиена при температуре 20°С в зависимости от мольного соотношения ТБХ или ТББ к AIEt₂Cl и продолжительности полимеризации (*t*)

^а Содержание НФ в полимере – 28.8 мас. %, в остальных полимерах НФ отсутствует.

⁶ Молекулярные параметры растворимой фракции полимера. Условия полимеризации: [C₄H₆] = 4.0 моль/л, [AlEt₂Cl] = 5.0 × 10⁻³ моль/л, хлористый метилен.

ра. Как видно из данных табл. 1 и 2, с ростом соотношения ТБХ к $AlEt_2Cl$ наблюдается отчетливая тенденция к снижению значений средних молекулярных масс и полидисперсности полимеров бутадиена, что свидетельствует об активном участии ТБХ в реакциях передачи растущей цепи. Таким образом, изменение соотношения ТБХ к $AlEt_2Cl$ является удобным способом регулирования молекулярных характеристик получаемых полимеров бутадиена.

Характерной чертой реакции катионной полимеризации бутадиена в присутствии каталитической системы AlEt₂Cl—ТБХ является ярко выраженный нестационарный характер процесса. Наиболее высокая скорость полимеризации бута-

КИНЕТИКА И КАТАЛИЗ том 64 № 1 2023

диена наблюдается на начальной стадии (рис. 3, зависимость 2). Так, при мольном соотношении ТБХ к AlEt₂Cl, равном 100 : 1, выход полимера за первые 30 с составляет 70.2 мас. % (рис. 3, зависимость 2). При дальнейшем увеличении продолжительности процесса скорость полимеризации значительно уменьшается. Например, при повышении времени реакции с 30 с до 30 мин выход полимера возрастает всего на 25.6 мас. % (табл. 1). В отличие от катионной полимеризации бутадиена в присутствии известной каталитической системы TiCl₄—TБХ [12], в изучаемом процессе первый порядок реакции по мономеру не наблюдается ни на одном участке кинетической кривой (рис. 3, табл. 1, 2).

Рис. 2. Хроматограммы полибутадиенов, полученных при продолжительности процесса полимеризации 30 с (I), 15 мин (2), 30 мин (3) и 60 мин (4). Условия полимеризации: TБХ/AIEt₂Cl = 20, остальное см. в табл. 2.

Кинетические закономерности катионной полимеризации бутадиена под действием каталитической системы AlEt₂Cl-ТББ принципиально не отличаются от аналогичных закономерностей для системы AlEt₂Cl-ТБХ (табл. 1, 2). Однако существенной особенностью реакции полимеризации бутадиена в присутствии AlEt₂Cl-ТББ является экстремальная зависимость выхода полимера от соотношения компонентов каталитической системы. Наиболее высокий выход полимера бутадиена зафиксирован при мольном соотношении ТББ к AlEt₂Cl в интервале от 100 : 1 до 150 : 1 (рис. 1, зависимость 2). При лальнейшем увеличении содержания ТББ в реакционной массе выход полимера значительно уменьшается. Другое отличие процесса полимеризации бутадиена на каталитической системе AlEt₂Cl-ТББ, как отмечалось ранее, заключается в заметно более низком уровне средних молекулярных масс получаемого полибутадиена по сравнению с полимером, синтезированным на системе AlEt₂Cl-TБX (табл. 1, 2). Вероятно, указанные особенности связаны с иным строением активного центра полимеризации, образующегося при взаимодействии AlEt₂Cl с ТББ, по сравнению с активным центром, формирующимся из AlEt₂Cl и TБХ.

Влияние температуры процесса на катионную полимеризацию бутадиена

Характерной чертой катионной полимеризации бутадиена при температуре —78°С является

Рис. 3. Зависимости выхода полибутадиена от времени полимеризации при температуре процесса -78 (*I*) и 20°C (*2*). Условия полимеризации: TEX/AlEt₂Cl = 100, остальное см. в табл. 1.

наличие индукционного периода, продолжительность которого составляет 10–15 с (табл. 3, рис. 3, зависимость *1*). Интересно отметить, что при температурах полимеризации –30 и 20°С индукционные периоды в процессах полимеризации бутадиена под действием каталитической системы $AlEt_2Cl$ –TEX не обнаружены. После окончания индукционного периода катионная полимеризация бутадиена при температуре –78°С протекает с высокими скоростью и выходом полимера (табл. 3, рис. 3, зависимость *1*) аналогично ранее описанному процессу при температуре 20°С.

Что касается молекулярных характеристик полибутадиена, то прежде всего следует обратить внимание на более высокую вероятность образования НФ в полимере, получаемом в ходе полимеризации бутадиена при -78°С. Так, при соотношении ТБХ к AlEt₂Cl, равном 50: 1, при достижении 75%-ного уровня выхода полимера в составе полибутадиена наблюдается формирование НФ в количестве 47.5 мас. % (табл. 3). В случае увеличения соотношения ТБХ к AlEt₂Cl до 100: 1 появление НФ в полимере зафиксировано при более высоком выходе полибутадиена 92.3 мас. %. Полностью растворимые полимеры бутадиена синтезированы только при мольном соотношении ТБХ к AlEt₂Cl, равном 300 : 1 и выше (табл. 3). Как отмечалось ранее, полностью растворимые полимеры бутадиена при температуре полимеризации 20°С образуются при значительно более низком соотношении ТБХ к AlEt₂Cl, составляющем 50:1 (табл. 2). Следует отметить повышенный уровень значений средних молекулярных масс и полидисперсности полибутадиенов, по-

	t	Выход полимера, мас. %	Конверсия	Молекул	П		
ТБХ/AlEt ₂ Cl			бутадиена, мас. %	$M_n imes 10^{-3},$ г/моль	$M_w imes 10^{-3},$ г/моль	M_w/M_n	Н _с , мол. %
	10 c	8.1	—	_	—	_	_
50	20 c	64.6	54.1	4.9	286.3	58.4	72
	30 c	75.3 ^a	—	4.4 ⁶	52.1 ⁶	11.9 ^б	—
	10 c	3.5	—	_	—	_	_
	20 c	33.7	_	3.2	11.0	3.4	3.4
100	30 c	85.5	73.7	4.9	346.4	70.7	68
	1 мин	89.6	77.5	5.0	632.4	126.4	64
	5 мин	92.3 ^в	—	—	—	—	—
300	10 c	13.3	_	_	_	_	_
	30 c	100.3	80.6	2.9	11.2	3.9	66
	5 мин	110.7	87.1	2.9	11.6	4.0	62
	60 мин	116.4	94.8	3.0	12.4	4.1	58
450	10 c	13.7	_	_	_	_	_
	20 c	113.2	82.7	2.6	8.9	3.4	64
	5 мин	115.5	84.3	2.7	9.1	3.4	61
	20 мин	119.3	85.5	2.7	10.3	3.8	59
	30 мин	123.8	90.1	2.8	10.9	3.9	56

Таблица 3. Результаты полимеризации бутадиена при температуре -78° С в зависимости от мольного соотношения ТБХ к AIEt₂Cl и продолжительности полимеризации (*t*)

^{а, в} Содержание НФ в полимере 47.5 и 49.9 мас. % соответственно, в остальных полимерах НФ отсутствует. ⁶ Молекулярные параметры растворимой фракции полимера. Условия полимеризации: $[C_4H_6] = 4.0 \text{ моль/л}, [AlEt_2Cl] = 5.0 \times 10^{-3} \text{ моль/л}, хлористый метилен. Прочерки означают отсутствие данных.$

лученных при -78° С, по сравнению с полимерами, синтезированными при 20°С (табл. 2 и 3). Аналогичные зависимости по увеличению средних молекулярных масс при снижении температуры процесса также наблюдались в случаях катионной полимеризации бутадиена, изопрена и 1,3пентадиена под действием каталитической системы TiCl₄-TБХ [12, 20, 21].

Сравнительный анализ результатов по полимеризации бутадиена в присутствии каталитической системы $AlEt_2Cl-TEX$ при температурах –78 и 20°С позволяет сделать важный вывод, что проведение процесса при технологически удобной температуре 20°С более предпочтительно, так как в этих условиях существенно уменьшается вероятность протекания побочной реакции образования HФ в полимере. При этом значения выхода полимера и конверсии бутадиена при 20°С незначительно уступают аналогичным, наблюдаемым при температуре –78°С (табл. 2 и 3).

Строение полимерной цепи полибутадиена, синтезированного под действием каталитической системы AIEt₂Cl—ТБХ

На рис. 4 представлены алифатическая и олефиновая области спектра ЯМР ¹³С полибутадие-

КИНЕТИКА И КАТАЛИЗ том 64 № 1 2023

на, синтезированного на каталитической системе AlEt₂Cl–TБХ.

Из рис. 4 видно, что доминирующей структурой ненасыщенной части основной полимерной цепи полибутадиена является 1,4-*транс*-звено, расположенное в триаде 1,4-*транс*-структур. Метиленовым атомам углерода этого звена соответствует интенсивный сигнал в алифатической области спектра с химическим сдвигом (δ) 32.6 м. д. (рис. 4а), а метиновым атомам углерода принадлежит доминирующий сигнал в олефиновой области спектра с δ 129.8 м. д. (рис. 4б) [14]. В спектре полибутадиена обнаружены сигналы 1,4-транс-звена, связанного с алифатическим метиновым атомом углерода 1,2-звена и 1,4-трансзвеном (δ 38.0, 128.2, 131 и 32.6 м. д.), а также сигналы 1,4-транс-звена, связанного с алифатическим метиленовым атомом углерода 1,2-звена и 1,4-*транс*-звеном (б 30.0, 130.3, 129.6 и 32.6 м. д.) [14]. Кроме того, в спектрах полибуталиена присутствуют сигналы атомов углерода 1,2-звена, расположенного между 1,4-транс-звеньями (б 33.8, 43.3, 142.5 и 114.1 м. д.) [14]. Количественный расчет содержания структурных звеньев основной полимерной цепи полибутадиена дает следующие результаты: 1,4-*транс*-звенья – 80 мол. %, 1,2-звенья – 20 мол. %.

Рис. 4. Алифатическая (а) и олефиновая (б) области спектра ЯМР^{13} С полибутадиена, полученного на каталитической системе $\text{AlEt}_2\text{Cl}-\text{TБX}$. Условия синтеза: $\text{TБX}/\text{AlEt}_2\text{Cl} = 100$, 20° С, время – 15 с, выход полимера – 64.0 мас. %, остальное см. табл. 1. На рис. 4а обозначены характеристические сигналы атомов углерода в начальных и концевых звеньях полибутадиена. Строение структур HI, HII, HIII, KI и KII приведено в тексте.

Что касается строения терминальных звеньев полимерной цепи полибутадиена, синтезированного на каталитической системе AlEt₂Cl–TБХ, то в спектре ЯМР¹³С идентифицированы сигналы двух типов начальных звеньев, представляющих собой *трет*-бутильные группы, связанные с 1,4-*транс*звеном (структура HI) и с 1,2-звеном полибутадиена (структура HII):

$$^{1}_{(CH_{3})_{3}C} - ^{2}_{CH_{2}} - ^{3}_{CH_{2}} + ^{5}_{CH_{6}} + ^{CH_{2}}_{CH_{6}} + ^{Pol}_{G}$$
, HI

$$\begin{array}{c} {}^{1} & {}^{2} & {}^{3} & {}^{4} \\ (CH_3)_3 C & -CH_2 - CH \\ {}^{6} & -CH_2 - CH \\ CH_2 = CH \end{array}$$
. HII

Атомам углерода структуры HI (номера атомов углерода в структуре обозначены арабскими цифрами) принадлежат следующие спектральные сигналы (δ): 29.2 (HI/1), 30.7 (HI/2), 47.0 (HI/3), 127.4 (HI/4), 131.9 (HI/5) и 32.6 (HI/6) м. д. (рис. 4) [12, 14]. Атомам углерода начального звена со структурой HII соответствуют спектральные сигналы с δ 30.1 (HII/1), 31.1 (HII/2), 48.0 (HII/3), 43.8 (HII/4), 141.8 (HII/5) и 112.9 (HII/6) м. д. (рис. 4) [12].

Кроме того, в спектрах ЯМР ¹³С полибутадиена присутствуют сигналы двух типов концевых хлорсодержащих звеньев с 1,4-*транс*- (KI) и 1,2- (KII) структурой:

Pol-CH₂
$$CH_{3}$$
 CH_{2} CH
Pol-CH₂ CH Cl, KI
Pol-CH₂ CH_{2} Cl, KI
 $Pol-CH_{2}$ CH_{2} Cl. KII
 CH_{2} CH_{2} Cl. Cl.

Положение сигналов атомов углерода концевых хлорсодержащих звеньев со структурами КІ и КІІ было определено в наших работах [12, 14]. Атомам углерода структуры КІ в спектре ЯМР ¹³С полибутадиена принадлежат следующие сигналы (δ): 32.6 (KI/1), 135.1 (KI/2), 126.1 (KI/3) и 45.0 (KI/4) м. д. Атомам углерода структуры КІІ соответствуют сигналы с δ , равной 37.6 (KII/1), 61.9 (KII/2), 138.5 (KII/3) и 116.1 м. д. (KII/4) (рис. 4). Следует отметить, что интенсивность сигналов как начальных, так и концевых звеньев с 1,4-*транс*-структурой значительно выше, чем интенсивность сигналов соответствующих звеньев с 1,2-структурой (рис. 4), что, по-видимому,

связано со стерическими затруднениями при формировании терминальных звеньев с 1,2-структурой.

В наших предыдущих работах [14, 15] были идентифицированы сигналы атомов углерода начального 1,4-*транс*-звена полибутадиена, образующегося при инициировании реакции катионной полимеризации бутадиена протоном (структура HIII):

Метильный атом углерода HIII/1 начального звена со структурой НІІІ в спектре ЯМР ¹³С характеризуется сигналом с δ 17.8 м. д. Как видно из рис. 4а, интенсивность сигнала с б 17.8 м. д. в полибутадиене чрезвычайно низка. Это говорит о том, что процесс полимеризации бутадиена на каталитической системе AlEt₂Cl-TEX протекает за счет реакции инициирования *трет*-бутильными катионами, а протонное инициирование в процессе практически отсутствует.

Таким образом, макромолекулы полимерной цепи полибутадиена, синтезированного на каталитической системе AlEt₂Cl-TБХ, состоят из 1,4-транс-и 1,2-звеньев, а также содержат два типа начальных *трет*-бутильных звеньев (структура НІ и НІІ) и два типа концевых хлорсодержащих звеньев (структуры KI и KII).

Методики расчетов содержания начальных и концевых звеньев в полибутадиене. ненасыщенности полимера и конверсии бутадиена

Количественный расчет содержания начальных *трет*-бутильных звеньев со структурой HI и НІІ целесообразно проводить по интенсивностям спектральных сигналов атомов углерода HI/3 и HII/3 с δ 47.0 и 48.0 м. д. соответственно, которые не перекрываются другими спектральными сигналами (рис. 4а). На первом этапе расчета по спектру ЯМР ¹³С определяли суммарную интенсивность всех сигналов атомов углерода $I(\Sigma)$ в интервалах δ от 10 до 63 м. д. в алифатической области спектра (рис. 4а) и от 110 до 150 м. д. в олефиновой области спектра (рис. 46). Затем по спектру находили суммарную интенсивность сигналов HI/3 и HII/3 с δ 47.0 и 48.0 м. д. Так как *трет*-бутильная группа содержит 4 атома углерода, далее вычисляли нормализованную суммарную интенсивность атомов углерода в трет-бутильных звеньях $I(\Sigma^{t}Bu)$ путем умножения суммарной интенсивности сигналов с б 47.0 и 48.0 на четыре. Затем определяли величину суммарной интенсивности атомов углерода полибутадиена в полимере *I*(ΣΠБ) по формуле (1):

$$I(\Sigma \Pi \mathbf{B}) = I(\Sigma) - I(\Sigma^{\mathsf{t}} \mathrm{Bu}).$$
(1)

КИНЕТИКА И КАТАЛИЗ том 64 **№** 1 2023

Далее находили величину $N(^{t}Bu)$ – количество звеньев мономера в полимерной цепи полибутадиена, приходящихся на одну трет-бутильную группу, по формуле (2):

$$N(^{t}\mathrm{Bu}) = I(\Sigma \Pi \mathrm{B})/I(\Sigma^{t}\mathrm{Bu}).$$
(2)

Содержание начальных трет-бутильных звеньев в размерностях мольный процент *M*(^tBu) и массовый процент *W*(^tBu) определяли по формулам (3) и (4):

$$M(^{t}Bu) = 1 \times 100\% / N(^{t}Bu),$$
 (3)

$$M(^{t}Bu) = 1 \times 100\% / N(^{t}Bu),$$
(3)
$$W(^{t}Bu) = (57 \times 100\%) / (N(^{t}Bu) \times 54),$$
(4)

где 57 и 54 — молекулярные массы трет-бутильной группы и мономерного звена полибутадиена соответственно.

Количественный расчет содержания концевых хлорсодержащих звеньев со структурой KI и KII целесообразно проводить по интенсивностям спектральных сигналов атомов углерода KI/4 и КII/2 с δ 45.0 и 61.9 м. д. соответственно. На первом этапе расчета находили по спектру суммарную интенсивность сигналов атомов углерода в концевых хлорсодержащих звеньях *I*(Σ K3). Для этого суммарную интенсивность сигналов с δ 45.0 и 61.9 м. д. умножали на четыре, так как в структурах КІ и КІІ содержится по 4 атома углерода. Далее рассчитывали величину N(K3) – количество звеньев мономера в полимерной цепи полибуталиена, приходящихся на одну концевую хлорсодержащую группу, по формуле (5):

$$V(K3) = (I(\Sigma \Pi \mathbb{B}) - I(\Sigma K3))/I(\Sigma K3), \qquad (5)$$

где $I(\Sigma \Pi B)$ – значение суммарной интенсивности атомов углерода в полимерной цепи полибутадиена, вычисленное по формуле (1). Содержание концевых хлорсодержащих звеньев в размерностях мольный процент – М(КЗ) – и массовый процент – W(K3) – определяли по формулам (6) и (7):

$$M(K3) = 1 \times 100 / N(K3),$$
 (6)

$$W(K3) = (89.5 \times 100\%) / (N(K3) \times 54),$$
 (7)

где 89.5 и 54 - молекулярные массы концевого хлорсодержащего звена и мономерного звена полибутадиена соответственно.

Расчет конверсии бутадиена К(Б) проводили по формуле (8):

$$K(\mathbf{B}) = B(\mathbf{\Pi}\mathbf{B}) - B(\mathbf{\Pi}\mathbf{B}) \times W({}^{t}\mathbf{B}\mathbf{u})/100 - B(\mathbf{\Pi}\mathbf{B}) \times W(\mathbf{K}3) \times 0.397/100,$$
(8)

где $B(\Pi E)$ – выход полибутадиена (мас. %), определенный по данным гравиметрического анализа в расчете на загруженный бутадиен, W(^tBu) – массовое содержание начальных трет-бутильных звеньев в полимере, найденное по формуле (4). *W*(K3) – массовое содержание концевых хлорсодержащих звеньев, определенное по формуле (7), 0.397 — коэффициент, отражающий массовую долю хлора в концевом хлорсодержащем звене полибутадиена.

Ненасыщенность полибутадиена (H_c , мол. %) находили по формуле (9):

$$H_{\rm c} = \frac{I(110-150)}{I(\Sigma\Pi E) \times 0.5},\tag{9}$$

где *I*(110–150) – экспериментально определенная суммарная интенсивность сигналов атомов углерода в олефиновой области спектра ЯМР ¹³С в интервале от 110 до 150 м. д., коэффициент 0.5 отражает теоретическое значение суммарной интенсивности олефиновых атомов углерода в звене полибутадиена при 100%-ной ненасыщенности полимера.

Для образца полибутадиена, спектр которого представлен на рис. 4, проведенные расчеты по формулам (1)–(9) дают следующие результаты:

 $M(^{t}Bu) = 12.2$ мол. %, $W(^{t}Bu) = 12.8$ мас. %, M(K3) = 8.9 мол. %, W(K3) = 14.8 мас. %, $H_{c} = 62$ мол. %, $K(\mathbf{b}) = 52.0$ мас. %.

Механизм полимеризации бутадиена на каталитических системах на основе AIEt₂Cl

Учитывая результаты наших работ [13, 23] по исследованию катионной полимеризации 1,3-пентадиена и бутадиена на каталитических системах на основе AlEt₃, AlEt₂Cl и AlEtCl₂ в сочетании с алифатическими вторичными алкилгалогенидами, можно полагать, что катионная полимеризация бутадиена под действием системы AlEt₂Cl—TБХ протекает на активном центре полимеризации **A**, который образуется при взаимодействии TБХ с AlEtCl₂ с формированием ионной пары **a** и последующим внедрением молекулы мономера (схема 1):

$$AlEt_{2}Cl + (CH_{3})_{3}CCl \xrightarrow{-\mathbf{R}} AlEtCl_{2} \xrightarrow{(CH_{3})_{3}CCl} (CH_{3})_{3}C \xrightarrow{\oplus} O$$

$$a \xrightarrow{\oplus} O$$

$$CH \xrightarrow{CH} CH \xrightarrow{CH} CH_{2} \xrightarrow{HM} AlEtCl_{2} \xrightarrow{HM} AlEtCl_$$

Схема 1. Предполагаемый механизм реакции инициирования катионной полимеризации бутадиена на каталитической системе AIEt₂Cl–TБХ. **R** – смесь насыщенных углеводородов, **M** – бутадиен.

На начальном этапе этого процесса происходит взаимодействие AlEt₂Cl с TБХ с образованием AlEtCl₂ и смеси насыщенных углеводородов (**R**), состоящей по данным работы [24] из изобутана, диметилбутана и изооктана. Наблюдаемый индукционный период реакции полимеризации бутадиена при температуре -78° C (рис. 3, зависимость *I*), по-видимому, связан с более низкой скоростью взаимодействия AlEt₂Cl с ТБХ по сравнению с процессом при 20°C, в котором индукционный период отсутствует (рис. 3, зависимость *2*). Отдельными экспериментами было показано, что в случае катионной полимеризации бутадиена при температуре -78°С под действием каталитической системы AlEtCl₂-ТБХ индукционный период отсутствует, что также подтверждает предположение о строении активного центра полимеризации **A** с участием AlEtCl₂. Реакция инициирования процесса полимеризации бутадиена осуществляется *трет*-бутильным катионом, что подтверждается присутствием в макромолекулах полибутадиена начальных *трет*-бутильных звеньев со структурой HI и HII (рис. 4).

Рост полимерной цепи протекает путем последовательного внедрения молекул бутадиена **М** на активном центре полимеризации **A** (схема 2):

Схема 2. Предполагаемые механизмы реакций роста полимерной цепи и передачи растущей цепи на *трет*-бутилхлорид.

Nº	Полибуталиен	Молекулярные характеристики			Микроструктура, мол. %			Время
	(каталитическая система)	<i>Н</i> _с , мол. %	<i>M_n</i> × 10 ⁻³ , г/моль	$M_w imes 10^{-3},$ г/моль	1,4- транс	1,4- цис	1,2-	высыхания до степени 3 при 20°С, ч ^а
1	"Катионный"	50	3.1	19.7	80	0	20	24 ⁶
	полибутадиен (AlEt ₂ Cl–ТБХ)							
2	"Катионный"	75	2.4	11.0	81	0	19	60
	полибутадиен (TiCl ₄ —ТБХ)							
3	"Анионный" полибутадиен марки "Бутарез-25"	99	1.3	2.5	36	16	48	60

Таблица 4. Характеристики и пленкообразующие свойства низкомолекулярных полибутадиенов, синтезированных на различных каталитических системах

^а Композиция: 60% полибутадиена, 5% сиккатива ЖК-1 и 35% растворителя.

⁶ Прочность пленки при изгибе через 24 ч – 1 мм.

Присутствие в макромолекулах полибутадиена существенного количества концевых хлорсодержащих групп (рис. 4) позволяет предположить, что образование таких структур (КІ и КІІ) протекает в результате реакции передачи растущей цепи на *трет*-бутилхлорид (схема 2).

Другой реакцией ограничения растущей цепи в изучаемом процессе является передача цепи на двойную связь полибутадиена с образованием разветвленных и частично сшитых макромолекул с пониженной ненасыщенностью. Механизм ее подробно рассмотрен в нашей работе [13] на примере катионной полимеризации бутадиена под действием каталитической системы AlEt₂Cl-изопропилхлорид.

В ряде публикаций [5, 10, 11, 25, 26] пониженная ненасышенность полибуталиена, синтезированного методом катионной полимеризации. объясняется формированием шестичленных циклических структур, образующихся в результате протекания побочной реакции внутримолекулярной циклизации. Такие структуры в своем составе содержат четвертичные олефиновые атомы углерода, сигналы которых должны располагаться в спектре ЯМР ¹³С в области от 138 до 144 м. д. [13]. Однако, как следует из спектра DEPT-135° ЯМР ¹³С, в данной области спектра полибутадиена сигналов четвертичных атомов углерода нет. Это говорит о том, что шестичленные циклические структуры в составе полибутадиена отсутствуют. Как видно из данных табл. 1, 2 и рис. 2 с ростом конверсии мономера наблюдается уменьшение ненасыщенности полибутадиена с одновременным значительным возрастанием полидисперсности полимера. Это подтверждает предположение о том, что потеря ненасыщенности полимера в ходе катионной полимеризации бутадиена объясняется реакцией взаимодействия растущей цепи с двойными связями полибутадиена с образованием разветвленных макромолекул.

Пленкообразующие характеристики синтезированных полимеров бутадиена

Значительное количество выпускаемых в промышленности низкомолекулярных полибутадиенов используется в лакокрасочной промышленности для получения лаков и эмалей "холодной" (20°С) и "горячей" (65–150°С) сушки [4]. В этой связи были изучены пленкообразующие свойства образца низкомолекулярного полибутадиена, синтезированного на каталитической системе AlEt₂Cl-ТБХ (табл. 4). Для сравнения в табл. 4 приведены характеристики и пленкообразующие свойства полибутадиена, синтезированного в присутствии каталитической системе TiCl₄-TБХ [12], а также полибутадиена марки Бутарез-25, полученного на анионных катализаторах. Как видно из данных табл. 4, для полибутадиена, синтезированного на системе AlEt₂Cl-TБХ, наблюдается самая высокая скорость высыхания пленки покрытия (24 ч), что соответствует требованиям к большинству лакокрасочных материалов "холодной" сушки [4].

Полибутадиен, полученный в присутствии известной катионной системе $TiCl_4-TbX$, характеризуется более высокой ненасыщенностью (75 мол. %) и по скорости высыхания заметно уступает полибутадиену, образовавшемуся под действием системы $AlEt_2Cl-TbX$ (табл. 4). "Анионный" полибутадиен марки "Бутарез" имеет практически 100 мол. % ненасыщенность, что свидетельствует об отсутствии в его составе раз-

ветвленных макромолекул, и также характеризуется невысокой скоростью высыхания (табл. 4).

Известно, что процесс пленкообразования, заключающийся в переходе низкомолекулярного полимера в тонких пленках из жидкого в твердое стеклообразное состояние, протекает в результате окисления пленок покрытий на воздухе с формированием сшитого сетчатого полимера [4]. Логично предположить, что высокая скорость высыхания "катионного" полибутадиена, синтезированного на каталитической системе AlEt₂Cl-TБХ, объясняется наиболее высоким содержанием в его составе разветвленных и частично сшитых макромолекул. Об этом свидетельствует 50 мол. % остаточная ненасыщенность ланного образца полибуталиена, что значительно ниже, чем ненасыщенность других образцов полибутадиена, представленных в табл. 4.

ЗАКЛЮЧЕНИЕ

Установлено, что катионная полимеризация бутадиена в присутствии каталитических систем на основе AlEt₂Cl в сочетании с третичными алкилгалогенидами (ТБХ, ТББ, ХМБ) идет с высокой скоростью и выходом полимера в широком интервале температур процесса полимеризации от -78 до 20°С. Показано, что независимо от природы АГ в каталитической системе с увеличением выхода полибутадиена возрастают значения средних молекулярных масс и полидисперсности полимера при одновременном уменьшении его ненасыщенности. Это свидетельствует о протекании в ходе полимеризации побочной реакции передачи растущей цепи на двойную связь полибутадиена с образованием разветвленных и частично сшитых макромолекул. С ростом соотношения ТБХ к AlEt₂Cl растет выход полимера и снижаются значения средних молекулярных масс и полидисперсности полибутадиена, что говорит об участии ТБХ в реакции передачи растущей цепи. Следовательно, варьирование соотношения ТБХ к AlEt₂Cl является удобным методом регулирования молекулярных характеристик полибутадиена.

С использованием метода спектроскопии ЯМР ¹³С показано, что ненасыщенная часть полимерной цепи полибутадиена, синтезированного на каталитической системе AlEt₂Cl–TБХ, состоит из 80 мол. % 1,4-*mpaнс*- и 20 мол. % 1,2-звеньев. Установлено, что макромолекулы полибутадиена содержат два типа начальных *трет*-бутильных звеньев и два вида концевых хлорсодержащих звеньев, образующихся в результате протекания реакции передачи растущей цепи на ТБХ. По данным спектров ЯМР ¹³С полибутадиена разработана методика расчета конверсии бутадиена, а также предложен механизм процесса катионной полимеризации бутадиена. Показано, что синтезированный "катионный" полибутадиен характеризуется высокими пленкообразующими свойствами и может являться перспективным компонентом при производстве лакокрасочных материалов.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках Государственного задания (тема № 1021060107217-0-1.6.19).

ЭТИЧЕСКИЕ АСПЕКТЫ

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов в финансовой или какой-либо иной сфере.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Mark J.E., Erman B., Eirich F.R.* Science and Technology of Rubber. Amsterdam: Elsevier Academic Press, 2005. 762 p.
- 2. *Holden G., Kricheldorf H.R., Quirk R.P.* Thermoplastic Elastomers. Munich: Hanser Publisher, 2004. 718 p.
- 3. *Монаков Ю.Б., Толстиков Г.А.* Каталитическая полимеризация 1,3-диенов. Москва: Наука, 1990. 211 с.
- 4. Могилевич М.М., Туров Б.С., Морозов Ю.Л., Уставщиков Б.Ф. Жидкие углеводородные каучуки. Москва: Химия, 1983. 200 с.
- 5. Долгоплоск Б.А., Тинякова Е.И. Металлоорганический катализ в процессах полимеризации. Москва: Наука, 1985. 534 с.
- 6. *Розенцвет В.А., Козлов В.Г., Монаков Ю.Б.* Катионная полимеризация сопряженных диенов. Москва: Наука, 2011. 238 с.
- Marvel C.S., Gilkey R., Morgan C.R., Noth J.F., Rands R.D., Young C.H. // J. Polym. Sci. 1951. V. 6. P. 483.
- Ferington T.E., Tobolsky A.V. // J. Polym. Sci. 1958. V. 31. P. 25.
- 9. Kita R., Kimi A. // J. Coat. Technol. 1976. V. 48. P. 53.
- Gaylord N.G., Kossler I., Stolka M. // J. Macromol. Sci. Chem. 1968. V. 2. P. 1105.
- 11. Gaylord N.G. // Pure Appl. Chem. 1970. V. 23. P. 305.
- 12. Розенцвет В.А., Козлов В.Г., Саблина Н.А., Стоцкая О.А. // Изв. АН. Сер. хим. 2018. № 8. С. 1419.
- Rozentsvet V.A., Ulyanova D.M., Sablina N.A., Kostjuk S.V., Tolstoy P.M., Novakov I.A. // Polym. Chem. 2022. V. 13. P. 1596.
- Rozentsvet V.A., Stotskaya O.A., Ivanova V.P., Kuznetsova M.G., Tolstoy P.M., Kostjuk S.V. // J. Polym. Sci.: Polym. Chem. 2018. V. 56. P. 387.
- 15. Розенцвет В.А., Саблина Н.А., Ульянова Д.М., Толстой П.М., Смирнов С.Н., Новаков И.А. // Докл.

КИНЕТИКА И КАТАЛИЗ том 64 № 1 2023

РАН. Химия, науки о материалах. 2020. Т. 491. С. 55.

- Тинякова Е.И., Журавлева Т.Г., Куреньгина Т.Н., Кирикова Н.С., Долгоплоск Б.А. // Докл. АН СССР. 1962. Т. 144. С. 592.
- 17. Розенцвет В.А., Козлов В.Г., Коровина Н.А., Новаков И.А. // Кинетика и катализ. 2015. Т. 56. С. 146.
- Розенцвет В.А., Козлов В.Г., Стоцкая О.А., Смирнов С.Н., Толстой П.М. // Изв. АН. Сер. хим. 2019. № 1. С. 116.
- Rozentsvet V.A., Kozlov V.G., Stotskaya O.A., Sablina N.A., Peruch F., Kostjuk S.V. // Eur. Polym. J. 2018. V. 103. P. 11.
- Rozentsvet V.A., Kozlov V.G., Sablina N.A., Stotskaya O.A., Peruch F., Kostjuk S.V. // Polym. Chem. 2017. V. 8. P. 926.

- Rozentsvet V.A., Kozlov V.G., Korovina N.A., Kostjuk S.V. // Macromol. Chem. Phys. 2013. V. 214. P. 2694.
- 22. Розенцвет В.А., Саблина Н.А., Ульянова Д.М., Толстой П.М., Новаков И.А. // Докл. РАН. Химия, науки о материалах. 2021. Т. 499. С. 66.
- Розенцвет В.А., Ульянова Д.М., Саблина Н.А., Кузнецова М.Г., Толстой П.М. // Изв. АН. Сер. хим. 2022. № 4. С. 787.
- 24. Priola A., Cesca S., Ferraris G. // Makromol. Chem. 1972. V. 160. P. 41.
- 25. Кеннеди Дж. Катионная полимеризация олефинов. Москва: Мир, 1978. 408 с.
- 26. *Tanaka Y., Sato H., Gonzalez I.G.* // J. Polym. Sci.: Polym. Chem. Ed. 1979. V. 17. P. 3027.

Synthesis of Low Molecular Weight Butadiene Polymers Using Cationic Catalytic Systems Based on Diethylaluminium Chloride

V. A. Rozentsvet^{1,} *, D. M. Ulyanova¹, N. A. Sablina¹, R. V. Brunilin², and P. M. Tolstoy³

¹ Institute of Ecology of Volga River Basin of the Russian Academy of Sciences – Branch of Samara Federal Research Scientific Center of the Russian Academy of Science, Komzina str., 10, Togliatti, 445003 Russian Federation

² Volgograd State Technical University, Lenin Avenue, 28, Volgograd, 400005 Russian Federation

³ Saint Petersburg State University, Institute of Chemistry,

Universitetskaya nab., 7–9, Saint Petersburg, 199034 Russian Federation

*e-mail: rozentsvet@mail.ru

Cationic polymerization of butadiene with the catalytic systems based on diethylaluminium chloride (AlEt₂Cl) in combination with tertiary alkyl halides (AH), such as *tert*-butyl chloride, *tert*-butyl bromide and 2-chloro-2-methylbutane, is an effective method for obtaining fully soluble butadiene polymers at a industrially relevant temperature of 20°C. It is shown that, regardless of the nature of AH in the catalytic system, with an increase in the duration of the polymerization process of butadiene, the values of the weight-average molecular weight and polydispersity of the polymers significantly increase with the simultaneous decrease of polybutadiene unsaturation, which is associated with the transfer reaction of the growing chain to the polymer double bond during polymerization. Using the ¹³C NMR spectroscopy method, it was found that polybuta-diene macromolecules synthesized on the AlEt₂Cl–*tert*-butyl chloride catalytic system consist mainly of 1,4-trans units, contain two types of initial *tert*-butyl units and two types of end chlorine-containing units formed as a result of the transfer reaction of the growing chain to tert-butyl chloride. Based on the data of ¹³C NMR spectra of polybutadiene, a method for calculating the conversion of butadiene during polymerization has been developed, and a mechanism of the process of cationic butadiene polymerization has been proposed. It is shown that the synthesized "cationic" polybutadiene is characterized by high film-forming properties and can be a promising component in the production of paint and varnish materials.

Keywords: butadiene, cationic polymerization, molecular characteristics, microstructure, film-forming properties