УДК 661.185.1+541.18+536.7

ЧИСЛЕННОЕ ОПИСАНИЕ БЫСТРОЙ РЕЛАКСАЦИИ В МИЦЕЛЛЯРНЫХ РАСТВОРАХ НА ОСНОВЕ МОДЕЛИ СФЕРОЦИЛИНДРОВ

© 2019 г. Л. В. Аджемян¹, Ю. А. Ерошкин², Т. Л. Ким², А. К. Щёкин^{2, *}

¹Санкт-Петербургский государственный технологический институт (технический университет),

факультет экономики и менеджмента, Московский проспект, 26, Санкт-Петербург, 190013 Россия ²Санкт-Петербургский государственный университет, физический факультет, Университетская наб., 7/9, Санкт-Петербург, 199034 Россия *e-mail: a.shchekin@spbu.ru Поступила в редакцию 07.12.2018 г. После доработки 10.12.2018 г. Принята к публикации 10.12.2018 г.

Недавно на основе кинетических уравнений Беккера—Дёринга был разработан полуаналитический метод расчета времени быстрой релаксации в растворах поверхностно-активных веществ с цилиндрическими мицеллами, позволяющий без потери точности значительно сократить процедуру вычислений. Для кинетических коэффициентов присоединения мономеров к агрегату использовалась модель мицеллы в виде вытянутого эллипсоида, для которой задача нахождения диффузионного потока мономеров на мицеллу имеет аналитическое решение. В настоящей работе проведены численные расчеты диффузионного потока и времени быстрой релаксации для более реалистичной модели мицеллы в виде сфероцилиндра. Результаты сопоставлены с ранее известными.

DOI: 10.1134/S0023291219030029

введение

Большую роль в кинетике агрегирующих систем играет как можно более точное задание коэффициентов соответствующего кинетического уравнения, будь это уравнение Беккера—Дёринга [1], описывающее молекулярный механизм агрегации, уравнение коагуляции Смолуховского [2] или обобщенное уравнение Смолуховского [3—5] при механизме слияния и распада агрегатов.

В кинетике мицеллообразования [6, 7] для задания коэффициентов кинетических уравнений Беккера-Дёринга используются выражения для равновесного распределение мицелл по числам агрегации и для стационарного диффузионного потока мономеров поверхностно-активных вещества (ПАВ) на мицеллу при заданном числе агрегации. Для сферических агрегатов эти выражения хорошо известны [4-8], однако для цилиндрических мицелл приходится использовать доступные аппроксимации. Так, недавно для работы агрегации в равновесном распределении цилиндрических мицелл в [9] была взята за основу линейная по числу агрегации работа агрегации сфероцилиндров, а для коэффициентов присоединения мономеров к агрегату использовались линейная по числу агрегации функция и полученное более строго аналитическое выражение для диффузионного потока на вытянутый эллипсоид.

В настоящей работе будет рассмотрена более реалистичная модель коэффициентов присоединения мономеров к мицелле в виде сфероцилиндра. Для этого будут проведены численные расчеты диффузионных потоков на сфероцилиндры с разными числами агрегации и соответствующего этим потокам наименьшего из обратных времен быстрой релаксации для мицеллярного раствора. Результаты будут сопоставлены с ранее известными.

1. КИНЕТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РЕЛАКСАЦИИ ЦИЛИНДРИЧЕСКИХ МИЦЕЛЛ

Кинетические уравнения Беккера—Дёринга для концентраций c_n агрегатов ПАВ с числами агрегации n = 2, 3, ... имеют вид

$$\frac{\partial c_n}{\partial t} = -(J_n - J_{n-1}). \tag{1}$$

Поток J_n агрегатов вдоль оси чисел агрегации дается выражением

Рис. 1. Работа агрегации \overline{W}_n как функция числа агрегации *n*.

$$J_n = a_n \left(c_1 c_n - \frac{\tilde{c}_1 \tilde{c}_n}{\tilde{c}_{n+1}} c_{n+1} \right), \qquad (2)$$

где a_n — скорость присоединения мономеров к агрегатам с числом агрегации n, \tilde{c}_n — равновесная концентрация агрегатов в единице объема. Уравнение для концентрации мономеров $c_1(t)$ следует из условия сохранения полной концентрации ПАВ c:

$$c = c_1(t) + \sum_{n \ge 1} nc_n(t).$$
 (3)

Для малых отклонений $\xi_n = (c_n - \tilde{c}_n)/\tilde{c}_n$ от равновесного распределения агрегатов \tilde{c}_n , т.е. при $\xi_n \ll 1$, поток J_n в (2) можно линеаризовать,

$$J_{n} = a_{n} \tilde{c}_{1} \tilde{c}_{n} \left(\xi_{1} + \xi_{n} - \xi_{n+1} \right).$$
(4)

Линеаризованную систему уравнений Беккера–Дёринга для концентраций агрегатов удобно записать в терминах переменной $u_n = \xi_n \sqrt{\tilde{c}_n}$:

$$\frac{\partial \mathbf{u}}{\partial t} = -\hat{\mathbf{A}}_* \mathbf{u}.$$
 (5)

Здесь \hat{A}_{*} — симметричная трехдиагональная матрица с ненулевыми первой строкой и столбцом. Ее собственные значения определяют спектр обратных времен релаксации мицеллярной системы.

Равновесная концентрация агрегатов ПАВ описывается флуктуационной формулой Больцмана

$$\tilde{c}_n = \tilde{c}_1 e^{-W_n(\tilde{c}_1)},\tag{6}$$

где W_n — минимальная работа агрегации (выраженная в единицах kT, k — постоянная Больцмана, T — абсолютная температура). Для идеального мицеллярного раствора зависимость работы W_n от концентрации мономеров \tilde{c}_1 определяется выражением $-(n-1)\ln \tilde{c}_1$ [7], так что работа агрегации $\overline{W}_n \equiv W_n + (n-1)\ln \tilde{c}_1$ не зависит в идеальном растворе от концентрации мономеров \tilde{c}_1 и является функцией лишь числа агрегации *n*. Здесь и в дальнейшем концентрация мономеров \tilde{c}_1 предполагается измеренной в относительных единицах. Соответственно, W_n совпадает с \overline{W}_n при концентрации $\tilde{c}_1 = 1$. В терминах работы \overline{W}_n соотношение (6) примет вид

$$\tilde{c}_n = \tilde{c}_1^n e^{-\bar{W}_n}.$$
(7)

Следуя работе [10], будем использовать для работы \overline{W}_n следующее выражение:

$$\overline{W}_{n} = \begin{cases} w_{1}(n-1)^{4/3} + w_{2}(n-1) + w_{3}(n-1)^{2/3}, & n \le n_{0}, \\ \overline{W}_{0} + \frac{n-n_{0}}{\overline{n}_{*} - n_{0}}, & n > n_{0}. \end{cases}$$
(8)

Для агрегатов с числом агрегации $n \le n_0$ работа \overline{W}_n соответствует капельной модели сферических мицелл [11, 12], а при $n > n_0$ — линейной модели цилиндрических мицелл [13]. Параметры w_i и n_0 выбираются из условия непрерывности функции \overline{W}_n и ее производной по *n* при $n = n_0$. Параметр \overline{n}_* имеет смысл среднего значения числа агрегации цилиндрических мицелл по области $n > n_0$ при концентрации мономеров $\tilde{c}_1 = 1$.

На рис. 1 показан график зависимости от числа *п* работы \overline{W}_n , определенной по формуле (8) с параметрами $w_1 = 1.01126$, $w_2 = -8.21261$, $w_3 =$ = 17.3055, n_0 = 62.0334, \overline{W}_0 = 10.0268, выбранными из условий $\overline{W}_n = 20, \, \overline{n}_s = 60, \, \overline{W}_s = 10, \, \overline{n}_* = 100.$ Общей чертой этой работы с работой для системы сферических мицелл [6, 7] является наличие потенциального горба и ямы. Для сферических мицелл потенциальная яма относительно узка и имеет параболическую форму, так что равновесное распределение (6) — почти монодисперсное, тогда как равновесное распределение, соответствующее кривой для цилиндрических мицелл на рис. 1, является широким. При численном нахождении спектра обратных времен релаксации ранг матрицы А, ограничивают некоторым зна-

чением N числа агрегации, которое выбирается достаточно большим, чтобы исключить его влияние на наименьшие собственные значения матричного спектра. Для цилиндрических мицелл это значение оказывается значительно большим, чем для сферических мицелл, и это существенно усложняет вычисления. Разработанный в [9] полуаналитический подход позволяет значительно сократить объем вычислений.

276

2. ВЫЧИСЛЕНИЕ СКОРОСТИ ПРИСОЕДИНЕНИЯ МОНОМЕРОВ В МОДЕЛИ СФЕРОЦИЛИНДРА

Как уже отмечалось, еще одной важной кинетической характеристикой мицеллярной системы является зависимость коэффициента присоединения a_n от *n*. Если пренебречь подвижностью агрегата по сравнению с подвижностью мономеров, то проблема нахождения этого коэффициента сводится к задаче нахождения полного диффузионного потока $P = a_n \tilde{c}_1$ мономеров на поверхность *S* неподвижной цилиндрической мицеллы. Этот поток можно записать как

$$P = D \int \frac{\partial c_1(\mathbf{r})}{\partial \mathbf{n}} \bigg|_S dS, \qquad (9)$$

где $\partial c_1(\mathbf{r})/\partial \mathbf{n}|_S$ — производная локальной концентрации мономеров $c_1(\mathbf{r})$ по нормали **n** к поверхности мицеллы, D — коэффициент диффузии мономеров.

Локальная концентрация мономеров $c_1(\mathbf{r})$ удовлетворяет стационарному уравнению диффузии

$$\Delta c_1(\mathbf{r}) = 0 \tag{10}$$

(Δ – оператор Лапласа) с граничными условиями

$$c_1(\mathbf{r})|_{s} = 0; \quad c_1(\mathbf{r}) \to \tilde{c}_1, \quad r \to \infty.$$
 (11)

В качестве модели цилиндрической мицеллы можно принять сфероцилиндр, ограниченный цилиндрической поверхностью с длиной *L* и радиусом *R* и двумя полусферами радиуса *R* на концах. Однако для такой модели аналитического решения задачи (10), (11) не существует, поэтому в работе [9] мицеллы моделировались вытянутыми эллипсоидами с малыми осями b = c = R и большой осью *a*. Учитывая, что объем сфероида *V* равен $V = 4\pi a b^2/3$, а объем v_0 , приходящийся на один мономер в мицелле, не зависит от числа агрегации *n*, справедливы соотношения

$$n = \frac{4\pi a R^2}{3v_0}, \quad \frac{a}{R} = \frac{n}{n_0},$$
 (12)

где $n_0 = 4\pi R^3/3v_0$ — число агрегации в сферической мицелле максимального радиуса. Решение задачи (10), (11) было получено с использованием известного решения задачи о нахождения электростатического потенциала $\phi(\mathbf{r})$ проводящего сфероида с зарядом *e*. Такой потенциал удовлетворяет уравнению

$$\Delta \boldsymbol{\varphi}(\mathbf{r}) = 0 \tag{13}$$

и граничным условиям

$$\varphi(\mathbf{r})|_{S} = \varphi_{s}; \quad \varphi(\mathbf{r}) \to 0, \quad r \to \infty.$$
 (14)

КОЛЛОИДНЫЙ ЖУРНАЛ том 81 № 3 2019

Связь полного заряда сфероида *е* и потенциала $\phi(\mathbf{r})$ определяется соотношением, аналогичным (9):

$$e = -\frac{1}{4\pi} \int \frac{\partial \varphi(\mathbf{r})}{\partial \mathbf{n}} \Big|_{S} dS.$$
(15)

Согласно решению задачи (13)–(15), приведенному в [14], потенциал ϕ_s на поверхности выражается через полный заряд сфероида соотношением

$$\phi_{\rm s} = \frac{e}{R} \frac{1}{f\left(\frac{a}{R}\right)}, \quad f(x) = \frac{\sqrt{x^2 - 1}}{\ln(x + \sqrt{x^2 - 1})}.$$
(16)

Задача диффузии сводится к задаче электростатики заменами

$$\varphi(\mathbf{r}) = c_1(\mathbf{r}) - \tilde{c}_1, \quad e = \frac{-P}{4\pi D}, \quad \varphi_s = \tilde{c}_1. \tag{17}$$

В результате получаем

$$P = 4\pi R D \tilde{c}_1 f(x), \quad x = \frac{a}{R}.$$
 (18)

В пределе $a \to R$ выражение (18) сводится к стационарному диффузионному потоку на поверхность фиксированной сферы:

$$P^{(\rm sph)} = 4\pi DR\tilde{c}_1. \tag{19}$$

Формулы (18), (19), (12) с учетом соотношения $P = a_n \tilde{c}_1$ определяют выражение для скорости присоединения мономеров a_n для вытянутых эллипсоидов с числами агрегации $n > n_0$:

$$a_n = a_{n_0} f(x), \quad f(x) = \frac{\sqrt{x^2 - 1}}{\ln(x + \sqrt{x^2 - 1})}, \quad x \equiv \frac{n}{n_0}.$$
 (20)

Задача нахождения диффузионного потока на сфероцилиндр, как и в рассмотренном случае, эквивалентна определению поля $\phi(\mathbf{r})$ заряженного сфероцилиндра. Будем решать ее в сферической системе координат с полярной осью (ось *z*), направленной по оси цилиндра, и началом координат в центре симметрии сфероцилиндра. В силу симметрии задачи поле $\phi(\mathbf{r})$ зависит только от полярного угла θ и расстояния *r* от начала координат: $\phi(\mathbf{r}) = \phi(r, \theta)$. Симметрия задачи относительно отражения $z \rightarrow -z$ означает, что $\phi(r, \theta) =$ $= \phi(r, \pi - \theta)$, и выполнения граничного условия $\phi(r, \theta)|_{s} = \phi_{s}$. достаточно потребовать на правой границе сечения сфероцилиндра, показанного на рис. 2.

Число мономеров в сфероцилиндре равно $n = (4\pi R^3/3 + \pi R^2 L)/v_0$, отношение

$$\frac{n}{n_0} = 1 + \frac{3L}{4R},$$
 (21)

Рис. 2. Сечение сфероцилиндра. Жирной линией показана граница, на которой ставится условие $\phi(\mathbf{r})|_{s} = \phi_{s}$.

зависит только от L/R. В силу масштабной инвариантности отношение $a_n/a_{n_0} = P_n/P_{n_0}$ также зависит только от этого параметра, поэтому все расчеты проводились при R = 1 с соответствующим переходом к аргументу n/n_0 согласно (21).

Будем искать решение в виде разложения по системе гармонических функций $\phi_n(r, \theta) =$ $= r^{-1-n} P_n(\cos \theta)$, где $P_n(u)$ — полиномы Лежандра, $u = \cos \theta$. Функции $\phi_n(r, \theta)$ удовлетворяют уравнению $\Delta \phi_n(r, \theta) = 0$ и условию $\phi_n(r, \theta) \to 0$ при $r \to \infty$, для выполнения условия $\phi(r, \theta) =$ $= \phi(r, \pi - \theta)$ надо использовать четные значения *n*. Таким образом, запишем решение в виде

$$\varphi(\theta, r) = \varphi_{s} \sum_{n=0} A_{n} r^{-1-2n} P_{2n}(u), \quad u \equiv \cos \theta, \qquad (22)$$

множитель φ_s выделен для удобства. Приближенное решение найдем, ограничиваясь в сумме конечным числом слагаемых до N и выбирая коэффициенты A_n из требования наилучшего выполнения условия $\sum_{n=0}^{N} A_n r_s^{-1-2n} P_{2n}(u_s) = 1$, где (r_s, u_s) – точки, лежащие на поверхности сфероцилиндра. Используем для этого метод наименьших квадратов: выберем на поверхности некоторый набор точек $[(r_s)_k, (u_s)_k], k = 1...M, M > N$ и найдем коэффициенты A_n , минимизирующие величину $\sum_{k=1}^{M} \left[\left(\sum_{n=0}^{N} A_n \left(r_s^{(k)} \right)^{-1-2n} P_{2n} \left(u_s^{(k)} \right) \right) - 1 \right]^2$. Искомую связь потенциала на поверхности φ_s с полным зарядом *e* проще всего найти, рассматривая потенциал (22) в дальней зоне. Учитывая, что $P_0(u) = 1$, находим из (22) $\varphi(\theta, r) \approx A_0 \varphi_s / r$, $r \to \infty$, что определяет искомую связь: $e = A_0 \varphi_s$.

Точность полученного решения оценивалась по отклонениям потенциала на поверхности $\varphi(r, \theta)|_{S}$ от значения φ_{s} . Для контроля проводилось сравнение аналогичного приближенного расчета для модели сфероида с точным решением (20). Погрешность расчета возрастает с увеличением отношения L/R (с ростом n/n_0). Мы довели расчеты до значения L/R = 4 ($n/n_0 = 4$). Максимальная относительная погрешность составила 0.1%.

Представим результаты в виде $a_n = a_{n_0}F(x)$, $x = n/n_0$. Функция F(x) в области $1 \le x \le 11/8$ $(0 \le L/R \le 1/2)$ достаточно хорошо аппроксимируется полиномом F(x) = 1 + (1/3)(x-1) – $-0.051(x-1)^{2}$ (соответствующее разложение функции f(x) имеет вид $f(x) \approx 1 + (1/3)(x-1) - (1/3)(x-1)$ $-(1/45)(x-1)^2$ с тем же начальным наклоном). (L/R > 1/2)В области x > 11/8отношение f(x)/F(x) хорошо аппроксимируется линейной функцией. Нормируя эту функцию на точку x = 7/4 (L/R = 1), в которой рассчитанное значение отношения f(x)/F(x) равно 1.0114, получаем окончательно

$$F(x) = \begin{cases} 1 + \frac{1}{3}(x-1) - 0.051(x-1)^2, & x \le \frac{11}{8}, \\ \frac{f(x)}{1.0114 + 0.021(x-1.75)}, & x > \frac{11}{8}. \end{cases}$$
(23)

Такое аналитическое представление результата удобно для дальнейших расчетов и может рассматриваться как экстраполяция в область $n/n_0 > 4$ (разумеется, пока поправка в знаменателе (23) невелика).

На рис. 3 показаны графики зависимости F(x) и f(x), рассчитанные по формулам (23), (20), а также их линейная аппроксимация.

Коэффициент присоединения для сфероцилиндров всюду меньше коэффициента для вытянутых эллипсоидов (максимальное отличие при x = 4 составляет 6%). Это можно интерпретировать как следствие того, что при одинаковых объемах площадь сфероида больше площади сфероцилиндра (при одинаковых *R*). Попробуем учесть этот факт в виде поправочного множителя к (20), предполагая, что средние диффузионные потоки на единицу поверхности сфероцилиндра и сфероида близки по величине. Запишем условие равенства объемов сфероида и сфероцилиндра: $(4/3)\pi R^2 a = (4/3)\pi R^3 + \pi R^2 L$, отсюда $L = (4/3) \times (a - R)$. Площадь сфероцилиндра равна S_{sph} су

КОЛЛОИДНЫЙ ЖУРНАЛ том 81 № 3 2019

Рис. 3. Зависимость скорости присоединения мономеров от числа агрегации $x = n/n_0$: кривая 1 - для модели сфероцилиндров, 2 - для модели вытянутых эллипсоидов, 3 -линейная аппроксимация.

= $2\pi R(2R + L) = (2\pi R/3)(2R + 4a)$, а площадь сфероида для $x = a/R \ge 1$ определяется формулой $S_{\text{spheroid}} = 2\pi R^2 \Big[1 + (x^2/\sqrt{x^2 - 1}) \arcsin(\sqrt{x^2 - 1}/x) \Big].$ Отсюда искомый поправочный множитель равен

$$\beta = \frac{S_{\text{sph_cyl}}}{S_{\text{spheroid}}} = \frac{2}{3} \frac{1+2x}{1+\frac{x^2}{\sqrt{x^2-1}} \arcsin\left(\frac{\sqrt{x^2-1}}{x}\right)}.$$
 (24)

Будем рассматривать функцию

$$F_{1}(x) \equiv \beta(x)f(x) = \frac{2}{3} \times \frac{(1+2x)(x^{2}-1)}{\left[\sqrt{x^{2}-1}+x^{2} \arcsin\left(\frac{\sqrt{x^{2}-1}}{x}\right)\right] \ln(x+\sqrt{x^{2}-1})}, (25)$$

$$x \equiv \frac{n}{n_{0}},$$

как аппроксимацию функции F(x). На рис. 4 показаны графики функций F(x) и $F_1(x)$. Видим, что аппроксимация (25) оказалась достаточно хорошей, максимальное относительное расхождение кривых при x = 4 составляет 1%.

3. НАИБОЛЬШЕЕ ИЗ ВРЕМЕН БЫСТРОЙ РЕЛАКСАЦИИ

Рассчитанная функция F(x) была использована для вычисления λ_{\min} — наименьшего из обратных времен быстрой релаксации. Расчет проводился полуаналитическим методом, предложенным в работе [9], для работы агрегации

КОЛЛОИДНЫЙ ЖУРНАЛ том 81 № 3 2019

Рис. 4. Зависимость скорости присоединения мономеров от $x = n/n_0$: сплошная кривая — расчет по формуле (23), пунктир — по формуле (25).

использовалось выражение (8). Как и в [9], время измерялось в единицах $\tau_0 = 3n_0(n_* - n_0)/a_{n_0}\tilde{c}_1$. Графики зависимости λ_{\min} от концентрации для сфероцилиндров и вытянутых эллипсоидов показаны на рис. 5.

В рассмотренном диапазоне концентраций \tilde{c}_1 степень мицеллизации возрастала от $\alpha = 0.109$ при $\tilde{c}_1 = 0.995$ до $\alpha = 0.83$ при $\tilde{c}_1 = 1.02$, а среднее число агрегации мицелл – от $\bar{n}_* = 94$ до $\bar{n}_* = 215$. Ввиду меньшего значения коэффициента a_n для

Рис. 5. Зависимость наименьшего из обратных времен быстрой релаксации λ_{\min} от концентрации мономеров \tilde{c}_1 : сплошная кривая — для модели вытянутых эллипсоидов, пунктир — для модели сфероцилиндров.

сфероцилиндра, релаксация происходит медленнее, относительная разность времен увеличивается с ростом концентрации, т.к. при этом возрастает роль крупных мицелл, для которых отличие коэффициентов a_n существеннее.

ЗАКЛЮЧЕНИЕ

Таким образом, проведенный численный расчет скорости присоединения мономеров показал, что для модели цилиндрических мицелл в виде вытянутых эллипсоидов эта величина несколько завышена по сравнению с более реалистичной моделью сфероцилиндров.

Получена аналитическая формула, описывающая с точностью порядка 1% зависимость скорости присоединения в модели сфероцилиндров от числа агрегации.

Вычислено наименьшее из обратных времен быстрой релаксации в модели сфероцилиндров при различных числах агрегации, оно оказалось в среднем на 10% меньше, чем для модели вытянутых эллипсоидов.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 14-13-00112).

СПИСОК ЛИТЕРАТУРЫ

1. Becker R., Döring W. // Ann. Phys. 1935. V. 24. P. 719.

- 2. *Friedlander S.K.* Smoke, Dust, and Hase. Fundamentals of Aerosol Dynamics. Oxford: Oxford University Press, 2000. P. 190.
- 3. Ball J.M., Carr J. // J. Stat. Phys. 1990. V. 61. P. 203.
- Zakharov A.I., Adzhemyan L.Ts., Shchekin A.K. // J. Chem. Phys. 2015. V. 143. 124902.
- Shchekin A.K., Babintsev I.A., Adzhemyan L.Ts. // J. Chem. Phys. 2016. V. 145. 174105.
- von Smoluchowski M. // Z. Phys. Chem. 1917. V. 92. P. 129.
- 7. *Русанов А.И., Щёкин А.К.* Мицеллообразование в растворах поверхностно-активных веществ. 2-е изд. СПб.: Изд-во Лань, 2016.
- 8. Щёкин А.К., Аджемян Л.Ц., Бабинцев И.А., Волков Н.А. // Коллоид. журн. 2018. Т. 80. С. 115.
- 9. Adzhemyan L.Ts., Eroshkin Y.A., Babintsev I.A., Shchekin A.K. // Physica A. 2019. V. 518. P. 299.
- Babintsev I.A., Adzhemyan L.T., Shchekin A.K. // Soft Matter. 2014. V. 10. P. 2619.
- Русанов А.И., Гринин А.П., Куни Ф.М., Щёкин А.К. // Журн. общей химии. 2002. Т. 72. С. 651.
- 12. Русанов А.И., Куни Ф.М., Гринин А.П., Щёкин А.К. // Коллоид. журн. 2002. Т. 64. С. 670.
- 13. Kuni F.M., Shchekin A.K., Rusanov A.I., Grinin A.P. // Langmuir. 2006. V. 22. P. 1534.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 8. Электродинамика сплошных сред. 4-е изд. М.: Физматлит, 2005.