УДК 541.64+544.023.57+544.015.2

СТАБИЛИЗАЦИЯ НАНОЧАСТИЦ МАГНЕТИТА В СРЕДЕ ГУМИНОВЫХ КИСЛОТ И ИССЛЕДОВАНИЕ ИХ СОРБЦИОННЫХ СВОЙСТВ

© 2020 г. Г. И. Джардималиева^{1, 4, *}, В. И. Иржак¹, С. Ю. Братская², В. Ю. Майоров², Ю. О. Привар², Э. Д. Касымова³, Л. С. Кулябко⁴, Ш. Ж. Жоробекова⁵, К. А. Кыдралиева⁴

¹Институт проблем химической физики РАН.

просп. акад. Семенова, 1, г. Черноголовка, Московская обл., 142432 Россия

²Институт химии Дальневосточного отделения РАН,

просп. 100-летия Владивостока, 159, Владивосток, 690022 Россия

³Кыргызско-Российский Славянский университет им. Б.Н. Ельцина,

Чуйский просп., 6, Бишкек, 720000 Кыргызская Республика

⁴Московский авиационный институт, Волоколамское шоссе, 4, Москва, 125993 Россия

⁵Институт химии и фитотехнологий НАН КР, Чуйский просп., 267, Бишкек, 720071 Кыргызская Республика *e-mail: dzhardim@icp.ac.ru Поступила в редакцию 23.01.2019 г.

Поступила в редакцию 23.01.2019 г. После доработки 24.05.2019 г. Принята к публикации 26.06.2019 г.

Исследована кинетика формирования наночастиц магнетита при их стабилизации гуматом калия (ГК). Показано, что свойства композитных частиц $Fe_3O_4/\Gamma K$ существенно зависят от промежутка времени между началом зародышеобразования и моментом введения ГК, а также от концентрации ГК в процессе синтеза. Установлено, что введение ГК в оптимальной концентрации приводит к формированию защитного адсорбционного слоя, обеспечивающего агрегативную и седиментационную устойчивость магнитных частиц. Исследование зависимости сорбционных свойств магнитных частиц Fe₃O₄/ГК по отношению к антибиотику ципрофлоксацину от условий их синтеза и характеристик показало, что такие композитные частицы извлекают антибиотик из водных растворов значительно эффективнее, чем немодифицированные частицы магнетита.

DOI: 10.31857/S0023291220010036

введение

Магнитные наночастицы (НЧ) являются объектом всестороннего изучения и в последние десятилетия находят широкое применение во многих областях науки, медицины и промышленности. Большинство магнитных НЧ, применяемых в биомедицине, являются НЧ оксидов железа – магнетита (Fe_3O_4) и маггемита (γ - Fe_2O_3), способные проявлять суперпарамагнитные свойства. Благодаря магнитным свойствам, а также биосовместимости и способности к биодеградации, они представляют большой интерес для медицины и биохимии. Их используют в качестве адсорбентов для выделения популяций клеток, субклеточных культур, белков и ДНК [1] и иммобилизации ферментов [2], контрастных веществ в магнитно-резонансной томографии [3], магнитоуправляемых препаратов химиотерапевтического [4], диагностического и гипертермического действия для целевой доставки лекарственных веществ [5]. Очевидны перспективы применения магнитных НЧ и материалов на их основе для магнитной твердофазной экстракции [6, 7]. Магнитные материалы на основе оксидов железа все шире используются для очистки вод от загрязняющих веществ методом магнитной сепарации [8]. При этом отдельный интерес в настоящее время представляет очистка от вновь появляющихся экотоксикантов, в частности фармпрепаратов, в числе которых особую опасность представляют антибиотики [9].

Хотя сорбционная способность собственно НЧ оксидов железа достаточно высока, их редко используют в качестве магнитных сорбентов. Прежде всего, это связано со склонностью таких НЧ к агрегированию. Направленное модифицирование поверхности НЧ Fe_3O_4 позволяет повысить их агрегативную устойчивость и придать им заданные сорбционные свойства. Одним из наиболее удобных и часто используемых способов получения наночастиц Fe_3O_4 является метод совместного осаждения солей двух- и трехвалентного железа (метод Maccapa) [10] в полимерсодержащих средах [11].

Исследование процессов, протекающих при взаимодействии полимеров с НЧ, имеет фундаментальное значение, поскольку позволяет понять не только механизм стабилизации, но и природу связей формирующихся на межфазной границе. При этом следует также учитывать, что в системе одновременно протекают (и влияют друг на друга) процессы укрупнения НЧ и адсорбции макромолекул полимера на поверхности исходных и формирующихся частиц [12, стр. 299].

Регулирование размера и степени полидисперсности НЧ возможно в течение очень короткого периода нуклеации, так как конечное число частиц определяется процессом зародышеобразования и не изменяется в процессе роста. При этом предполагается, что можно пренебречь процессами агрегации и коалесценции, однако на практике это является весьма затруднительным. Зарождение (нуклеация) является ключом к процессу кристаллизации, который определяет такие характеристики как форма кристаллов и распределение НЧ по размеру [13, 14].

В многочисленных исследованиях делались попытки совместить защиту (стабилизацию) поверхности НЧ, в частности магнетита, с приданием НЧ определенных функциональных свойств путем покрытия заряженными синтетическими и природными полимерами [15-17]. В частности, на примере гуминовых веществ – природных полиэлектролитов - показано, что образуемые ими покрытия являются биосовместимыми и позволяют сорбировать и концентрировать различные неорганические и органические вещества [11]. Отмечается, что гуминовые вещества играют важную роль в устойчивости коллоидов железосодержащих НЧ и склонны уменьшать их агрегацию и осаждение вследствие электростатических и стерических эффектов. При этом в присутствии многовалентных катионов может, напротив, происходить коагуляция и флокуляция НЧ за счет образования "мостиков" между макромолекулами гуминовых кислот через координирующие ионы металлов [18].

Настоящая работа посвящена выявлению особенностей формирования НЧ магнетита при их стабилизации гуминовыми веществами, а также исследованию сорбционных свойств магнитных гуматсодержащих композитных частиц по отношению к антибиотику ципрофлоксацину в зависимости от условий их синтеза и характеристик.

МАТЕРИАЛЫ И МЕТОДЫ

Синтез НЧ магнетита Fe₃O₄ проводили методом соосаждения солей двух- и трехвалентного железа в присутствии аммиака при мольном соотношении $Fe^{3+}/Fe^{2+} = 2:1$ для получения Fe_3O_4 требуемого состава (31% FeO — вюстита и 69% γ -Fe₂O₃ — маггемита).

Магнитную фракцию отделяли с использованием неодимового магнита (0.3 Тл), промывали дважды горячей дегазированной дистиллированной водой, затем этиловым спиртом и высушивали при 60° С в роторном испарителе.

В качестве исходного гуминового препарата был выбран коммерчески доступный получаемый из угля гумат калия (ГК) марки Роwhumus (Humintech, Германия). Элементный состав ГК, %: С – 41.1, H – 3.7, N – 0.8, O – 47.4; зольность – 7%, содержание СООН- и ОН-групп – 3.3 \pm 0.2 и 1.04 ммоль/г соответственно в расчете на беззольную навеску.

Рентгенофазовый анализ образцов проводили с помощью дифрактометра Philips X-pert (Cu K_{α} -из-лучение).

Сорбционную способность НЧ Fe₃O₄ по отношению к ГК исследовали, используя растворы ГК различной концентрации (0-1 г ГК в расчете на 1 г Fe₃O₄). Эксперименты по адсорбции начинали спустя разное время (от 20 до 600 с) с момента начала синтеза НЧ. Ниже в обозначениях соответствующих образцов Fe₃O₄/ГК первые две цифры указывают именно это время, а две следующие (через дефис) – концентрацию ГК (г/л). Сорбцию проводили в 50-мл колбах, содержащих 25 мл раствора ГК (0–10 г/л) и 1 г/л НЧ Fe_3O_4 , на ротационном шейкере (150 об./мин) при 25°С, ионной силе раствора 0.1 М NaCl и pH 9.0 \pm 0.5. Для определения адсорбционной емкости отбирали пробы через 24 ч, отделяя осадок магнитом. Количество сорбированного ГК определяли спектрофотометрически при $\lambda = 350$ нм по разнице его исходной концентрации и равновесной концентрации в супернатанте.

Методом низкотемпературной адсорбции азота на установке ASAP 2020 (Micromeritics, США) определяли значения удельной поверхности и пористости образцов $Fe_3O_4/\Gamma K$. Предварительно проводили термообработку образцов в течение 2-х ч при $80^{\circ}C$ в вакууме.

Гидродинамические размеры модифицированных ГК частиц, позволяющие судить об агрегативной устойчивости их дисперсий, оценивали методом квазиупругого рассеяния лазерного света (**КУРЛС**) на приборах Zetasizer 2c и Autosizer 2c. Источником света служил гелий-неоновый лазер с длиной волны излучения 633 нм.

Для исследования адсорбции ципрофлоксацина на полученных композитных частицах $Fe_3O_4/\Gamma K$ 4 мг сорбента приводили в контакт с 4 мл водного раствора антибиотика с концентрацией 1 × 10⁻⁴ моль/л (рН 7.5) и встряхивали на лабораторном шейкере в течение 24 ч, затем сорбент отделяли с помощью магнита. Равновесную концентрацию ципрофлоксацина определяли по калибровочной кривой концентрационной зависимости оптической плотности его растворов на длине волны 271 нм (спектрофотометр UV-1800, Shimadzu). Степень извлечения рассчитывали по разности концентраций ципрофлоксацина до и после сорбции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Фазовооднородные сферические частицы Fe₃O₄ с максимальным выходом были получены в результате проведения синтеза при следующих условиях реакции:

 использование в качестве прекурсора для синтеза магнетита смеси хлоридов двух- и трехвалентного железа, которые легко гидролизуются и не образуют гидроксокомплексов [19],

 – значение pH, равное 9, при котором катионы железа(III) существуют в активной форме [7], а также образуются гидроксиды в результате гидролиза солей железа, но не подавляются основные свойства гидроксида железа(II),

 использование водного раствора аммиака для поддержания щелочной среды,

- значения температуры выше 60-70°С.

В итоге при различных условиях синтеза (момент добавления ГК после смешения солей железа и концентрация ГК) получен набор из 7 образцов наночастиц Fe₃O₄, модифицированных ГК.

Средний размер частиц определяли, исходя из допущения, что они являются сферическими [20]. На рис. 1 приведены дифрактограммы НЧ магнетита и ряда композитных частиц Fe₃O₄/ГК, на которых наблюдаются линии, соответствующие Fe₃O₄.

По уширению линий, согласно уравнению Дебая—Шеррера, определен средний размер частиц, который оказался равным примерно 15 нм. Сравнительный анализ приведенных на рис. 1 дифрактограмм разных образцов Fe₃O₄/ГК, показывает, что их фазовый состав совпадает и соответствует Fe₃O₄. Интенсивность основных пиков на всех дифрактограммах снижается с увеличением концентрации ГК. При этом наблюдается небольшое уширение основной линии, соответствующей d = 2.513 Å. Малый разброс значений среднего размера композитных частиц разного состава может указывать на то, что нуклеация и рост НЧ протекают в достаточно однородной реакционной системе.

Исследование сорбции ГК на разных стадиях формирования НЧ магнетита показало, что увеличение промежутка времени *t* с момента начала синтеза НЧ до введения ГК с 20 до 600 с незначи-

Рис. 1. Дифрактограммы образцов нанокомпозитов: $l - \text{Fe}_3\text{O}_4/\Gamma\text{K}20\text{-}0.1$, $2 - \text{Fe}_3\text{O}_4/\Gamma\text{K}600\text{-}0.1$, $3 - \text{Fe}_3\text{O}_4/\Gamma\text{K}20\text{-}0.8$, $4 - \text{Fe}_3\text{O}_4/\Gamma\text{K}600\text{-}0.8$.

тельно изменяет их размер, от 15 до 12 нм. Ширина линий на дифрактограммах для образцов Fe₃O₄/ГК, полученных при t = 20 с, мало отличается от таковой для образцов, синтезированных при t = 600 с. Известно, что размер коллоидных частиц растет с увеличением времени реакции. При этом маленькие частицы менее стабильны и растворяются с образованием "мономерных единиц" (ионов или атомов), которые, в свою очередь, конденсируются на поверхности термодинамически более стабильных частиц большего размера (оствальдовское созревание) [21]. По-видимому, процесс укрупнения наночастиц в рассматриваемой системе компенсируется подавлением их роста при введении ГК спустя разное время *t* после начала реакции (от 20 до 600 с).

Стабилизирующее действие ГК является следствием их адсорбции на поверхности НЧ магнетита. При этом процесс адсорбции ГК включает два этапа: диффузию макромолекул к поверхности частиц дисперсной фазы и собственно адсорбцию, определяющуюся временем достижения равновесного состояния макромолекул в адсорбционном слое. Десорбция ГК практически не имеет места вследствие большого числа контактов ГК с поверхностью НЧ. Диффузия в разбавленных растворах при перемешивании протекает очень быстро после добавления раствора ГК: в течение 20 с достигается практически полный контакт полиэлектролита с частицами дисперсной фазы магнетита. Как правило, за это время конформация макромолекул еще не успевает измениться, и поэтому скорость диффузии сопоставима со скоростью столкновения частиц (см. [12,

Рис. 2. Изотерма адсорбции ГК на магнетите (1 г Fe_3O_4 , t = 20 с, pH 9, 0.01 M NaCl, 22°C). Точки – экспериментальные данные, линия – аппроксимация с использованием уравнения Ленгмюра.

стр. 279]). Равновесие в адсорбционном слое также устанавливается быстро благодаря тому, что в щелочной среде с pH 9 молекулы ГК из-за отталкивания групп СОО[–] и OH[–] разворачиваются и адсорбируются в линейной конформации [22, 23]. Таким образом, ионы на поверхности Fe_3O_4 получают возможность активно взаимодействовать с группами СОО[–], скорее всего, за счет реакции лигандного обмена [24, 25]. В результате, несмотря на то, что при данном значении pH поверхностные группы Fe_3O_4 заряжены отрицательно [26], адсорбируется достаточно большое количество ГК, что обеспечивает стабилизацию дисперсной системы за счет действия стерического и электростатического механизмов.

Изотерма адсорбции ГК на поверхности НЧ магнетита (рис. 2) имеет крутой подъем, характерный для адсорбции полимеров и обусловленный многоточечным контактом и относительно жесткой фиксацией адсорбированных макромолекул на поверхности. Рисунок 2 показывает, что изотерма сорбции ГК на магнетите хорошо описывается уравнением Ленгмюра и согласуется с литературными данными по адсорбции гуминовых кислот на различных оксидах металлов (TiO₂, ZnO, Ag₂O) [27] и минералах оксидов железа [23, 28, 29].

Приведенные выше данные подтверждаются результатами определения структурных свойств магнитных гуминовых композитов методом низкотемпературной адсорбции азота (табл. 1). В качестве примера на рис. 3 представлены изотермы адсорбции азота на НЧ Fe_3O_4 и композитных частицах $Fe_3O_4/\Gamma K20-0.1$.

При расчете удельной поверхности (S) по БЭТ [30], удельной поверхности микропор по методу *t*-графика [31] и среднего диаметра пор по методу Баррета-Джойнера-Халенды [32] установлено, что доля микропор минимальна, а увеличение концентрации ГК приводит к уменьшению удельной поверхности образцов и среднего диаметра пор за счет агрегации взаимодействующих частиц (табл. 1). Увеличение промежутка времени *t* от

Таблица 1. Характеристики НЧ Fe₃O₄ и композитных частиц Fe₃O₄/ГК по данным низкотемпературной адсорбции азота

Образец	Удельная поверхность <i>S</i> , м ² /г (метод БЭТ)	Вклад микропор в удельную поверхность, % (метод <i>t</i> -графика)	Средний диаметр пор, нм (метод BJH)
Fe ₃ O ₄	117.3	0	10.8
Fe ₃ O ₄ /ГК20-0.1	117.7	3.1	7.8
Fe ₃ O ₄ /ΓK60-0.1	82.7	0	5.7
Fe ₃ O ₄ /ГК120-0.1	96.3	0.8	6.3
Fe ₃ O ₄ /ГК300-0.1	99.6	5.1	6.8
Fe ₃ O ₄ /ΓK600-0.1	87.0	3.1	6.6
Fe ₃ O ₄ /ΓK20-0.2	94.9	7.22	5.4
Fe ₃ O ₄ /ГК60-0.2	69.8	8.61	5.1
Fe ₃ O ₄ /ГК120-0.2	142.4	3.4	9.0
Fe ₃ O ₄ /ГК300-0.2	74.2	11.2	5.1
Fe ₃ O ₄ /ГК600-0.2	84.8	7.7	5.7
Fe ₃ O ₄ /ΓK60-0.4	32.9	6.2	4.5
Fe ₃ O ₄ /ΓK120-0.4	19.8	10.8	4.5

Рис. 3. Изотермы низкотемпературной адсорбции/десорбции азота на $Fe_3O_4(1, 2)$ и нанокомпозите $Fe_3O_4/\Gamma K20-0.1(3, 4)$.

начала синтеза НЧ до момента введения ГК также уменьшает значение S (рис. 4).

Удельная поверхность НЧ магнетита, формирующихся после смешения солей железа, уменьшается симбатно с увеличением промежутка времени *t* от начала реакции до момента введения ГК от 20 до 600 с (рис. 5). По-видимому, это связано с термодинамической неустойчивостью образующихся НЧ, приводящей к их агрегации и увеличению размера.

Увеличение концентрации ГК от 0.1 до 0.6 г в расчете на 1 г Fe₃O₄ при одном и том же значении t = 20 с также приводит к уменьшению удельной поверхности НЧ Fe₃O₄ (рис. 6), очевидно, за счет связывания большего числа макроионов ГК с поверхностью Fe₃O₄ [24].

При введении в реакционную систему ГК в концентрации 0.4 г на 1 г осажденного Fe₃O₄ спустя 20 с после начала синтеза имеет место практически полное его связывание с НЧ. При добавлении раствора ГК в той же концентрации спустя 600 с после начала синтеза надосадочный раствор ГК практически не изменяет исходную окраску, т.е. адсорбция ГК заметно снижается, что связано с уменьшением удельной поверхности НЧ за указанное время вследствие их агрегации. Таким образом, время от начала синтеза до момента введения ГК в реакционную систему заметно влияет на размер образующихся частиц. Максимальная адсорбция ГК и соответственно максимальный выход композитных частиц достигается при введении ГК спустя 20 с после начала синтеза.

В целом, суспензии на основе НЧ магнетита и ГК можно считать достаточно агрегативно-

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 1 2020

Рис. 4. Эволюция удельной поверхности частиц Fe_3O_4 при введении ГК (10 мг/г Fe_3O_4) в разные мо-менты реакции их синтеза.

устойчивыми: при оптимальных условиях получения частиц $Fe_3O_4/\Gamma K$ их средний гидродинамический диаметр d в течение суток возрастает незначительно. Очевидно, устойчивость обеспечивается за счет образования на поверхности частиц гематита прочно связанного с ней адсорбционного слоя макроионов ΓK .

Оксиды алюминия и железа являются эффективными сорбентами многих органических веществ, в том числе антибиотиков, при этом сорбция может осуществляться за счет не только ионного обмена [33], но и комплексообразования. Так, высказывается предположение, что существенный вклад в сорбцию фторхинолонов вносит координация их карбоксильных и фенольных групп ионами металлов на поверхности окси-

Рис. 5. Зависимости удельной поверхности частиц Fe_3O_4 от времени введения ГК после начала их синтеза. Количество ГК в расчете на 1 г Fe_3O_4 : 1-0, 2-0.1, 3-0.2, 4-0.4 г.

Рис. 6. Изменение удельной поверхности частиц магнетита при увеличении концентрации ГК, вводимой спустя 20 с после начала их синтеза.

дов [34]. Учитывая, что гидрофобные и донорноакцепторные взаимодействия не менее важны при сорбции антибиотиков на органических сорбентах [33], можно ожидать проявления синергетического эффекта при сорбции антибиотиков на композитных частицах Fe₃O₄/ГК.

Действительно, данные рис. 7 показывают, что эффективность извлечения широко распространенного антибиотика ципрофлоксацина композитными частицами $Fe_3O_4/\Gamma K120-0.2$ достигает 81%, тогда как в случае немодифицированных частиц Fe_3O_4 она составляет всего 27%, несмотря на бо́льшую удельную поверхность последнего (табл. 1).

Сорбционные свойства композитных частиц коррелируют с их удельной поверхностью и нелинейно зависят от концентрации ГК, вводимой при синтезе. Видно, что увеличение концентрации ГК до 0.4 г/г Fe₃O₄ (образец ГК120-0.4), сопровождающееся почти 5-кратным уменьшением удельной поверхности по сравнению с таковой для образца ГК120-0.2, приводит к падению эффективности извлечения ципрофлоксацина до 25%.

Таким образом, очевидно, что условия синтеза композитных частиц Fe₃O₄/ГК существенно влияют на их сорбционные свойства.

ЗАКЛЮЧЕНИЕ

На основании исследования кинетики формирования наночастиц магнетита и композитных частиц магнетит/ГК и их структурных характеристик установлено, что свойства частиц магнетит/ГК существенно зависят от промежутка времени между началом зародышеобразования и введением ГК, а также от концентрации ГК.

Рис. 7. Эффективность извлечения ципрофлоксацина частицами Fe_3O_4 и композитными частицами $Fe_3O_4/\Gamma K$ (pH 7.5, время контакта 24 ч, $T = 25^{\circ}C$).

Введение ГК в оптимальной концентрации приводит к созданию защитного адсорбционного слоя, обеспечивающего агрегативную и седиментационную устойчивость дисперсии магнитных частиц. Полученные композитные частицы $Fe_3O_4/\Gamma K$ извлекают антибиотик ципрофлоксации из водных растворов значительно эффективнее, чем частицы немодифицированного магнетита.

БЛАГОДАРНОСТИ

Авторы выражают глубокую признательность канд. хим. наук А.В. Сыбачину (кафедра высокомолекулярных соединений МГУ им. М.В. Ломоносова) за помощь в исследовании коллоидных свойств наночастиц и канд.хим.наук, заведующему лаборатории В.М. Рудому (Институт физической химии и электрохимии им. А.Н. Фрумкина РАН) за полезные дискуссии.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 18-33-01270/18 и 17-43-500631) и в рамках госзадания ИПХФ РАН (0089-2019-0008). Сорбционные свойства материалов по отношению к ципрофлоксацину исследованы в рамках госзадания ИХ ДВО РАН (265-2019-0002).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 1 2020

СПИСОК ЛИТЕРАТУРЫ

- 1. Fraga García P., Brammen M., Wolf M., Reinlein S., Freiherr von Roman M., Berensmeier S. // Sep. Purif. Technol. 2015. V. 150. P. 29.
- Roth H.-C., Schwaminger S.P., Peng F., Berensmeier S. // Chem. Open. 2016. P. 183.
- Bauer L.M., Situ S.F., Griswold M.A., Samia A.C.S. // Nanoscale. 2016. V. 8. P. 12162.
- Colombo M., Romero S.C., Casula M.F., Gutierrez L., Morales M.P., Bohm I.B., Heverhagen J.T., Prosperi D., Parak W.J. // Chem. Soc. Rev. 2012. V. 41. P. 4306.
- Tombacz E., Turcu R., Socoliuc V., Vekas L. // Biochem. Biophys. Res. Comm. 2015. V. 468. P. 442.
- Rossi L.M., Costa N.J.S., Silva F.P., Wojcieszak R. // Green Chem. 2014. V. 16. P. 2906.
- Tian L.-L., Zhang M.-J., Wu C., Wei Y., Zheng J.-X., Lin L.-P. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 26284.
- Li Z., Lowry G.V., Fan J., Liu F., Chen J. // Sci. Total Environ. 2018. V. 628. P. 177.
- Verlicchi P., Al Aukidy M., Zambello E. // Sci. Total Environ. 2012. V. 429. P. 123.
- 10. Massart R. // IEEE Trans. Magn. 1981. V. 17. P. 1247.
- Kydralieva K.A., Yurishcheva A.A., Dzhardimalieva G.I., Jorobekova S.J. // J. Inorg. Organomet. Polym. Mater. 2016. V. 26. P. 1212.
- 12. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Металлополимерные нанокомпозиты. М.: Химия, 2000.
- 13. Irzhak V.I. // Rev. J. Chem. 2016. V. 6. P. 370.
- Descamps M., Willart J.-F. // Int. J. Pharm. 2018. V. 542. P. 186.
- 15. Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. // Успехи химии. 2003. Т. 74. С. 539.
- Munoz M., Pedro Z.M., Casas J.A., Rodriguez J.J. // Appl. Catal. B. 2015. V. 176. P. 249.
- 17. Su C. // J. Hazard. Mater. 2017. V. 322. P. 48.
- Philippe A., Schaumann G.E. // Environ. Sci. Technol. 2014. V. 48. P. 8946.

- Алексашкин И.В., Першина Е.Д., Каздобин К.А. // Ученые записки Таврического национального университета им. В.И. Вернадского. Серия "Биология, химия". 2010. Т. 23. Вып. 62. № 3. С. 227.
- http://www.micromeritics.com/Pressroom/Press-Release-List/Micromeritics-Analytical-Services-MAS-Reports-Average-Particle-Size-of-Nanoparticles.aspx
- Kumarage W.G.C., Wijesundera R.P., Seneviratne V.A., Jayalath C.P., Vargá T., Nandasiri M.I., Dassanayake B. // Mater. Chem. Phys. 2017. V. 200. P. 1.
- 22. *Жоробекова Ш.Ж.* Макролигандные свойства гуминовых кислот. Бишкек: Илим, 1987.
- Nuzzo A., Sánchez A., Fontaine B., Piccolo A. // J. Geochem. Explor. 2013. V. 129. P. 1.
- Illés E, Tombácz E. // J. Colloid Interface Sci. 2006. V. 295. P. 115.
- Кокорин А.И., Кулябко Л.С., Дегтярев Е.Н., Коварский А.Л., Пацаева С.В., Джардималиева Г.И., Юрищева А.А., Кыдралиева К.А. // Химическая физика. 2018. Т. 37. № 2. С. 88.
- 26. Illés E., Tombácz E. // Colloids Surf. A. 2003. V. 230. P. 99.
- Yang K., Lin D.H., Xing B.S. // Langmuir. 2009. V. 25. P. 3571.
- Hur J., Schlautman M.A. // J. Colloid Interface Sci. 2004. V. 277. P. 264.
- Esmaeili H., Ebrahimi A., Hajian M., Pourzamani H.R. // Int. J. Env. Health Eng. 2012. V. 1. P. 33.
- Brunauer S., Emmett P.H., Teller E. // J. Am. Chem. Soc. 1938. V. 60. P. 309.
- Lippens B.C., de Boer J.H. // J. Catalysis. 1965. V. 4. P. 319.
- 32. Barrett E.P., Joyner L.G., Halenda P.P. // J. Am. Chem. Soc. 1951. V. 73. P. 373.
- Ahmed M.B., Zhou J.L., Ngo H.H., Guo W. // Sci. Total Environ. 2015. V. 532. P. 112.
- Gu C., Karthikeyan K.G. // Environ. Sci. Technol. 2005.
 V. 39. P. 9166.