УДК 547.233+661.185.23

СУПРАМОЛЕКУЛЯРНЫЕ СИСТЕМЫ МЕТАЛЛОКОМПЛЕКСОВ 1-ЦЕТИЛ-4-АЗА-1-АЗОНИАБИЦИКЛО[2,2,2]ОКТАН БРОМИДА ДЛЯ УВЕЛИЧЕНИЯ РАСТВОРИМОСТИ ГРИЗЕОФУЛЬВИНА

© 2020 г. М. Р. Ибатуллина^{1, *}, Е. П. Жильцова¹, С. С. Лукашенко¹, Л. Я. Захарова¹

¹Институт органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр РАН, ул. Акад. Арбузова, 8, Казань, 420088 Россия *e-mail: marina_ibatullina@mail.ru Поступила в редакцию 08.05.2019 г. После доработки 04.07.2019 г. Принята к публикации 01.08.2019 г.

Спектрофотометрическим методом исследовано влияние металломицеллярных систем комплексов алкилированного 1,4-диазабицикло[2,2,2]октана с нитратами Cu(II) и La(III) на растворимость противогрибкового препарата гризеофульвина. Солюбилизационная емкость агрегатов металло-комплексов по отношению к гризеофульвину в 2 раза выше, чем лиганда, и до 2–3 раз выше, чем цетилтриметиламмония бромида и его смеси с соответствующей неорганической солью. Методами УФ-спектроскопии и динамического рассеяния света установлено изменение агрегационных характеристик дифильных соединений в присутствии солюбилизата – снижение порога агрегации и изменение размера ассоциатов.

DOI: 10.31857/S0023291220010061

введение

Способность супрамолекулярных систем к солюбилизации практически важных веществ (как неорганической, так и органической и биоорганической природы) является одним из наиболее важных их свойств, поскольку лежит в основе применения растворов дифильных соединений для решения задач в области экологии, катализа, санитарии, медицины, и т.д. [1-4]. Так, в фармации эта особенность растворов поверхностно-активных веществ (ПАВ) широко используется при разработке систем для адресной доставки лекарственных средств и позволяет минимизировать процесс разложения препарата, его потери и нежелательное побочное действие [5, 6]. Благоприятное влияние ПАВ на растворимость гидрофобных лекарственных препаратов позволяет увеличить их биодоступность и тем самым усилить их функциональное действие. В качестве солюбилизирующих структур, как правило, выступают полимерные мицеллы или агрегаты традиционных ионных и неионных ПАВ [5-7].

Нами проводятся исследования по регулированию растворимости лекарственных веществ в водных растворах моно- и дикатионных, неионных, анионных, а также металлосодержащих ПАВ [2, 8–11]. При этом показано, что растворы металлокомплексов ПАВ проявляют высокую солюбилизирующую способность даже в предмицеллярной области [2, 8], что, наряду с низким порогом агрегации, делает их особенно привлекательными. Следует отметить также, что наличие катиона металла в структуре ПАВ влияет на его собственную биологическую активность. Известны многочисленные металлокомплексы ПАВ, обладающие высоким антимикробным (антибактериальным, противогрибковым) и противораковым эффектом [12-15]. Это свойство строительных блоков наноконтейнеров может не только способствовать усилению конечного биологического действия солюбилизированных лекарственных препаратов, но и расширить спектр терапевтических возможностей композиции. В связи с этим, результатом использования составов металлокомплекс ПАВ/лекарственный препарат и солюбилизации биологически-активных соединений в металломицеллах может стать увеличение растворимости препарата, его биодоступности, лечебного эффекта, а также спектра действия.

В настоящей работе исследовано влияние металломицеллярных систем на основе комплексов нитратов меди(II) (1) и лантана(III) (2) с монокватернизованным производным 1,4-диазабицикло[2.2.2]октана (**DABCO**) – 1-цетил-4-аза-1-азониабицикло[2.2.2]октан бромидом (**D-16**, **3**) на растворимость гидрофобного лекарственного препарата гризеофульвина (ГФ, 7-хлор-2',4,6-триметокси-6'-метилгризен-2'-дион-3,4').

Проведена количественная оценка этого эффекта. Определена солюбилизационная емкость агрегатов. Полученные для металлокомплексов ПАВ данные сопоставлены с данными для систем на основе лиганда **3**, традиционного ПАВ цетилтриметиламмония бромида (**4**) и его смеси с нитратами меди(II) и лантана(III).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты и материалы

Синтез комплексов лиганда **3** с нитратами меди и лантана проводили путем смешивания лиганда и соответствующей неорганической соли в метаноле по методике [16]. Выделенные комплексы [2D-16×Cu(NO₃)₂] (**1**) и [2D-16×La(NO₃)₃] (**2**) идентифицировали с помощью элементного анализа, ИКспектроскопии и спектроскопии ЯМР ¹Н. Соединение **3** получено кватернизацией DABCO цетилбромидом по методике [17]. Цетилтриметиламмония бромид (99%), гризеофульвин (97%), Cu(NO₃)₂ · $3H_2O$ (99%) (все – производства Acros Organics), La(NO₃)₃ · $6H_2O$ (99.9%, Alfa Aesar), тетрадецилтриметиламмония бромид (99%, Aldrich) использовали без предварительной очистки.

Для приготовления растворов использовали воду, очищенную с помощью системы Direct-Q 5 UV (Millipore, Франция).

Методы исследования

Спектры поглощения растворов снимали на спектрофотометре Specord 250 Plus (Analytik Jena AG, Германия) в термостатируемых кварцевых кюветах толщиной 1.0, 0.5 и 0.1 см в области длин волн 190–1100 нм. Приготовление насыщенных препаратом растворов комплексов и катионных ПАВ проводили следующим образом. Избыточное количество порошка ГФ заливали 4 мл раствора ПАВ исследуемой концентрации и выдерживали в течение двух суток, добиваясь предельного растворения препарата, т.е. установления равновесия в системе. Полученные растворы пропускали через фильтры Millipore Millex (0.45 мкм). Спектры насыщенных препаратом

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 1 2020

растворов дифильных соединений регистрировали относительно растворов сравнения соответствующего ПАВ той же концентрации. Определение молярного коэффициента экстинкции ГФ в воде и мицеллярных растворах проводили с использованием закона Бугера–Ламберта–Бера при введении в воду и соответствующие растворы ПАВ фиксированного количества раствора препарата в ДМФА (0.02 М) и регистрации оптической плотности ГФ на длине волны, отвечающей максимуму его поглощения.

Размеры агрегатов определяли с использованием системы Zetasizer Nano (Malvern, Великобритания). Угол рассеяния света составлял 173°. Источником излучения служил газовый Не–Nелазер с длиной волны 633 нм. Измерения pH проводили с помощью pH-метра pH-211 (HANNA, Россия).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Солюбилизационные свойства агрегатов комплексов

ГФ является противогрибковым средством, в том числе одним из основных средств лечения больных дерматомикозами [18]. Препарат практически нерастворим в воде, мало растворим в этаноле, и решение вопроса увеличения его растворимости, а вместе с тем и биодоступности, может способствовать его биомедицинскому применению. Выбор металлокомплексов ПАВ на основе алкилированного DABCO в качестве компонента составов для управления растворимостью ГФ связан с их повышенной, по сравнению с лигандами, способностью к агрегации, а также к проявлению биологической активности и относительно низкой токсичностью. Так, ранее с использованием широкого набора физико-химических методов нами было показано, что комплексы 1 и 2 являются мицеллообразующими ПАВ [16, 19]. Их критическая концентрация мицеллообразования (ККМ) составляет соответственно 0.38 и 0.33 мМ (25°С, тензиометрия), т.е. в 2–3 раза ниже ККМ лиганда 3 и традиционных ПАВ с головной группой ациклического или циклического типа (4 и цетилпиридиния бромида) [16]. Кроме того, помимо высокой способности к агрегации эти металлокомплексы ПАВ сами проявляют антибактериальную активность (в ряде случаев превосходящую активность тестового препарата норфлоксацина) и противогрибковое действие в отношении дрожжеподобного гриба Candida albi*cans* [19], по отношению к которому $\Gamma \Phi$ не активен. Можно отметить также, что выбранные металлокомплексы 1 и 2 при введении в брюшную полость животного относятся, соответственно, к классам умеренно и малотоксичных веществ и обладают в 3-6 раз меньшей токсичностью, чем традиционное ПАВ 4 [19].

Влияние металломицеллярных растворов на растворимость ГФ в водной среде, а также изменение свойств самой системы в присутствии гидрофобного препарата исследовали методами спектрофотометрии и динамического и электрофоретического рассеяния света.

Электронный спектр поглощения ГФ в воде характеризуется полосами поглощения при 240, 295 и 333 нм (см. рис. 1). В качестве рабочей служила наиболее интенсивная полоса при $\lambda = 295$ нм. В мицеллярных средах положение этой полосы изменяется. Увеличение содержания дифильных соединений, как правило, приводит к ее сдвигу в длинноволновую область на 3–5 нм (табл. 1).

На рис. 2-4 представлены концентрационные зависимости приведенной оптической плотности (A/l, где l - длина оптического пути, см) полосыпоглощения ГФ в условиях насыщения им водных растворов комплексов, лиганда и 4, а также ПАВ 4 в присутствии нитратов меди и лантана. Увеличение поглощения препарата на начальных участках обусловлено образованием мицелл (при ККМ₁), способных связывать плохо растворимый гидрофобный ГФ в "родственном" ему углеводородном ядре агрегатов и тем самым повышать его растворимость. Дополнительные перегибы на характеристических кривых, появляющиеся вслелствие относительного снижения роста оптической плотности препарата, могут быть обусловлены перестройкой агрегатов после ККМ₂.

Определенные методом солюбилизации ГФ значения ККМ (ККМ_{ГФ}) приведены в табл. 2. Из представленных данных следует, что ККМ_{1, ГФ} комплексов в 1.5–4.5 раза ниже, чем соединений **3** и **4** в отсутствие неорганических солей, и в 1.3– 3.9 раза ниже, чем ПАВ **4** в присутствии соответ-

Рис. 1. Спектры поглощения насыщенных ГФ водных растворов в отсутствие комплекса 1 (*1*) и в его присутствии в концентрации 0.05 (*2*), 0.1 (*3*), 0.15 (*4*), 0.2 (*5*), 0.25 (*6*), 0.3 (*7*), 0.35 (*8*), 0.4 (*9*), 0.5 (*10*), 0.6 (*11*), 0.8 (*12*), 1.0 (*13*), 1.3 (*14*), 1.5 (*15*), 2.0 (*16*), 2.5 (*17*), 3.0 мМ (*18*); 25°С.

ствующей соли. Присутствие препарата способствует агрегации всех исследуемых ПАВ. Значения ККМ₁ и ККМ₂, определенные для систем дифильное соединение/ГФ, до двух раз ниже, чем ККМ ПАВ в отсутствие ГФ, найденные методами тензиометрии (ККМ_{тенз}) и потенциометрии (табл. 2).

Концентрацию ГФ в воде в присутствии ПАВ определяли с использованием уравнения Бугера– Ламберта–Бера ($A = \varepsilon cl$, где ε – молярный коэффициент экстинкции ГФ, л/(моль см), c – его

C	1		2		0	3		4	
с ₁₍₂₎ , мМ	λ _{max} , ΗΜ	ϵ_{max} , M^{-1} см ⁻¹	λ _{max} , ΗΜ	$\epsilon_{max},$ $M^{-1} c M^{-1}$	с ₃₍₄₎ , мМ	λ _{max} , ΗΜ	$\epsilon_{max},$ M ⁻¹ см ⁻¹	λ _{max} , ΗΜ	ϵ_{max} , $M^{-1} c M^{-1}$
0.1	296	27260	294	27260	0.4	297	28720	297	26340
0.2	298	28750	295	27260	0.6	295	28640	296	26690
0.3	297	26100	295	27030	0.8	295	28520	297	26770
0.4	299	25320	294	26770	1.0	296	28440	296	27010
0.6	296	27110	296	26380	1.5	297	28350	296	27050
0.8	297	25930	297	26230	2.0	297	27490	297	27140
1.0	298	24710	298	26100	2.5	297	26880	298	27240
1.5	300	26690	_	_	3.0	297	25950	297	27150
2.0	299	25680	297	28690	4.0	297	25580	297	27000
2.5	299	25840	_	_	6.0	299	24610	297	27010
3.0	298	25810	298	28150	8.0	297	23830	297	27010
4.0	_	—	297	26530	10	299	23070	299	27030

Таблица 1. Молярный коэффициент экстинкции ГФ в водных растворах комплексов, лиганда 3 и ПАВ 4 при 25°С

Рис. 2. Зависимость максимальной приведенной оптической плотности полосы поглощения ГФ на $\lambda_{max, H_2O} = 295$ нм в водных растворах (а) комплексов **1** (*1*), **2** (*2*) и (б) лиганда **3** (*3*) и ПАВ **4** (*4*) от концентрации дифильного соединения; 25°C.

концентрация в растворе, моль/л). Значения ε , отвечающие разным концентрациям ПАВ в водной среде, представлены в табл. 1. В отсутствие дифильных соединений значение ε ГФ при 295 нм равно 26550 л/(моль см).

Рассчитанные величины предельной концентрации ГФ в металломицеллярных и мицеллярных средах приведены в табл. 3. Растворимость ГФ в воде в среднем составляет 3.8×10^{-5} моль/л. В исследуемом диапазоне концентрации комплексов содержание препарата в водной среде

Рис. 3. Зависимость максимальной приведенной оптической плотности полосы поглощения ГФ на $\lambda_{\max, H_2O} = 295$ нм в водных растворах ПАВ **4** в присутствии 5 мМ Cu(NO₃)₂ · 3H₂O (*1*) или La(NO₃)₃ · 6H₂O (*2*) от концентрации ПАВ; 25°C.

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 1 2020

возрастает вплоть до 8-10 раз. В растворах лиганда увеличение концентрации ГФ достигает 12 раз, а в растворах ПАВ **4** в отсутствие и в присутствии соответствующих неорганических солей -6-13 раз (табл. 3, 4), однако это происходит при содержании ПАВ, в 2.5–3 раза превосходящем содержание металлокомплексов в растворе.

Для более полной характеристики солюбилизирующей способности исследуемых мицелляр-

Рис. 4. Зависимость максимальной приведенной оптической плотности полосы поглощения $\Gamma \Phi$ на $\lambda_{\max, H_2O} = 295$ нм в водных растворах смесей (2 : 1) 4–Cu(NO₃)₂ · 3H₂O (*1*) и 4–La(NO₃)₃ · 6H₂O (*2*) от суммарной концентрации компонентов; 25°C.

Соединение	$\text{KKM}_{\Gamma\Phi} \times 10^{4, a}, \text{M}$	$\text{KKM}_{\text{тенз}} \times 10^4, \text{ M}$	$S \times 10^{3, a}$	$S_{\text{компл}(\Pi AB)}/S_3$	$S_{\text{компл}(\Pi AB)}/S_4$
1	2.6, 13 ⁶ (3.2 ^в)	3.8 ^в , 21.8 ^{б, г}	120, 14.3 ^д (53.2 ^в)	2.0	3.0, 2.4 ^е , 1.0 ^ж
2	1.7, 7.6 ⁶ (3.0 ^в)	3.3 ^в	126, 60.3 ^д (103 ^в)	2.1	3.2, 2.1 ^e , 1.8 [*]
3	7.9, 31 ⁶ (10 ³)	10 ^и	60.5, 23.8 ^д (42.2 ³)	1.0	1.5
4	4.1 (9.8к)	8.0 ^л	40.0 (15.9 ^M)	0.66	1.0
4 – 5 мМ Cu(NO ₃) ₂ · 3H ₂ O	10	—	50.5	—	_
4 – 5 мМ La(NO ₃) ₃ · 6H ₂ O	5.5	_	60.7	—	—
$4 - Cu(NO_3)_2 \cdot 3H_2O(2:1)$	3.5	_	118	—	—
4 – La(NO ₃) ₃ · 6H ₂ O (2 : 1)	3.4	—	70.5	—	—
5	27	38 ^н	26.1	—	—

Таблица 2. Значения ККМ и солюбилизационной емкости металлокомплексов и катионных ПАВ в воде, определенные методом солюбилизации ГФ при 25°С

^аВ скобках указаны данные метода солюбилизации Оранж-ОТ; ^бзначение ККМ₂; ^вданные [16]; ^гданные [19], метод потенциометрии; ^дзначение *S* после ККМ₂; ^еотношение $S_{\text{компл}}/S_4$, где S_4 – для системы **4** – 5 мМ соответствующей неорганической соли; ^жотношение $S_{\text{компл}}/S_4$, где S_4 – для системы **4** – соответствующая неорганическая соль (2 : 1); ³данные [2, 20]; ^иданные [17]; ^кданные [21] при 30°С; ^лданные [22] при 30°С; ^мданные [23]; ^нданные [24].

Таблица 3. Предельная концентрация ГФ в водных растворах комплексов, лиганда и ПАВ 4 и 5 при различных концентрациях этих дифильных соединений, 25°С

	1		2	3, 4	3	4		5
$c_1 \times 10^3$, M	$c_{\Gamma\Phi} \times 10^4$, M	$c_2 \times 10^3$, M	$c_{\Gamma\Phi} \times 10^4$, M	$c_{3,4} \times 10^3$, M	$c_{\Gamma\Phi} \times 10^4$, M	$c_{\Gamma\Phi} \times 10^4$, M	$c_5 \times 10^3$, M	$c_{\Gamma\Phi} \times 10^{4, a}, M$
0.25	0.418	0.3	0.577	0.8	0.474	0.486	0.864	0.481
0.35	0.444	0.35	0.706	1.0	0.58	0.468	1.08	0.544
0.5	0.693	0.4	0.759	1.5	1.03	0.68	1.62	0.462
0.6	0.877	0.5	0.814	2.0	1.19	0.931	2.16	0.518
0.8	1.08	0.6	0.971	2.5	1.39	0.956	2.70	0.46
1.0	1.32	0.8	1.23	3.0	2.02	1.13	3.24	0.621
1.5	1.73	1.0	1.34	4.0	2.12	1.77	4.32	0.992
2.0	1.92	2.0	1.99	6.0	2.81	2.19	6.48	1.61
2.5	1.92	3.0	3.03	8.0	4.56	1.95	8.64	1.86
3.0	3.11	4.0	4.29	10	4.66	2.08	10.8	2.78

^аПри расчете использовано значение $\varepsilon = 26610 \text{ л/(моль см)}$.

ных систем были рассчитаны значения их солюбилизационной емкости (S), равной числу молей ГФ, солюбилизированных молем мицеллярного ПАВ, по уравнению [25]

$$S = B/\varepsilon l, \tag{1}$$

где B — параметр наклона (тангенс угла наклона зависимости оптической плотности препарата от содержания ПАВ в области концентраций, отвечающей агрегированному состоянию ПАВ). Для начального мицеллярного участка (после ККМ₁) концентрационных зависимостей оптической плотности (рис. 2) при расчете солюбилизационной емкости растворов **1**, **2**, **3** и **4** использованы усредненные значения ε (л/(моль см)), равные 25840, 26730, 27600 и 26830 соответственно. Для участка зависимостей после ККМ₂ усредненные значения ε (л/(моль см)) для **1**, **2** и **3** были равны, соответственно, 26070, 27010 и 25380. Из приведенных в табл. 2 данных видно, что солюбилизационная емкость комплексов по отношению к ГФ в 2 раза превышает *S* лиганда. В растворах 4 это превышение составляет 3 раза в отсутствие соответствующей неорганической соли и до 1.8-2.4 раз в ее присутствии. Лишь в системе 4- $Cu(NO_3)_2 \cdot 3H_2O$ (2 : 1) происходит уравнивание солюбилизационных емкостей комплекса и ПАВ 4, что может быть обусловлено высаливающим действием неорганической соли. Перестройка структуры агрегатов (после ККМ₂) сопровождается снижением значений *S* мицеллярных систем в 2– 8 раз. Можно также отметить, что увеличение длины углеводородного радикала катионного ПАВ (например, при переходе от тетрадецилтриметиламмония бромида 5 к 4) повышает солюбилизирующую способность мицелл по отношению

4	$\frac{4-5 \text{ MM}}{\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}}$	$4-5 \text{ MM}$ $\text{La}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$	4 — соль (2 : 1)	$\begin{array}{c} 4 - \operatorname{Cu}(\operatorname{NO}_3)_2 \cdot 3\operatorname{H}_2\operatorname{O}\\ (2:1) \end{array}$	$ 4 - La(NO_3)_3 \cdot 6H_2O (2:1) $
$c_4 \times 10^3$, M	$c_{\Gamma\Phi} \times 10^{4, a}, M$	$c_{\Gamma\Phi} \times 10^{4, 6}, \mathrm{M}$	$c_{\text{сум}} \times 10^3$, M	$c_{\Gamma\Phi} \times 10^{4, B}, M$	$c_{\Gamma\Phi} \times 10^{4, r}, M$
0	0.5	0.516	0.6	0.674	0.764
0.8	0.747	0.973	0.8	1.01	1.01
1.0	0.713	0.83	1.0	1.24	1.14
1.5	0.916	1.15	1.5	1.78	1.52
2.0	1.32	1.46	2.0	1.76	1.93
2.5	1.4	1.53	2.5	2.03	1.92
3.0	1.25	1.45	3.0	2.95	2.66
4.0	1.71	2.0	4.0	2.98	2.52
6.0	2.04	2.11	6.0	3.70	4.46
8.0	2.55	2.88	8.0	4.44	4.7
10	3.95	3.41	10	5.62	6.34

Таблица 4. Предельная концентрация ГФ в водно-солевых растворах ПАВ 4 различной концентрации при 25°С

^аПри расчете в диапазонах концентрации 0–0.8, 1.0–2.0, 2.5–10 мМ использованы значения є, равные 26910, 26230 и 26450 л/(моль см) соответственно.

⁶При расчете в отсутствие **4** и для диапазонов его концентрации 0.8–2.0 и 2.5–10 мМ использованы значения є, равные 27500, 25800 и 25550 л/(моль см) соответственно.

^вПри расчете в диапазонах концентрации 0.6–2.0 и 2.5–10 мМ использованы значения є, равные 26540, 26070 соответственно.

^гПри расчете в диапазонах концентрации 0.6–2.5 и 3.0–10 мМ использованы значения є, равные 26240 и 25760 л/(моль см) соответственно.

к ГФ (табл. 2, 3). Кроме того, солюбилизационная емкость растворов комплексов и ПАВ (3 и 4) по отношению к этому препарату превышает в 1.2– 2.5 раза их емкость по известному водонерастворимому красителю Оранж ОТ (табл. 2). Возможной причиной этого может быть реализация, помимо гидрофобного эффекта (как в случае красителя), дополнительного механизма связывания солюбилизата (ГФ) агрегатами. В пользу этого предположения свидетельствуют данные по изменению размера надмолекулярных структур ПАВ в присутствии ГФ.

Влияние гризеофульвина на размер агрегатов металлокомплексов

Методом динамического рассеяния света определен гидродинамический диаметр агрегатов (d), формирующихся в насыщенных ГФ металлокомплексных системах и растворах лиганда (табл. 5). Установлено, что в растворах комплексов в области ККМ формируются агрегаты двух типов: преимущественно "среднего" размера (90-105 нм) и относительно небольшая доля (0.5-15%) более крупных (размером 300-570 нм). Аналогичная картина для **1** наблюдается и в отсутствие $\Gamma \Phi$, но при этом доля крупных агрегатов меньше. В случае комплекса 2 увеличение его концентрации сопровождается снижением доли частиц среднего размера с последующим преимущественным образованием частиц диаметром 210–270 нм. Для системы 3-ГФ формирование подобных агрега-

тов характерно уже в области ККМ, тогда как в отсутствие препарата вблизи ККМ лиганд 3 формирует преимущественно частицы размером примерно 80 нм [26]. Все эти данные свидетельствуют о том, что присутствие ГФ в растворе приводит либо к увеличению доли больших частиц в растворах исследуемых ПАВ, либо к укрупнению агрегатов. Это говорит об эффективности солюбилизационного процесса и может быть связано с возможностью реализации в его ходе, помимо гидрофобных, различных взаимодействий заряженных головных групп ПАВ с полиароматическим солюбилизатом, имеющим полярные заместители [27]. Для рассматриваемой системы это может быть π -катионное взаимодействие между концевым ароматическим кольцом препарата и головной группой ПАВ. Кроме того, возможно взаимодействие последней с участками повышенной электронной плотности в молекуле ГФ, создаваемыми атомами кислорода и хлора, конкурирующее с взаимодействием этих атомов с молекулами воды. Дзета-потенциал системы 1-ГФ лежит в пределах 42-92 мВ, т.е. близок к значениям этого параметра для индивидуальных растворов 1 [19]. Для системы $2-\Gamma\Phi$ он составляет 63-101 мВ, а для системы **3–**ГФ равен 43–68 мВ.

Устойчивость гризеофульвина в растворах ПАВ

Для оценки устойчивости препарата в растворенном состоянии исследовано также изменение электронных спектров ГФ во времени. Для всех

ИБАТУЛЛИНА и др.

Система	<i>с</i> _{ПАВ} , мМ	d (по интенсивности), нм	d (по числу частиц), нм	ИПД
1–ΓΦ	0.35	338 (90.2) ^a , 102 (9.8)	295 (14.8), 92 (85.2)	0.303
1	0.4	134 (74.5), 567 (25.5)	97 (99.5), 506 (0.5)	0.379
	0.5	432 (69.6), 124 (30.4)	90	0.453
2 –ΓΦ	0.1	331 (71.2), 120 (28.8)	104	0.244
	0.35	257 (92.2), 106 (7.8)	234 (28.2), 104 (71.8)	0.199
	0.4	258	213	0.096
	0.5	271	237	0.151
	0.8	254	217	0.303
3 –ΓΦ	1.0	249	214	0.140
	1.5	216	203	0.121

Таблица 5. Гидродинамический диаметр агрегатов на основе комплексов, 3 и ГФ при 25°С, определенный по интенсивности рассеяния и числу частиц, а также индекс полидисперсности (ИПД)

^аЗдесь и далее в скобках приведена относительная доля частиц данного размера в процентах.

использованных ПАВ выдерживание растворов ГФ в течение двух-четырех недель приводит лишь к незначительному (не более 4—14%) изменению его оптической плотности (см. рис. 5). Это свидетельствует о стабильности как самого препарата, так и использованных систем. 5.1, растворов **4**/5 мМ нитрата лантана – 5.1–6.0, растворов **4**/нитрат меди (2 : 1) – 4.8–7.0, растворов **4**/нитрат лантана (2 : 1) – 5.5–6.8.

ЗАКЛЮЧЕНИЕ

Аргументом в пользу выбранных композиций служит также оптимальный диапазон значений рН последних в присутствии ГФ. Значения рН металлокомплексных систем на основе 1 и 2 составляют, соответственно, 5–5.5 и 4–6, для растворов лиганда 3 они равны 5–6, для растворов 4 - 4.5 - 6.5, растворов 4/5 мМ нитрата меди – 4.7 - 1000

Таким образом, методами УФ-спектроскопии, динамического и электрофоретического рассеяния света исследованы спектральные, агрегационные и солюбилизационные характеристики систем металлокомплекс алкилированного DABCO-гризеофульвин, и проведено их сравнение с характеристиками систем на основе лиганда

Рис. 5. Изменение во времени спектров поглощения ГФ в растворах комплекса **2** (а) и лиганда **3** (б) при $c_2 = 0.6$ мМ, $c_3 = 2.0$ мМ, $c_{\Gamma\Phi} = 2.67 \times 10^{-5}$ М. Время выдержки растворов: 0 (1), 1 (2), 2 (3), 4 (4), 7 (5), 8 (6), 9 (7), 10 (8), 11 (9), 14 (10), 22 (11), 27 суг (12); l = 0.5 см, 25°С.

и традиционного ПАВ 4. Определены ККМ и размер агрегатов ПАВ, их солюбилизационная емкость. В присутствии ГФ снижается концентрация агрегации использованных дифильных соединений и проявляется тенденция к росту размера их агрегатов.

Надмолекулярные структуры, формирующиеся в растворах металлокомплексов ПАВ, повышают растворимость ГФ в водной среде. В исследуемом диапазоне концентраций комплексов содержание препарата в воде возрастает на порядок. При этом солюбилизационная емкость систем на основе металлокомплексов ПАВ до 2-3 раз превышает емкость растворов лиганда и катионного ПАВ 4. Лишь для системы 4-нитрат меди (2:1) солюбилизационная емкость комплекса 1 и ПАВ 4 равны. Однако втрое меньшая токсичность комплекса 1 по сравнению с тралиционным ПАВ 4 [19] делает металлосодержащее ПАВ более предпочтительным. Высокая способность металломицеллярных растворов к агрегации (позволяющая использовать низкие концентрации дифильных соединений) и солюбилизации гризеофульвина, а также свойственная металлокомплексам ПАВ биологическая (антибактериальная и противогрибковая) активность свидетельствуют о том, что эти системы являются перспективными композициями для регулирования растворимости гидрофобного препарата.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант № 18-03-00591 а.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Кашапов Р.Р., Лыкова А.А., Захарова Л.Я.* // Макрогетероциклы. 2018. Т. 11. С. 210.
- Жильцова Е.П., Ибатуллина М.Р., Лукашенко С.С., Кутырева М.П., Захарова Л.Я. // Журн. орг. химии. 2018. Т. 54. С. 426.
- Kashapov R.R., Bekmukhametova A.M., Petrov K.A., Nizameev I.R., Zakharova L.Ya. // Sens. Actuators B: Chem. 2018. V. 273. P. 592.
- Kuznetsova D.A., Gabdrakhmanov D.R., Lukashenko S.S., Voloshina A.D., Sapunova A.S., Kulik N.V., Nizameev I.R., Kadirov M.K., Kashapov R.R., Zakharova L.Ya. // J. Mol. Liq. 2019. V. 289. P. 111058.
- Banipal T.S., Kaur R., Banipal P.K. // J. Mol. Liq. 2018. V. 255. P. 113.
- Vinarov Z., Katev V., Radeva D., Tcholakova S.S., Denkov N.D. // Drug Dev. Ind. Pharm. 2018. V. 44. P. 677.

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 1 2020

- Srivastava A., Uchiyama H., Wada Y., Hatanaka Y., Shirakawa Y., Kadota K., Tozuka Y. // J. Mol. Liq. 2019. V. 277. P. 349.
- Zhiltsova E.P., Ibatullina M.R., Lukashenko S.S., Kutyreva M.P., Zakharova L.Ya. // J. Mol. Liq. 2018. V. 249. P. 716.
- 9. Яцкевич Е.И., Миргородская А.Б., Захарова Л.Я., Синяшин О.Г. // Изв. АН. Сер. хим. 2015. С. 2232.
- Миргородская А.Б., Валеева Ф.Г., Яцкевич Е.И., Бесчастнова Т.Н., Жукова Н.А., Захарова Л.Я., Синяшин О.Г., Мамедов В.А. // Изв. АН. Сер. хим. 2014. С. 2681.
- Kashapov R.R., Kharlamov S.V., Razuvayeva Y.S., Ziganshina A.Yu., Nizameev I.R., Kadirov M.K., Latypov S.K., Zakharova L.Ya. // J. Mol. Liq. 2018. V. 261. P. 218.
- Tawfik S.M., Zaky M.F. // J. Surfact. Deterg. 2015.
 V. 18. P. 863.
- 13. Adawy A.I., Badr E.A. // J. Appl. Chem. 2014. V. 7. P. 09.
- 14. Zaky M.F. // J. Surfact. Deterg. 2010. V. 13. P. 255.
- 15. *Wani W.A., Prashar S., Shreaz S., Gómez-Ruiz S. //* Coord. Chem. Rev. 2016. V. 312. P. 67.
- Жильцова Е.П., Ибатуллина М.Р., Лукашенко С.С., Валеева Ф.Г., Паширова Т.Н., Кутырева М.П., Захарова Л.Я. // Коллоид. журн. 2017. Т. 79. С. 580.
- Паширова Т.Н., Жильцова Е.П., Кашапов Р.Р., Лукашенко С.С., Литвинов А.И., Кадиров М.К., Захарова Л.Я., Коновалов А.И. // Изв. АН. Сер. хим. 2010. С. 1699.
- Компендиум 2005 лекарственные препараты / Под ред. Коваленко В.Н., Викторова А.П. Киев: Морион, 2005. С. С-72.
- Ибатуллина М.Р., Жильцова Е.П., Лукашенко С.С., Волошина А.Д., Сапунова А.С., Ленина О.А., Низамеев И.Р., Кутырева М.П., Захарова Л.Я. // Журн. общей химии. 2018. Т. 88. С. 1883.
- 20. Kashapov R.R., Pashirova T.N., Kharlamov S.V., Ziganshina A.Yu., Zhiltsova E.P., Lukashenko S.S., Zakharova L.Ya., Latypov Sh.K., Konovalov A.I. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 15891.
- 21. *Mata J., Varade D., Bahadur P. //* Thermochim. Acta. 2005. V. 428. P. 147.
- 22. Moulik S.P., Haque M.E., Jana P.K., Das A.R. // J. Phys. Chem. 1996. V. 100. P. 701.
- Gainanova G.A., Vagapova G.I., Syakaev V.V., Ibragimova A.R., Valeeva F.G., Tudriy E.V., Galkina I.V., Kataeva O.N., Zakharova L.Ya., Latypov S.K., Konovalov A.I. // J. Colloid Interface Sci. 2012. V. 367. P. 327.
- 24. Жильцова Е.П., Ибатуллина М.Р., Лукашенко С.С., Кутырева М.П., Ануар М.М., Коваленко В.И., Захарова Л.Я. // Журн. общей химии. 2017. Т. 87. С. 1881.
- McElhanon J.R., Zifer T., Kline S.R., Wheeler D.R., Loy D.A., Jamison G.M., Long T.M., Rahimian K., Simmons B.A. // Langmuir. 2005. V. 21. P. 3259.
- Жильцова Е.П., Ибатуллина М.Р., Лукашенко С.С., Паширова Т.Н., Волошина А.Д., Зобов В.В., Зиганшина С.А., Кутырева М.П., Захарова Л.Я. // Изв. АН. Сер. хим. 2016. С. 1365.
- 27. Tehrani-Bagha A.R., Holmberg K. // Materials. 2013. V. 6. P. 580.