УДК 546.13+546.571+546.05+53.091

СИНТЕЗ И ФОТОКАТАЛИТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ ЧАСТИЦ КОМПОЗИТА ХЛОРИД СЕРЕБРА/СЕРЕБРО

© 2020 г. Ф. Х. Уракаев^{1, 2, *}, Н. В. Хан¹, Ж. С. Шалабаев¹, Б. Б. Татыкаев¹, Р. К. Надиров¹, М. М. Буркитбаев¹

> ¹Институт геологии и минералогии имени В.С. Соболева СО РАН, просп. Академика Коптюга, 3, Новосибирск, 630090 Россия ²Казахский национальный университет им. аль-Фараби, Алматы, 050040 Казахстан *e-mail: urakaev@igm.nsc.ru Поступила в редакцию 04.03.2019 г. После доработки 13.06.2019 г. Принята к публикации 26.06.2019 г.

Синтезированы композитные наночастицы AgCl/Ag путем механической активации реакции NH₄Cl + AgNO₃ + zNH₄NO₃ = (z + 1)NH₄NO₃ + AgCl с использованием нецелевого конечного продукта (NH₄NO₃) в качестве разбавителя, где z = 7.22 – параметр разбавления, с последующим частичным фотовосстановлением AgCl до Ag (Ag⁺ до Ag⁰). Методами рентгенофазового анализа, просвечивающей электронной микроскопии и спектрофотометрии поглощения в диапазоне длин волн 200–1000 нм установлено образование нанокристаллов Ag (размером примерно 7 нм) на поверхности 40-нм наночастиц AgCl. Такие композитные частицы AgCl/Ag проявляют высокую каталитическую активность при фоторазложении красителя метиленового синего в водном растворе.

DOI: 10.31857/S0023291220010164

ВВЕДЕНИЕ

Наночастицы (НЧ) серебра [1, 2] и их "композиты" с НЧ галогенидов серебра (AgX/Ag, X = Cl, Br, I) востребованы в различных областях науки и техники [3-6]. В настоящей работе мы остановимся только на композитных НЧ (KHY) AgCl/Ag [7–17]. Упомянем, ограничившись недавними публикациями, и о наличии их "гибридов" с другими веществами, находящимися в наноструктурированном состоянии: графитом [18], графеном [5, 19, 20] и g-C₃N₄ [21], оксидами (TiO₂ [22, 23], Cu₂O [24], ZnO [25], WO₃ [26-28]), двойными оксидами (CaTiO₃ [29], LaFeO₃ [30], ZnFe₂O₄ [31]) и MoS₂ [32]. Есть композиты и более сложных состава и структуры: Ag/AgCl/Bi₆O₄(OH)₄(NO₃)₆ · H₂O [33] Ag/AgCl/Bi₆O_{4.46}(OH)_{3.54}(NO₃)_{5.54} [34], и $(CuC_{10}H_{26}N_6)_3(PW_{12}O_{40})_2/AgCl@Ag [35], Ag/Ag-$ Cl/ZIF-8 [36], Ag/AgCl/вискоза [6] и пленка хитина—Ag@AgCl [37].

Отметим, что в [1] НЧ серебра и препараты с антибиотиками и другими соединениями на их основе (типа колларгола [2]) предлагается "возродить" в качестве лечебных средств после многолетнего забвения.

Одним из важнейших свойств НЧ серебра и содержащих их веществ является плазмоный резонанс, проявляющийся в ярко выраженном локальном максимуме в спектральной зависимости коэффициента экстинкции [38, 39]. В настоящее время созданию новых типов таких материалов уделяется особое внимание (см., в частности, получение плазмонных КНЧ SiO₂@/Ag декорированием *in situ* поверхности синтезированных мезопористых частиц кремнезема серебром [40]). Методы синтеза и свойства НЧ серебра систематизированы в [1, 2, 39].

Синтез нанокомпозитов AgCl/Ag многообразен. Их получают методами осаждения AgCl [19, 32] или пропитки [34] с одновременным или последующим фотовосстановлением ионов Ag⁺ до Ag⁰ [3–6, 8, 18, 21, 22, 26, 27, 29, 30, 35, 37]. Восстановление также проводится полиолами [7, 17, 19, 20, 30, 31, 33, 34, 36], термическим путем [8, 25, 28], с использованием растительного сырья [9–12, 14, 25], дрожжевых клеток [13], грибов [15] и синтезированных бактериями двух типов фермента β-глюкозидазы [16]. Отметим и возможность применения цетилтриметиламмония хлорида [5] и проведения процесса окисления пленок серебра с помощью FeCl₃ [23] или CuCl₂ [24].

Области применения КНЧ AgCl/Ag и их перечисленных выше "гибридов" весьма разнообразны. В основном они используются в качестве фотокатализаторов для деградации красителей, органических и других загрязняющих веществ. Среди них метиленовый синий [3, 6, 17, 22, 30], метилоранж [4, 8, 23, 24, 27, 33, 37] и родамин В [18, 21, 25–28, 31], 2,4-дихлорфенол [4, 35], нитрофенол [5, 10], фенол [18, 22], бисфенол А [31], тетрациклин [21, 35] и Cr(VI) [21]. Они востребованы и как активное антибактериальное средство [6, 9–12, 14, 15, 34] и при лечении карцином [9, 10], а также используются для получения водорода [29, 35], в качестве рабочих элементов сенсоров [20, 32] и даже стимуляторов всхожести семян [15]. В [13, 16] сообщается о возможности синтеза КНЧ AgCl/Ag в промышленных масштабах для последующих технологических применений.

Ранее мы сообщали о возможности механохимического синтеза HЧ AgCl [41] и AgBr с успешной попыткой получения нанокомпозитного фотокатализатора AgBr/Ag [3]. В настоящей работе этот подход применен для синтеза КНЧ AgCl/Ag, и проведены спектрофотометрические исследования их фотокаталитических свойств в реакции деградации красителя метиленового синего.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез НЧ AgCl, как и в [41], осуществляли методом разбавления нецелевым конечным продуктом (NH₄NO₃) механически активируемой реакции NH₄Cl + AgNO₃ + zNH₄NO₃ = (z + + 1)NH₄NO₃ + AgCl, где z = 7.22 [41] – коэффициент разбавления. Теоретические и экспериментальные аспекты механохимического способа получения НЧ методом разбавления (или методом МакКормика – его первооткрывателя) детально рассмотрены в обзоре [42]. Этот метод базируется на следующих положениях. Во-первых, целевой продукт (в данном случае AgCl) должен быть термически стабилен или нерастворим, например, в воде; тогда нецелевой продукт должен быть водорастворимым (может быть отмыт водой [3]) или, как в случае NH₄NO₃, может быть удален путем его термического разложения [41]. Во-вторых, добавление в реакционную смесь NH₄Cl + + AgNO₃ продукта реакции NH₄NO₃ будет препятствовать агрегации первоначально образующихся кластеров AgCl или, иначе говоря, будет способствовать стабилизации НЧ AgCl в матрице нецелевого продукта механически активируемой реакции.

Механическую активацию (МА) исходной шихты (навеска m = 10 г) проводили в шаровой планетарной мельнице Pulverissette 6 с использованием фурнитуры из карбида вольфрама (плотность $\rho = 14.3$ г/см³, твердость по Моосу 9) для исключения натира материала мелющих тел.

Объем барабана составлял 250 мл, число шаров N = 50, их диаметр D = 1 см, вес шаровой загрузки

 $m_{\rm b} = \pi D^3 N \rho / 6 = 370$ г и отношение $m_{\rm b} / m = 37$. МА осуществляли при частоте вращения водила 420 об./мин в течение 20 мин.

Рентгенофазовый анализ (**РФА**) образцов проводили на дифрактометре D8 ADVANCE (Bruker, Германия), используя монохроматизированное излучение меди, при напряжении 40 кВ и токе 40 мА; шаг сканирования составлял $2\theta = 0.02^{\circ}$, длительность времени измерения на каждом шаге – 1 с.

Просвечивающую электронную микроскопию (ПЭМ) образцов выполняли на приборе JEM 1011 (JEOL, Япония), оснащенном цифровой фотокамерой Morada (OLYMPUS, Япония), при напряжении 100 кВ. Полученные в результате МА образцы (10 мг) помещали в ампулу с гексаном (3 мл), перемешивали и 1 каплю такой суспензии наносили на медные сетки с коллодиевым покрытием.

Спектры поглощения образцов коллоидных растворов измеряли на однолучевом спектрофотометре СФ-56 (Россия) в диапазоне 200-1000 нм: образцом сравнения служила использованная для их приготовления вода. Процедура проведения измерений была следующей. Продукт МА (500 мг) вносили в дистиллированную воду (500 мл) с целью получения коллоидного раствора AgCl [41]. Образец этой дисперсии сразу использовали для быстрой (в течение примерно 1 мин) съемки спектра поглощения. Затем остаток суспензии облучали ксеноновой лампой мощностью 300 Вт в течение 4 ч и измеряли спектр поглощения уже этого образца (было установлено, что 4-х ч достаточно для обнаружения линий серебра по данным РФА, сравните также с [4]).

Из остатка облученной суспензии 10-минутным осаждением на центрифуге Hettich Mikro 220R (5000 об./мин) отделяли целевые КНЧ AgCl/Ag. После 12-часовой сушки при 60°С их образцы исследовали методами РФА и ПЭМ. Таким же способом отделяли НЧ AgCl от продуктов МА и хранили их в темноте.

Фотокаталитическую активность НЧ AgCl и КНЧ AgCl/Ag оценивали по методике [3]. Для этого 40 мг образцов тех или иных частиц вносили в 40 мл водного раствора красителя метиленового синего (10 мг/л). Полученные дисперсии перемешивали в темноте магнитной мешалкой в течение 1 ч. Затем образцы этих дисперсий облучали видимым светом неоновых трубок Sylvania LuxLine FHO T5 с интенсивностью 4 мВт/см, отбирая пробы каждые 20 мин. Облученные образцы сразу центрифугировали (4000 об./мин, 2 мин) для удаления частиц. Измерения оптической плотности А полученных растворов на длине волны 485 нм позволяло определить степень фоторазложения метиленового синего в каждом образце под действием как HY AgCl, так и KHY AgCl/Ag и проследить за кинетикой этого. Для контроля полуИнтенсивность, отн. ед.

Рис. 1. Результат РФА образца КНЧ AgCl/Ag.

ченных результатов проводили также опыты по разложению красителя в водном растворе в темноте в присутствии КНЧ AgCl/Ag и при его освещении в отсутствие этих композитных частиц.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенофазовый анализ КНЧ AgCl/Ag, полученных облучением HЧ AgCl ксеноновой лампой, показал наличие кубической фазы AgCl (параметр решетки a = 5.5463 Å) и слабых дифракционных пиков серебра при значениях 20, равных примерно 38° и 44° (рис. 1). По данным РФА трудно установить состав КНЧ и, как следствие, определить выход реакции фотовосстановления Ag^+ до Ag^0 при облучении НЧ AgCl ксеноновой лампой. По данным же ПЭМ можно говорить о примерно 3%-ном содержании Ag в КНЧ AgCl/Ag, что находится в пределах ошибки измерений методом РФА.

ПЭМ-анализ образца КНЧ AgCl/Ag (рис. 2) показал, что в результате восстановления ионов Ag⁺ до Ag⁰ в частицах водной дисперсии AgCl, облучаемой ксеноновой лампой, образуются HЧ Ag со средним диаметром около 7 нм (а), "ассоциированные" (связанные) с поверхностью материнских HЧ AgCl со средним диаметром примерно 40 нм (б). В этой связи уместно сравнить снимок на рис. 2, например, с ПЭМ-снимками в [35], на которых также нет изолированных частиц серебра.

Так как ПЭМ-изображения [41] необлученных МА-образцов AgCl не показали наличия НЧ серебра, можно сделать вывод, что их образование вызвано именно светом ксеноновой лампы.

На рис. 3 представлены спектры поглощения НЧ AgCl (1) и КНЧ AgCl/Ag (2) в ультрафиолетовом и видимом диапазонах длин волн. Видно, что максимумы их поглощения находятся в ближней УФ-области спектра. Для НЧ AgCl наблюдаются два максимума поглощения — первый при 299 нм и второй при 346 нм, а для КНЧ AgCl/Ag — только один ярко выраженный максимум при 357 нм.

Рис. 2. ПЭМ-снимок образца КНЧ AgCl/Ag и соответствующие распределения по размерам наночастиц Ag (a) и AgCl (6).

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 1 2020

Рис. 3. Спектры поглощения дисперсий HЧ AgCl (*1*) и КНЧ AgCl/Ag (*2*).

Максимумы поглощения при 299 и 346 нм (спектр 1) можно приписать, следуя, например, [4], смещенным в длинноволновую область спектра прямым (230 нм) и непрямым (301 нм) экситонным переходам в AgCl. Максимум поглощения КНЧ AgCl/Ag при 357 нм (спектр 2) также сдвинут в сторону более длинных волн относительно его положения (319 нм), зарегистрированного в [4]. С другой стороны, для свободных НЧ серебра [2, 38] максимум поглошения располагается вблизи 400 нм, т.е. при значительно большей длине волны, чем для КНЧ AgCl/Ag (смотрите рис. 3 и, например, данные [4, 17, 35]). Одно из объяснений сдвига максимума поглощения НЧ серебра в составе композитных частиц в сторону коротких волн состоит в их сильной связи с AgCl-матрицей [35]. Более того, говорить о количественном согласии полученных нами спектральных данных с результатами других работ нет особого смысла, поскольку такового согласия не существует и между результатами самих этих работ (смотрите [4-6, 8-10, 12-14, 17, 35]).

Наличие еще двух слабо выраженных максимумов поглощения КНЧ AgCl/Ag в видимой области спектра [4, 17] подробно обсуждается в [17]. В нашем же случае, значения экстинкции для КНЧ для AgCl/Ag, начиная с ее максимального значения при 346 нм, изменяются (уменьшаются) не более чем на 18% вплоть до 1000 нм (рис. 3, спектр 2), в то время как для НЧ AgCl изменение (плавный спад) экстинкции составляет 83% (рис. 3 спектр 1).

В [4, 17] широкие полосы поглощения в видимой области приписыватся плазмонному резонансу (агрегированных) НЧ серебра. Поэтому большое и практически неизменное значение Приведенная оптическая плотность

Рис. 4. Кинетика разложения метиленового синего в водном растворе: *1* – под действием видимого света в отсутствие фотокатализатора, *2* – в присутствии КНЧ AgCl/Ag в темноте, *3* – под действием видимого света и HЧ AgCl, *4* – под действием видимого света и КНЧ AgCl/Ag.

экстинции для КНЧ AgCl/Ag (рис. 3) может свидетельствовать об их потенциальной очень высокой фотокаталитической активности. Отметим, что основное отличие наших КНЧ AgCl/Ag от исследовавшихся другими авторами состоит в наличии остаточных микроискажений решетки AgCl, возникших в результате MA [41].

Данные о фотокаталитической активности КНЧ AgCl/Ag и соответствующих контрольных опытов представлены на рис. 4. Видно, что метиленовый синий не подвержен сколько-нибудь существенному разложению в водном растворе при воздействии видимого света неоновых трубок в отсутствие КНЧ AgCl/Ag (кривая 1), т.е. фотоиндуцированное разложение красителя в этом случае не происходит. Незначительное разложение метиленового синего без облучения его раствора видимым светом имеет место в присутствии КНЧ AgCl/Ag (кривая 2). В то же время, наличие КНЧ AgCl/Ag в растворе красителя приводит к его фотодеструкции на 80% уже за первые 20 мин действия видимого света, а за 120 мин достигается полное разложение (кривая 4). Отметим, что и НЧ AgCl также проявляют фотокаталитические свойства (кривая 3), хотя и в заметно меньшей степени, чем КНЧ AgCl/Ag. Укажем также, что скорость разложения красителя под действием КНЧ AgCl/Ag значительно выше, чем в присутствии КНЧ AgBr/Ag [2, 4].

104

ЗАКЛЮЧЕНИЕ

Разработан двухэтапный метод синтеза композитных наночастиц фотокатализатора AgCl/Ag. На первом этапе механохимической активацией системы $NH_4Cl-AgNO_3-NH_4NO_3$ получены HЧ AgCl со средним размером 40 нм. Затем частичным фотовосстановлением AgCl (ионов Ag⁺) до атомов Ag⁰ синтезированы HЧ серебра размером около 7 нм, связанные с материнскими частицами AgCl. КНЧ AgCl/Ag сильно и равномерно поглощают свет в видимой области. Это обеспечивает их высокую каталитическую активность при фоторазложении красителя метиленового синего под действием света неоновых трубок.

ФИНАНСИРОВАНИЕ

Исследование поддержано грантами Республики Казахстан (AP05133115, BR05234566), Российского фонда фундаментальных исследований (18-05-00434а, 19-45-540003p_a) и Министерством науки и высшего образования Российской Федерации.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Möhler J.S., Sim W., Blaskovich M.A.T., Cooper M.A., Ziora Z.M. // Biotechnol. Adv. 2018. V. 36. P. 1391.
- 2. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. // Успехи химии. 2008. Т. 77. С. 242.
- 3. Уракаев Ф.Х., Татыкаев Б.Б., Буркитбаев М.М., Бахадур А.М., Уралбеков Б.М. // Коллоид. журн. 2016. Т. 78. С. 501.
- Li Q., Chang S., Wu D., Bao S., Zeng C., Nasir M., Tian B., Zhang J. // Res. Chem. Intermed. 2018. V. 44. P. 4651.
- 5. *Attia Y.A., Mohamed Y.M.A.* // Appl. Organomet. Chem. 2019. V. 33. P. e4757.
- 6. Rehan M., Khattab T.A., Barohum A., Gätjen L., Wilken R. // Carbohydr. Polym. 2018. V. 197. P. 227.
- 7. Chen S., Carey J.L., Whitcomb D.R., Bühlmann P., Penn R.L. // Cryst. Growth Des. 2018. V. 18. P. 324.
- Di A., Wang Y., Chen G. // Funct. Mater. Lett. 2018. V. 11. P. 1850006.
- Chankaew C., Somsri S., Tapala W., Mahatheeranont S., Saenjum C., Rujiwatra A. // Particuology. 2018. V. 40. P. 160.
- Konvičková Z., Holišová V., Kolenčík M., Niide T., Kratošová G., Umetsu M., Seidlerová J. // Colloid Polym. Sci. 2018. V. 296. P. 677.
- 11. Kota S., Dumpala P., Anantha R.K., Verma M.K., Kandepu S. // Sci. Rep. 2017. V. 7. P. 11566.
- 12. *Patil M.P., Seo Y.B., Kim G.-D.* // Microb. Pathog. 2018. V. 116. P. 84.
- Alamri S.A.M., Hashem M., Nafady N.A., Sayed M.A., Alshehri A.M., El-Alshaboury G.A. // J. Microbiol. Biotechnol. 2018. V. 28. P. 917.
- Panchal P., Malik R., Paul D.R., Meena P., Tomer V.K., Nehra S.P. // J. Nanosci. Nanotechnol. 2019. V. 19. P. 5249.

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 1 2020

- Spagnoletti F.N., Spedalieri C., Kronberg F., Giacometti R. // J. Environ. Manage. 2019. V. 231. P. 457.
- Araújo J.N., Tofanello A., da Silva V.M., Sato J.A.P., Squina F.M., Nantes I.L., Garcia W. // Int. J. Biol. Macromol. 2017. V. 102. P. 84.
- Gaikwad S.H., Koratti A., Mukherjee S.P. // Appl. Surf. Sci. 2019. V. 465. P. 413.
- Gou J., Li X., Zhang H., Guo R., Deng X., Cheng X., Xie M., Cheng Q. // J. Ind. Eng. Chem. 2018. V. 59. P. 99.
- Wang X., Han Q., Yu N., Wang T., Wang C., Yang R. // Colloids Surf. B. 2018. V. 162. P. 296.
- 20. *Tang J., Xiong P., Cheng Y., Chen Y., Peng S., Zhu Z.-Q.* // Biosens. Bioelectron. 2019. V. 130. P. 125.
- Xu H., Chang Y., Shen X., Liu Z., Zhu B., Macharia D.K., Wang Z., Chen Z., Zhang L. // J. Colloid Interface Sci. 2019. V. 543. P. 25.
- Tian W., Wu H., Su C., Huang Y., Zhao W., Yang X. // J. Photochem. Photobiol. A. 2018. V. 350. P. 122.
- 23. Wang Y., Zhang M., Li J., Yang H., Gao J., He G., Sun Z. // Appl. Surface Sci. 2019. V. 476. P. 84.
- 24. *Lou S., Wang W., Wang L., Zhou S. //* J. Alloy Compd. 2019. V. 781. P. 508.
- 25. *Cai A., Guo A., Du L., Qi Y., Wang.* // Mater. Res. Bull. 2019. V. 103. P. 225.
- 26. Chai C., Liu J., Wang Y., Zhang X., Duan D., Fan C., Wang Y. // Appl. Phys. A. 2019. V. 125. P. 96.
- 27. Fang H., Cao X., Yu J., Lv X., Yang N., Wang T., Jiang W. // J. Mater. Sci. 2019. V. 54. P. 286.
- 28. Senthil R.A., Osman S., Pan J., Sun M., Khan A., Yang V., Sun Y. // Colloids Surf. A. 2019. V. 567. P. 171.
- 29. *Jiang Z., Pan J., Wang B., Li C. //* Appl. Surf. Sci. 2019. V. 436. P. 519.
- 30. *Gao X., Shang Y., Liu L., Nie W., Fu F. //* J. Phys. Chem. Solids. 2019. V. 127. P. 186.
- Liu Q., Xu Y., Wang J., Xie M., Wei W., Huang L., Xu H., Song Y., Li H. // Colloids Surf. A. 2018. V. 553. P. 114.
- 32. *Li Y., Dai H., Feng N., Xie X., Zhang J., Li W. //* Mater. Express. 2019. V. 9. P. 59.
- Zhao M., Yuan Q., Zhang H., Li C., Wang Y., Wang W. // J. Alloy Compd. 2019. V. 782. P. 1049.
- Zhao M., Hou X., Lv L., Li C., Wang Y., Meng A. // Mater. Sci. Eng. C. 2019. V. 98. P. 83.
- Chen S., Li F., Li T., Cao W. // J. Colloid Interface Sci. 2019. V. 547. P. 50.
- 36. Fan G., Luo J., Guo L., Lin R., Zheng X., Snyder S.A. // Chemosphere. 2018. V. 209. P. 44.
- 37. Yi C., Liu J., Meng D., Lv J., Zhang X., Shu Y., Su S., Zhu J. // Composites. B. 2019. V. 160. P. 677.
- Каленский А.В., Звеков А.А., Никитин А.П., Ананьева М.В., Адуев Б.П. // Оптика и спектроскопия. 2015. Т. 118. С. 1012.
- Siddiqi K.S., Husen A., Rao R.A.K. // J. Nanobiotechnol. 2018. V. 16. P. 14.
- 40. Дементьева О.В., Филиппенко М.А., Громан К.Э., Рудой В.М. // Коллоид. журн. 2012. Т. 74. С. 460.
- Уракаев Ф.Х., Буркитбаев М.М., Татыкаев Б.Б., Уралбеков Б.М. // Коллоид. журн. 2015. Т. 77. С. 648.
- 42. Urakaev F.Kh. // Int. J. Comput. Mater. Sci. Surf. Eng. 2011. V. 4. P. 347.