УДК 544.725.2+544.726+544.623

ИССЛЕДОВАНИЕ НЕОБМЕННОЙ СОРБЦИИ ЭЛЕКТРОЛИТОВ РАЗЛИЧНОЙ ПРИРОДЫ ГЕТЕРОГЕННОЙ СУЛЬФОКАТИОНИТОВОЙ МЕМБРАНОЙ

© 2020 г. О. А. Демина¹, И. В. Фалина^{1, *}, Н. А. Кононенко¹, В. И. Заболоцкий¹

¹Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия *e-mail: irina_falina@mail.ru Поступила в редакцию 05.09.2019 г. После доработки 25.09.2019 г. Принята к публикации 27.09.2019 г.

Исследована необменная сорбция электролитов различной природы сульфокатионитовой мембраной МК-40 кондуктометрическим методом без разделения фаз раствора и мембраны. На основании сорбционных экспериментов в рамках двухфазной микрогетерогенной модели ионообменного материала определена константа Доннана для мембраны МК-40 в растворах электролитов HCl, NaOH, NaCl, MgCl₂, CaCl₂ и BaCl₂. Установлена зависимость концентрации сорбированного мембраной электролита от природы и концентрации равновесного раствора. Изучены факторы, оказывающие наиболее существенное влияние на концентрацию сорбированного мембраной электролита и величину константы Доннана: удельная влагоемкость мембраны, природа и заряд противо- и коиона. Объемные доли фазы геля и фазы равновесного раствора определены двумя способами: из экспериментальных данных по удельной электропроводности мембраны в растворах различной природы и концентрации и данных по необменной сорбции в рамках микрогетерогенной модели строения мембраны. Показана возможность расчета константы Доннана для мембраны МК-40 в растворах солей упрощенным способом на основании изучения сорбции электролита только одной концентрации при условии известных значений объемных долей проводящих фаз в мембране.

DOI: 10.31857/S0023291220020032

ВВЕДЕНИЕ

Изучение сорбции сильных электролитов ионообменными материалами является фундаментальной задачей химии ионного обмена. Исследование способности ионообменных мембран поглощать сверхэквивалентное количество электролита, начатое в работах Доннана, Глюкауфа и др. [1–4], не утратило своей актуальности и в настоящее время [5–8]. Это связано с развитием электромембранной технологии очистки природных вод и разделения многокомпонентных растворов, поскольку сорбция сильных электролитов оказывает существенное влияние на электротранспортные свойства ионообменных мембран, особенно на их селективность.

Для количественной характеристики необменной сорбции электролита мембраной используют константу Доннана (K_D), однако информация о ее величине для ионообменных мембран в растворах электролитов различной природы ограничена, поскольку экспериментальное определение этой характеристики связано с методическими трудностями. В то же время знание величины $K_{\rm D}$ необходимо для теоретической оценки не только сорбции ионов из водных растворов электролитов, но и транспортных свойств ионообменных мембран. Так, например, константа Доннана является одним из шести основных параметров микрогетерогенной модели, позволяющей рассчитать удельную электропроводность и диффузионную проницаемость ионообменной мембраны в разбавленных и умеренно концентрированных растворах электролитов [9, 10]. Однако при выполнении расчетов авторы вынуждены использовать произвольные значения константы Доннана, что снижает точность полученных величин [11, 12].

В связи с этим целью настоящей работы являлось исследование необменной сорбции электролитов различной природы сульфокатионитовой мембраной МК-40 и определение константы Доннана в рамках двухфазной микрогетерогенной модели строения ионообменной мембраны.

ТЕОРИЯ

Микрогетерогенная модель рассматривает мембрану как двухфазную систему, состоящую из гелевых участков и межгелевых промежутков, заполненных равновесным раствором, объемные доли которых, соответственно, равны f_1 и f_2 ($f_1 + f_2 = 1$). Согласно этой модели, концентрация необменно сорбированного электролита в мембране (C^*) может быть представлена уравнением [13, 14]

$$C^* = f_1 C + f_2 C, (1)$$

где \bar{C} и C – концентрации равновесного раствора в гелевой фазе и межгелевых промежутках.

Известно, что соотношение Доннана для мембраны в целом не выполняется [1], однако оно справедливо для гелевой фазы и в области разбавленных растворов ($C \ll \overline{Q}$) может быть представлено в виде аппроксимации

$$\overline{C} = \frac{K_{\rm D}^{[z_2]}}{\overline{O}^{[z_2/z_1]}} C^{1+|z_2/z_1|},\tag{2}$$

где $\overline{Q} = Q/f_1$ — концентрация фиксированных групп в гелевой фазе мембраны (ммоль/г), Q обменная емкость мембраны, определенная по стандартной методике, z_1 и z_2 — заряды противо- и коиона соответственно.

Подстановка уравнения (2) в выражение (1) и последующее деление обеих частей полученного соотношения на *С* приводит к уравнению вида

$$\frac{C^*}{C} = f_1 \frac{K_{\rm D}^{|z_2|}}{\overline{O}^{|z_2/z_1|}} C^{|z_2/z_1|} + f_2.$$
(3)

С учетом зарядов противо- и коионов уравнение (3) принимает для 1 : 1-электролитов вид

$$\frac{C^*}{C} = f_1 \frac{K_{\rm D}}{\overline{Q}} C + f_2, \tag{4}$$

а для 2: 1-электролитов

$$\frac{C^*}{C} = f_1 \frac{K_{\rm D}}{\bar{Q}^{1/2}} C^{1/2} + f_2.$$
 (5)

Анализ уравнений (4) и (5) показывает, что для нахождения $K_{\rm D}$ с помощью микрогетерогенной модели необходимо:

— экспериментальные данные по необменной сорбции электролита мембраной представить в координатах $\frac{C^*}{C} - C$ для 1:1-электролита и $\frac{C^*}{C} - C^{1/2}$ для 2:1-электролита,

— путем экстраполяции C^*/C на C = 0 определить объемную долю межгелевых промежутков f_2 ,

– определить объемную долю гелевой фазы $(f_1 = 1 - f_2)$ и рассчитать ее обменную емкость \overline{Q} ,

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 2 2020

— из тангенса угла наклона прямой линии, зная параметры f_1 и \overline{Q} , рассчитать $K_{\rm D}$.

Описанный алгоритм использовался в настоящей работе для нахождения константы Доннана и объемной доли равновесного раствора в фазе мембраны.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования являлась гетерогенная сульфокатионитовая мембрана МК-40 для электродиализа. Обменная емкость мембраны, определенная по стандартной методике [15], составляла 2.36 ммоль/г сухой мембраны. Исследование влияния природы и заряда противо- и коионов на необменную сорбцию электролита мембраной МК-40 было выполнено в растворах хлорида и гидроксида натрия, соляной кислоты и хлоридов магния, кальция и бария. Концентрацию используемых растворов электролитов варьировали от 0.2 до 1.0 моль-экв/л.

Эксперименты по необменной сорбции электролита проводили в статических условиях без разделения фаз раствора и мембраны. Объемное соотношение мембраны и раствора составляло 1:3. Контроль установления равновесия осуществляли кондуктометрическим методом с помощью специально изготовленной ячейки-пипетки с платинированными платиновыми электродами. Равновесие в системе мембрана—раствор считалось достигнутым, если значение сопротивления раствора над мембраной оставалось постоянным в течение суток.

Параллельно весовым методом определяли влагосодержание мембраны (W, %) и рассчитывали ее влагоемкость как количество молей воды, приходящееся на моль функциональных групп

 $(n, \frac{\text{моль H}_2\text{O}}{\text{моль SO}_3})$. Плотность набухших образцов

мембраны определяли на основании измерения их массы и линейных размеров. Физико-химические характеристики мембраны МК-40 представлены в табл. 1.

Значения удельной электропроводности мембраны в растворах электролитов различной природы и концентрации определяли, измеряя ее электрическое сопротивление ртутно-контактным методом на частоте переменного тока, обеспечивающей равенство мнимой составляющей импеданса ячейки нулю [16]. Полученные концентрационные зависимости электропроводности мембраны использовались для расчета объемных долей проводящих фаз (f_1 и f_2) в рамках двухфазной микрогетерогенной модели [9, 10]. Величина параметра f_2 находилась как угловой наклон зависимости электропроводности мембраны (κ_m) от электропроводности равновесного раствора (к) в билогарифмических координатах в соответствии с уравнением [5]

$$\kappa_{\rm m} = \overline{\kappa}^{f_1} \kappa^{f_2}, \tag{6}$$

где $\overline{\kappa}$ — электропроводность гелевой фазы мембраны.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Экспериментально полученные зависимости концентрации необменно поглощенного мембраной электролита от концентрации равновесного раствора различной природы приведены на рис. 1. Как следует из рисунка, в случае 1:1-электролитов переход мембраны из Na⁺- в H⁺-форму при сохранении общего коиона Cl⁻ приводит к незначительному увеличению сорбции электролита, а замена коиона Cl⁻ на анион гидроксила OH⁻ увеличивает сорбцию практически в 1.5 раза. Это подтверждает известный факт, что природа коиона оказывает существенное влияние на сорбцию электролита [14].

Из рис. 1 также очевидно, что количество сорбированного электролита зависит как от природы коиона и противоиона, так и от заряда последнего. Переход мембраны МК-40, находящейся в Na⁺- или H⁺-форме, в форму двухзарядных противоионов Mg^{2+} , Ca^{2+} и Ba^{2+} сопровождается резким увеличением концентрации сорбированного электролита. Особенно высокие значения величины С* наблюдаются при сорбции мембраной раствора хлорида бария. Причиной данного эффекта может являться специфическое взаимодействие сульфогрупп мембраны с ионами Ba²⁺. Образование при этом слабодиссоциирующего комплекса фиксированный ион-противоион приводит к снижению обменной емкости мембраны и, как следствие, к уменьшению доннановского исключения коионов из ее гелевой фазы.

До сих пор дискуссионным остается вопрос о возможности учета структурной неоднородности ионообменных материалов с помощью параметра Z в уравнении Глюкауфа для 1 : 1-электролита

$$m^* = K_{\rm G} m^{2-Z},$$
 (7)

где m^* , m — моляльные концентрации электролита в мембране и растворе, K_G — константа Глюкауфа. По мнению Глюкауфа, параметр Zучитывает неоднородность распределения ионогенных групп в мембране. В работе [17] показано, что замена в уравнении (8) моляльной концентрации на молярную не приводит к возникновению ошибок при определении параметра Z:

$$C^* = KC^{2-Z},\tag{8}$$

Таблица 1. Физико-химические характеристики сульфокатионитовой мембраны МК-40 в 0.1 моль-экв/л растворах различных электролитов

Мембрана	Раствор	$\rho,$ $\frac{\Gamma_{sw}}{cm^3}$	<i>Q</i> , <u>ммоль</u> см ³ _{sw}	W, %	<i>n</i> , <u>моль H₂O</u> моль SO ₃
MK-40	HC1	1.09	1.61	37.2	14.0
	NaOH	1.17	1.73	32.3	12.1
	NaCl	1.11	1.64	32.2	12.1
	MgCl ₂	1.14	2.06	31.1	9.5
	CaCl ₂	1.35	2.44	30.4	9.3
	BaCl ₂	1.45	2.62	20.6	6.3

где C^* , C – молярные концентрации электролита в мембране и растворе, $K = \overline{\omega}\overline{\rho}(\omega\rho)^{Z-2}K_G$, $\overline{\omega}$, ω – влагоемкость мембраны и массовая доля воды в растворе (кг), $\overline{\rho}$, ρ – плотность мембраны и раствора (кг).

Из уравнения (8) следует, что параметр Z можно определить из тангенса угла наклона прямой, полученной при обработке экспериментальных значений концентрации сорбированного электролита и концентрации раствора в билогарифмических координатах $\lg C^* - \lg C$.

Полученные в настоящей работе экспериментальные данные были использованы для оценки параметра Z. Как видно на рис. 2, они хорошо аппроксимируются прямыми линиями с тангенсом угла наклона 1.29–1.41. Из табл. 2 видно, что вели-

Рис. 1. Зависимость концентрации сорбированного мембраной электролита от концентрации равновесного раствора: $1 - \text{BaCl}_2$, $2 - \text{CaCl}_2$, $3 - \text{MgCl}_2$, 4 - NaOH, 5 - HCl, 6 - NaCl.

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 2 2020

Рис. 2. Зависимость концентрации раствора электролита в мембране от концентрации равновесного раствора электролита в билогарифмических координатах: 1 - NaCl, 2 - HCl, 3 - NaOH, $4 - \text{MgCl}_2$, $5 - \text{CaCl}_2$, $6 - \text{BaCl}_2$.

чина параметра Z, находится в пределах 0.59–0.71 и слабо зависит от природы равновесного раствора. Согласно литературным данным [9], величина параметра Z для катионообменных мембран в солевых формах может изменяться от 0.6 до 0.8.

В монографии [9] подобный анализ был выполнен для ионообменных мембран разных структурных типов. Было показано, что как для гетерогенных мембран на углеводородной матрице (MK-40 и CRP), так и для гомогенных перфторированных мембран типа Нафион величина параметра Z, находится в пределах 0.60-0.86. Таким образом, величину Z нельзя считать мерой неоднородности ионообменных мембран. Более адекватно неоднородность ионообменных мембран может быть охарактеризована с помощью параметра f_2 , представляющего собой объемную долю равновесного раствора в фазе мембраны. Определить величину параметра f_2 можно как из данных по удельной электропроводности мембран в растворах электролитов различной концентрации, так и из данных по необменной сорбции.

Таблица 2. Параметр Z теории Глюкауфа, определенный для мембраны МК-40 в растворах электролитов различной природы

Раствор	HCl	NaOH	NaCl	MgCl ₂	CaCl ₂	BaCl ₂
Ζ	0.65	0.70	0.71	0.66	0.69	0.59

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 2 2020

Рис. 3. Зависимость удельной электропроводности мембраны MK-40 от удельной электропроводности равновесных растворов в билогарифмических координатах: $1 - \text{BaCl}_2$, $2 - \text{CaCl}_2$, $3 - \text{MgCl}_2$, 4 - NaCl, 5 - NaOH.

На рис. З изображены экспериментальные данные по удельной электропроводности мембраны МК-40 в растворах различной природы и концентрации, обработанные в соответствие с уравнением (6) для нахождения параметра f_2 как углового наклона полученных линейных зависимостей.

На рис. 4а, 4б представлены результаты обработки экспериментальных данных по необменной сорбции мембраной МК-40 растворов электролитов различной природы и концентрации в соответствии с уравнениями (4) и (5). Величина параметра f_2 . находилась из приведенных на рисунках уравнений прямых линий как отрезок, отсекаемый на оси ординат.

Для сравнения в табл. 3 представлены значения параметра f_2 , найденные из различных экспериментов. Сопоставление величин f_2 , определенных двумя способами, показывает, что результаты по сорбции всегда на 10-20% отличаются от результатов, полученных из данных по удельной электропроводности. Подобный эффект отмечался также авторами [18] при анализе значений параметра f_2 , полученных из данных дифференциальной сканирующей калориметрии, контактной эталонной порометрии и мембранной кондуктометрии.

Обращает на себя внимание тот факт, что значения параметра f_2 в растворе HCl, найденные из данных по сорбции в 2 раза ниже, чем из данных по электропроводности. Известно, что значения

Рис. 4. Концентрация электролита в мембране, нормированная на концентрацию равновесного раствора электролита, как функция концентрации (а) или квадратного корня из концентрации (б) равновесного раствора электролита: *1* – NaOH, *2* – HCl, *3* – NaCl, *4* – BaCl₂, *5* – CaCl₂, *6* – MgCl₂.

параметра f_2 у различных катионообменных мембран в H⁺-форме, найденные из данных по электропроводности всегда выше, чем для солевых форм мембраны [19–21]. Они, по-видимому, являются "кажущимся" и обусловлены различным механизмом переноса ионов Na⁺ и H⁺ не только в растворе, но и в мембране. Сделанное предположение подтверждает экспериментально установленное равенство величин параметра f_2 , найденных из данных по необменной сорбции для мембраны в Na⁺- и H⁺-формах (табл. 3).

В табл. 3 представлены также значения константы Доннана K_D , найденные с помощью микрогетерогенной модели в соответствии с уравнениями (4) или (5). Видно, что независимо от природы равновесного раствора электролита величина K_D для мембраны МК-40, как правило,

меньше 1. Исключение составляет Ba^{2+} -форма мембраны, для которой $K_D > 1$. Можно предположить, что избыточная необменная сорбция хлорида бария мембраной происходит в результате резкого снижения обменной емкости ее гелевой фазы за счет специфического взаимодействия фиксированных сульфогрупп с противоионами Ba^{2+} .

Сравнивая величины K_D , полученные для мембраны MK-40 в растворах 1 : 1- и 2 : 1-электролитов, можно заключить, что переход от однок двухзарядному противоиону приводит к увеличению константы Доннана примерно в 2 раза. В то же время природа противоионов одинакового заряда при фиксированном коионе практически не влияет на сорбционные характеристики мембраны. Обращает на себя внимание тот факт, что замена в мембранной системе 2 : 1-электролитов (MgCl₂, CaCl₂) на 1 : 2-электролит (Na₂SO₄) не

Таблица 3.	Значения объемной доли	межгелевых	промежутков	и константы	Доннана,	найденные	различными
способами							

Раствор	f_2	2	K _D		
	согласно уравнению (4) или (5)	согласно уравнению (7)	согласно уравнению (4) или (5)	согласно уравнению (9) при 1 моль-экв/л	
HCl	0.12	0.26	0.29	0.01	
NaOH	0.18	0.15	0.40	0.44	
NaCl	0.12	0.14	0.24	0.22	
MgCl ₂	0.11	0.16	0.59	0.57	
CaCl ₂	0.14	0.18	0.67	0.66	
BaCl ₂	0.12	0.17	1.36	1.37	
NaCl [14]	0.10	0.11	0.12	0.08	

Рис. 5. Зависимости концентрации сорбированного электролита (*1*) и константы Доннана (*2*) от удельной влагоемкости исследованных ионных форм мембраны МК-40.

оказывает существенного влияния на величину $K_{\rm D}$. В то же время переход от раствора хлорида натрия к его гидроксиду приводит к значительному росту концентрации электролита, необменно сорбированного мембраной. Полученные результаты свидетельствуют о сложности теоретического предсказания сорбционной способности ионообменных мембран в растворах электролитов различной природы и необходимости экспериментального определения величины $K_{\rm D}$ в каждом конкретном случае.

Известно [16, 22, 23], что влагоемкость ионообменных мембран существенно влияет на их транспортные характеристики. Представляло интерес выяснить, влияет ли она и на равновесные свойства ионообменного материала. На рис. 5 представлена зависимость К_D от удельной влагоемкости мембраны n, которая изменяется в зависимости от природы противоиона. Видно, что в случае двухзарядных противоионов К_D уменьшается с ростом *n*. Однако величина *K*_D слабо зависит от влагоемкости мембраны в форме однозарядных противоионов. Аналогичный характер имеет и зависимость концентрации сорбированного электролита от удельной влагоемкости исследованных ионных форм мембраны МК-40 (рис. 5, кривая *1*).

С целью упрощения процедуры нахождения K_D , авторы работы [14] предложили проводить эксперимент по сорбции при одной концентрации электролита, выбранной в интервале 1–1.5 мольэкв/л, а параметр f_2 определять из данных по электропроводности мембраны. Расчет K_D в этом случае выполняется по уравнению (3), приведенному к виду

$$K_{\rm D}^{|z_2|} = \frac{(C^* - f_2 C) \overline{Q}^{|z_2/z_1|}}{f_1 C^{1 + |z_2/z_1|}}.$$
(9)

Результаты вычислений K_D по уравнению (9) для концентрации раствора, равной 1 моль-экв/л, привелены в послелней колонке табл. 3. Сопоставление результатов расчетов, выполненных двумя способами: по уравнениям (4) или (5) и по уравнению (9), — показало, что они совпадают с достаточной степенью точности для всех солевых форм мембраны МК-40. Исключение представляет Н⁺-форма мембраны, для которой в случае подстановки в уравнение (9) значения параметра f_2 , найденного из данных по удельной электропроводности, получаются значения К_D, которые значительно отличаются от значений, найденных из сорбционных экспериментов. Это связано с завышенным значением параметра f_2 из-за особого механизма переноса протона. По-видимому, адекватный расчет и объемной доли равновесного раствора в фазе мембраны, и, как следствие, константы Доннана для катионообменной мембраны в растворах кислот невозможен. В то же время упрощенный подход к расчету константы Доннана можно успешно использовать для всех солевых форм мембраны.

ЗАКЛЮЧЕНИЕ

Необменная сорбция электролитов различной природы сульфокатионитовой мембраной МК-40 исследована кондуктометрическим методом без разделения фаз раствора и мембраны. Обнаружено, что наиболее высокие значения концентрации сорбированного электролита наблюдаются при сорбции мембраной раствора хлорида бария из-за специфического взаимодействия сульфогрупп мембраны с ионами бария.

Полученные экспериментальные данные использованы для оценки показателя степени в уравнении Глюкауфа для мембраны МК-40 в растворах хлорида и гидроксида натрия, соляной кислоты и хлоридов магния, кальция и бария. Проанализирована возможность применения этого параметра для оценки неоднородности сульфокатионитовых ионообменных мембран, и показано, что более адекватно неоднородность мембран может быть охарактеризована с помощью параметра, представляющего собой объемную долю равновесного раствора в фазе мембраны. Объемные доли фазы геля и фазы равновесного раствора в мембране определены двумя способами: из экспериментальных данных по удельной электропроводности мембраны в растворах различной природы и концентрации и данных по необменной сорбции.

Выполнен расчет константы Доннана К_D в рамках двухфазной микрогетерогенной модели строения ионообменной мембраны, и показано, что для всех исследованных растворов электролитов, за исключением раствора хлорида бария, величина К_D для мембраны МК-40 меньше 1. Показана возможность расчета $K_{\rm D}$ в растворах солей упрощенным способом на основании экспериментальных данных по сорбции этих растворов мембраной только при одной концентрации электролита 1 моль-экв/л при условии известных значений объемных долей проводящих фаз. Выявлены ограничения в возможности корректного определения объемных долей проводящих фаз микрогетерогенной модели и, как следствие, величины $K_{\rm D}$, в растворах кислот, связанные с особым механизмом переноса протона.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-13-00339).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Glueckauf E. // Proc. Royal Soc. A: Math. Phys. Eng. Sci. 1962. V. 268. P. 350.
- 2. Гельферих Ф. Иониты. М.: Иностр. литература, 1962.
- 3. *Кокотов Ю.А., Пасечник В.А.* Равновесие и кинетика ионного обмена. Л.: Химия, 1970.
- 4. Гриссбах Р. Теория и практика ионного обмена. М.: Иностр. литература, 1963.
- Galizia M., Benedetti F.M., Paul D.R., Freeman B.D. // J. Membr. Sci. 2017. V. 535. P. 132.

- Gimmi T., Alt-Epping P. // Geochim. Cosmochim. Acta. 2018. V. 232. P. 1.
- Galama A.H., Post J.W., Cohen Stuart M.A., Biesheuvel P.M. // J. Membr. Sci. 2013. V. 442. P. 131.
- Chang K., Luo H., Geise G.M. // J. Membr. Sci. 2019. V. 574. P. 24.
- 9. Заболоцкий В.И., Никоненко В.В. Перенос ионов в мембранах. М.: Наука, 1996.
- Zabolotsky V.I., Nikonenko V.V. // J. Membr. Sci. 1993. V. 79. P. 181.
- 11. Заболоцкий В.И., Лебедев К.А. // Электрохимия. 1989. Т. 25. С. 905.
- 12. Заболоцкий В.И., Лебедев К.А., Никоненко В.В., Шудренко А.А. // Электрохимия. 1993. Т. 29. С. 811.
- Заболоцкий В.И., Гнусин Н.П., Шеретова Г.М. // Журн. физ. химии. 1985. Т. 59. С. 2467.
- Заболоцкий В.И., Никоненко В.В., Костенко О.Н., Ельникова Л.Ф. // Журн. физ. химии. 1993. Т. 67. С. 2423.
- ГОСТ 17552-72. Мембраны ионообменные. Методы определения полной и равновесной обменной емкости. Введен 16.02.72. М.: Изд-во стандартов, 1972.
- Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Adv. Colloid Interface Sci. 2008. V. 139. P. 3.
- 17. *Гнусин Н.П., Демина О.А., Шеретова Г.М. //* Журн. физ. химии. 1998. Т. 72. С. 918.
- Брык М.Т., Заболоцкий В.И., Атаманенко И.Д., Дворкина Г.А. // Химия и технология воды. 1989. Т. 11. С. 497.
- 19. *Tuan L.X., Buess-Herman C. //* Chem. Phys. Lett. 2007. V. 434. P. 49.
- 20. Демина О.А., Кононенко Н.А., Фалина И.В., Демин А.В. // Коллоид. журн. 2017. Т. 79. С. 259.
- 21. *Гнусин Н.П., Карпенко Л.В., Демина О.А., Березина Н.П. //* Журн. физ. химии. 2001. Т. 75. С. 1697.
- 22. Falina I.V., Zabolotsky V.I., Demina O.A., Sheldeshov N.V. // J. Membr. Sci. 2019. V. 573. P. 520.
- Koter S., Piotrowski P., Kerres J. // J. Membr. Sci. 1999.
 V. 153. P. 83.