УДК 532.612.4

РАЗМЕРНАЯ ЗАВИСИМОСТЬ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ МАЛОЙ КАПЛИ В ПРЕДПОЛОЖЕНИИ ПОСТОЯНСТВА ДЛИНЫ ТОЛМЕНА: КРИТИЧЕСКИЙ АНАЛИЗ

© 2020 г. С. Ш. Рехвиашвили*

Институт прикладной математики и автоматизации КБНЦ РАН, ул. Шортанова, 89а, Нальчик, 360000 Россия

*e-mail: rsergo@mail.ru

Поступила в редакцию 30.08.2019 г. После доработки 08.10.2019 г. Принята к публикации 21.10.2019 г.

Приводятся достаточно убедительные аргументы в пользу того, что поверхностное натяжение малой сферической капли должно уменьшаться при уменьшении радиуса, что соответствует положительной постоянной длине Толмена. Найдено в наиболее компактном виде решение уравнения Гиббса–Толмена–Кенига–Баффа. Вычислено поверхностное натяжение малой сферической капли в рамках континуального приближения с применением парного межатомного потенциала Ми– Ленарда-Джонса.

DOI: 10.31857/S0023291220030088

Несмотря на давнее существование теории межфазных явлений. некоторые ее важные вопросы до сих пор остаются в поле дискуссий. В частности, это касается зависимости поверхностного натяжения σ от кривизны межфазной поверхности. Данную зависимость принято называть размерной зависимостью поверхностного натяжения. В настоящее время отсутствует единое мнение о характере этой зависимости даже для тривиального случая малой сферической капли. Так, например, в фундаментальных работах [1, 2] и хорошо известных монографиях [3-5] указывается на то, что с уменьшением радиуса капли поверхностное натяжение должно уменьшаться. В работах автора [6—10], как и во многих других работах, поддерживается такая же точка зрения. Существует и прямо противоположное мнение [11-20], причем приведенный здесь список работ далеко не полон. Рассмотрим вопрос более подробно.

і. Обратимое увеличение площади межфазной поверхности на величину $d\omega$ требует затраты работы dA против межатомных или межмолекулярных сил взаимодействия. Это обуславливает поверхностное натяжение, которое является мерой избытка свободной энергии или энергии Гиббса в поверхностном слое по сравнению с объемами сосуществующих фаз:

$$\sigma = \frac{dA}{d\omega} = \left(\frac{dF}{d\omega}\right)_{T,V} = \left(\frac{dG}{d\omega}\right)_{T,P},$$

где *F* и *G* – избыточная свободная энергия и избыточный потенциал Гиббса.

Зависимость поверхностного натяжения малой сферической капли от ее размера является решением уравнения Гиббса–Толмена–Кенига– Баффа (ГТКБ) [1, 3–5]

$$\frac{d\ln\sigma}{d\ln r} = \frac{\frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \left(\frac{\delta}{r} \right)^2 \right]}{1 + \frac{2\delta}{r} \left[1 + \frac{\delta}{r} + \frac{1}{3} \left(\frac{\delta}{r} \right)^2 \right]},\tag{1}$$

где r — радиус капли, δ — длина Толмена, равная по модулю расстоянию между поверхностью натяжения и эквимолекулярной поверхностью. Для не слишком малых капель можно считать, что δ = = const [1–5]. Если $\delta > 0$, то с уменьшением радиуса капли поверхностное натяжение уменьшается; если $\delta < 0$, то поверхностное натяжение возрастает; при δ = 0 размерная зависимость поверхностного натяжения отсутствует. Интегрирование уравнения ГТКБ различными способами проводилось в ряде работ [6–10, 20–24]. Если для капли принять условие $\delta > 0$, то (1) интегрируется методом замены переменной и решение представляется в наиболее компактном виде:

Рис. 1. Размерная зависимость поверхностного натяжения малой капли: *1* – точное решение уравнения ГТКБ (2), *2* – расчет по формуле Русанова (3).

$$\sigma(x) = \sigma^{(\infty)} x \prod_{k=1}^{3} (x - p_k)^{q_k},$$

$$p_k = \{-0.55751;$$

$$-0.72125 + i0.82195; -0.72125 - i0.82195\},$$
 (2)

$$q_k = \{-0.44249;$$

$$-0.27875 - i0.82195; -0.27875 + i0.82195\},$$

где $\sigma^{(\infty)}$ – поверхностное натяжение плоской поверхности, $x = r/\delta$. Случай $\delta < 0$ с помощью уравнения (1) рассматривался в [20]. Следует отметить, что полученная в этой работе формула (3) не воспроизводит расчеты, выполненные по (2) при $\delta > 0$ и путем численного интегрирования (1) для произвольных значений δ . Можно предположить, что в [20] имеется издательская опечатка, но в одноименной работе этих же авторов, размещенной на сайте arXiv, приведена аналогичная формула.

іі. В [5, с. 190] проанализирован случай малого радиуса капли. Было отмечено, что при $r \rightarrow 0$ независимо от специфики системы поверхностное натяжение всегда понижается с уменьшением радиуса кривизны, т.е. должно выполняться условие $\delta > 0$. При этом получена формула

$$\sigma = Kr, \tag{3}$$

где K — положительный коэффициент, зависящий от температуры и состава конденсированной фазы. Вычисляя производную функции (2) в точке x = 0, находим: $K = 0.304\sigma^{(\infty)}/\delta$. В (3) должно быть $K \ge 0$, поэтому приходим к условию $\delta > 0$. На рис. 1 показаны графики решений (2) и (3).

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 3 2020

Отрицательный знак длины Толмена для малой капли может являться особенностью той или иной теоретической модели [11], т.е. может и не иметь отношения к реальным жидкостям. При моделировании малой капли методом молекулярной динамики неизбежно возникают неопределенности в расчетах положений поверхности натяжения и эквимолекулярной поверхности [25]. Причем эти неопределенности зависят не только от числа частиш и потенциала их взаимодействия в ансамбле, но и от деталей реализации численных алгоритмов моделирования (граничные условия, термостат, вычисление давления и температуры, накопление ошибок и т.п.). В целом, если в какой-либо теоретической модели получается, что длина Толмена по абсолютной величине меньше межатомных расстояний в конденсированной фазе, то, учитывая флуктуации термодинамических параметров и возможные экспериментальные погрешности их определения, следует, повидимому, принять, что поверхность натяжения и эквимолекулярная поверхность совпадают. Так, в [17, 18] приводится значение для длины Толмена $\delta = -0.56$ Å, что по абсолютной величине сопоставимо, например, с таким квантовым параметром, как боровский радиус. В классической термодинамике, в рамках которой выведено уравнение (1), такие величины вообще не могут рассматриваться, поскольку не превышают равновесные (и тем более неравновесные) флуктуации радиуса капли. Как и любому термодинамическому параметру, поверхностному натяжению свойственны флуктуации, которые зависят от температуры. В [7] найдено общее выражение для равновесной флуктуации поверхностного натяжения

$$\left\langle \left(\Delta\sigma\right)^2 \right\rangle = k_{\rm B}T \left(\frac{\partial\sigma}{\partial\omega}\right)_{S,P},$$
(4)

где $k_{\rm B}$ – постоянная Больцмана, T – температура. В силу положительности (4) можно заключить, что функция $\sigma(r)$ в (1) для капли не должна быть убывающей. Из (3), (4) находим

$$\frac{\left\langle \left(\Delta\sigma\right)^2\right\rangle}{\sigma} = \frac{k_{\rm B}T}{8\pi r^2}.$$
(5)

Для малых капель ($r \le 1$ нм) при T = 300 К из (5) получатся оценка $\langle (\Delta \sigma)^2 \rangle / \sigma \sim 10^{-4}$ H/м.

ііі. Длина Толмена при T > 0 характеризует неоднородность межфазной области. Если $\delta < 0$, то при уменьшении размера капли первым обращается в нуль радиус эквимолекулярной поверхности, что представляется малоправдоподобным [21]. Помимо этого, отрицательный знак длины Толмена для капли противоречит простым физическим соображениям. На выпуклой поверхности атомы "оголяются" и их потенциальная энергия меньше, чем на плоской и, тем более, на вогнутой поверхности. Следовательно, поверхностное натяжение выпуклой поверхности должно быть меньше, чем плоской или вогнутой поверхности, т.е. для капли должно быть $\delta > 0$. В этом несложно убедиться, если вычислить поверхностное натяжение капли, используя парный межатомный потенциал. Из (1) имеем $\sigma = \Delta A/\omega_0$, где ΔA – работа, требующаяся для отрыва поверхностного атома, ω_0 – площадь, занимаемая поверхностным атомом. В континуальном приближении

$$\Delta A = -n \iiint_{V} \varphi(\rho) dV, \tag{6}$$

где n — объемная плотность атомов жидкости, V — объем капли, $\varphi(\rho)$ — парный межатомный потенциал, ρ — расстояние от поверхностного атома до некоторой точки в объеме капли. В сферической системе координат интеграл (6) преобразуется к виду

$$\Delta A = -\frac{\pi n}{r} \int_{z}^{2r} \left(\int_{z}^{\xi} \varphi(\rho) \rho^{2} d\rho \right) d\xi =$$

$$= -\frac{\pi n}{r} \int_{z}^{2r} (2r\rho^{2} - \rho^{3}) \varphi(\rho) d\rho.$$
(7)

При записи (7) предполагалось, что поверхностный атом занимает лунку радиусом *z*. Равновесное значение *z* находится из условия минимума $(\Delta A)'_z = 0$, что эквивалентно уравнению $\varphi(z) = 0$. Потенциал выберем в форме Ми–Ленарда-Джонса:

$$\varphi(\rho) = \frac{D}{b-a} \left[a \left(\frac{r_0}{\rho} \right)^b - b \left(\frac{r_0}{\rho} \right)^a \right], \quad (8)$$

где D и r_0 – глубина потенциальной ямы и равновесное расстояние для взаимодействия между двумя атомами, a и b – параметры, отвечающие за силы притяжения и отталкивания. Выбор потенциала (8) обусловлен тем, что с его помощью были успешно рассмотрены зависимости поверхностной энергии от размеров и формы нанокристаллов [26].

Из (8) определяем равновесный радиус атомной лунки: $z = r_0 (a/b)^{1/(b-a)}$. Подставляя (8) в (7) и выполняя интегрирование, при естественном условии $r \gg r_0$, z находим

$$\sigma \approx \sigma^{(\infty)} \left(1 - \frac{2\delta}{r}\right),$$

$$\sigma^{(\infty)} = \frac{nDr_0}{b - a} \left(\frac{b}{a}\right)^{\frac{2}{b - a}} \left[\frac{b}{a - 3} \left(\frac{b}{a}\right)^{\frac{a - 3}{b - a}} - \frac{a}{b - 3} \left(\frac{b}{a}\right)^{\frac{b - 3}{b - a}}\right], \quad (9)$$

$$\delta = \frac{r_0}{4} \frac{b}{a - 4} \left(\frac{b}{a}\right)^{\frac{a - 4}{b - a}} - \frac{a}{b - 4} \left(\frac{b}{a}\right)^{\frac{b - 4}{b - a}},$$

$$\frac{b}{a - 3} \left(\frac{b}{a}\right)^{\frac{a - 3}{b - a}} - \frac{a}{b - 3} \left(\frac{b}{a}\right)^{\frac{b - 3}{b - a}},$$

где учтена площадь атомной лунки в виде полу-

сферы $\omega_0 \approx 2\pi z^2$. Заметим, что формула вида (9) получается также из разложения (2) в ряд по степеням δ/r . При выводе (9) предполагалось, что капля является однородной. В связи с этим, значение параметра δ в (9) следует считать минимально возможным. При a = 6 и b = 12 имеем $\delta = 0.376r_0$, что хорошо согласуется с результатом, полученным с помощью статистической механики [2] и тензора давления Ирвинга-Кирквуда: $\delta \approx r_0/3$ при $T \rightarrow 0$ [3, с. 115]. С увеличением температуры происходит рост толщины межфазного слоя и, соответственно, длины Толмена. Межфазный слой утолщается за счет превращения обеих граничащих фаз в неоднородную промежуточную фазу. В критической точке промежуточная фаза распространяется на весь объем, и поверхностное натяжение, согласно (2) и (3), обращается в нуль ($\delta \rightarrow \infty$, $\sigma \rightarrow 0$). Экспериментально это проявляется, например, в виде критической опалесценции.

Формула (9) получена при достаточно грубых предположениях, но она вполне удовлетворительно воспроизводит экспериментальные данные по поверхностному натяжению. В табл. 1 в качестве примера представлены результаты расчетов поверхностного натяжения жидких инерт-

ных газов по формуле $\sigma^{(\infty)} \approx 0.792 n D r_0$, которая получается из (9) при a = 6 и b = 12. Все необходимые для расчетов численные данные были взяты из работ [27, 28] и соответствуют тройной точке. Среднее отклонение расчетных данных от экспериментальных составляет 5%.

іv. В данной статье рассмотрен самый простой случай, когда δ можно считать постоянной величиной. Однако вследствие сжимаемости жидкости при высоких капиллярных давлениях могут иметь место изменения величины и даже знака длины Толмена в зависимости от радиуса поверхности натяжения капли [29–33]. Как следствие, у искомой функции $\sigma(r)$ появляется характерный максимум [5, 31–33]. Подобные изменения можно ожидать для определенных жидкостей при малых значениях радиуса капли, например при r < 10 нм. В рамках принятого здесь подхода этот вопрос требует специального рассмотрения, по-

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 3 2020

Газ	<i>г</i> ₀ , нм [28]	<i>D</i> , мэВ [28]	<i>n</i> , 10^{28} m^{-3} [27]	σ ^(∞) , мДж/м ² [28]	σ ^(∞) , мДж/м ² (расчет)	δ, нм (расчет)
Ne	0.309	3.64	3.721	5.65	5.31	0.12
Ar	0.376	12.3	2.126	13.55	12.47	0.14
Kr	0.401	17.3	1.751	16.33	15.50	0.15
Xe	0.436	24.4	1.411	18.83	19.05	0.16

Таблица 1. Сравнение расчетных и экспериментальных значений поверхностного натяжения жидких инертных газов

этому мы ограничимся только общими замечаниями. Во-первых, функция $\delta(r)$ должна быть такой, чтобы в целом обеспечивалась положительность решения уравнения (1). Во-вторых, это решение должно быть ассоциировано с конечными положительными флуктуациями поверхностного натяжения. Длина Толмена, к сожалению, не может быть экспериментально измерена прямыми методами, что не позволяет осуществить надежную поверку всех имеющихся теоретических моделей. В качестве максимального абсолютного значения δ можно приближенно принять толщину межфазного слоя [3, с. 44], измеренную, например, с помощью просвечивающей электронной микроскопии или эллипсометрии. Из косвенных методов изучения размерного эффекта поверхностного натяжения заслуживают внимания новые методы измерения параметров испарения и смачивания [34-36] для малых капель в зависимости от их размеров в различных РТ-условиях.

Таким образом, на ряде примеров нами показано, что для малой сферической капли неполярной жидкости длина Толмена при условии ее постоянства является положительной величиной и поверхностное натяжение представляет собой неубывающую функцию радиуса капли.

СПИСОК ЛИТЕРАТУРЫ

- 1. Tolman R.C. // J. Chem. Phys. 1949. V. 17. P. 333.
- Kirkwood J.G., Buff F.P. // J. Chem. Phys. 1949. V. 17. P. 338.
- Оно С., Кондо С. Молекулярная теория поверхностного натяжения. М.: ИЛ, 1963.
- Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М.: Мир, 1986.
- 5. Русанов А.И. Фазовые равновесия и поверхностные явления. Л.: Химия, 1967.
- 6. *Рехвиашвили С.Ш., Киштикова Е.В.* // Письма в ЖТФ. 2006. Т. 32. № 10. С. 50.

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 3 2020

- 7. Рехвиашвили С.Ш., Киштикова Е.В., Кармокова Р.Ю., Кармоков А.М. // Письма в ЖТФ. 2007. Т. 33. № 2. С. 1.
- Рехвиашвили С.Ш., Киштикова Е.В., Розенберг Б.А. // ЖТФ. 2009. Т. 79. № 12. С. 148.
- 9. Рехвиашвили С.Ш., Киштикова Е.В. // ЖТФ. 2011. Т. 81. № 1. С. 148.
- Рехвиашвили С.Ш., Киштикова Е.В. // ЖЭТФ. 2014. Т. 145. С. 1116. https://doi.org/10.1134/S1063776114050070
- 11. Hemingway S.J., Henderson J.R., Rowlinson J.S. // Faraday Symp. Chem. Soc. 1981. V. 16. P. 33.
- 12. *Guermeur R., Biquard F., Jacolin C. //* J. Chem. Phys. 1985. V. 82. P. 2040.
- Nijmeijer M.J.P., Bruin C., van Woerkom A.B., Bakker A.F., van Leeuwen J.M.J. // J. Chem. Phys. 1992. V. 96. P. 565.
- Iwamatsu M. // J. Phys.: Condens. Matter. 1994. V. 6. P. L173.
- 15. Blokhuis E.M., Kuipers J. // J. Chem. Phys. 2006. V. 124. 074701.
- 16. Azouzi M.E.M., Ramboz C., Lenain J.-F., Caupin F. // Nat. Phys. 2013. V. 9. P. 38.
- 17. Joswiak M.N., Duff N., Doherty M.F., Peters B. // J. Phys. Chem. Lett. 2013. V. 4. P. 4267.
- Joswiak M.N., Do R., Doherty M.F., Peters B. // J. Chem. Phys. 2016. V. 145. 204703.
- Wilhelmsen Ø., Bedeaux D., Reguera D. // J. Chem. Phys. 2015. V. 142. 064706.
- 20. Burian S., Isaiev M., Termentzidis K., Sysoev V., Bulavin L. // Phys. Rev. E. 2017. V. 95. 062801.
- Ермаков Г.В., Семенова Н.М. // Фазовые превращения и неравновесные процессы / Под ред. Коверды В.П. Свердловск: УНЦ АН СССР, 1980. С. 81.
- 22. *Ермаков Г.В., Липнягов Е.В.* // Метастабильные состояния и фазовые переходы. Екатеринбург: УрО РАН, 1997. С. 100.
- 23. Федоров В.Б., Малюкова Л.В. // ДАН. 1986. Т. 288. С. 673.
- 24. *Kalova J., Mares R. //* Int. J. Thermophys. 2015. V. 36. P. 2862.
- Thompson S.M., Gubbins K.E., Walton J.P.R.B., Chantry R.A.R., Rowlinson J.S. // J. Chem. Phys. 1984. V. 81. P. 530.

- 26. *Maromedos M.H.* // ΦΤΤ. 2004. T. 46. C. 924. https://doi.org/10.1134/1.1744976
- Краткая химическая энциклопедия. В 5-ти томах / Гл. ред. Кнунянц И.Л. Т. 1–3. М.: Советская энциклопедия, 1961.
- 28. Смирнов Б.М. // УФН. 1992. Т. 162. С. 97.
- 29. Wolde P.R. ten, Frenkel D. // J. Chem. Phys. 1998. V. 109. P. 9901.
- Baidakov V.G., Boltachev G.Sh. // Phys. Rev. E. 1999.
 V. 59. P. 469.
- 31. *Быков Т.В., Щекин А.К.* // Неорг. материалы. 1999. Т. 35. С. 759.

- 32. *Koga K., Zeng X.C., Shchekin A.K.* // J. Chem. Phys. 1998. V. 109. P. 4063.
- 33. Bartell L.S. // J. Phys. Chem. B. 2001. V. 105. P. 11615.
- 34. *Crafton E.F., Black W.Z.* // Int. J. Heat Mass Transf. 2004. V. 47. P. 1187.
- 35. *Bonaccurso E., Butt H.-J.* // J. Phys. Chem. B. 2005. V. 109. P. 253.
- Park J., Han H.S., Kim Y.C., Ahn J.P., Ok M.R., Lee K.E., Lee J.W., Cha P.R., Seok H.K., Jeon H. // Sci. Rep. 2015. V. 5. 18150.