УДК 532.133+536.22

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КОЭФФИЦИЕНТОВ ПЕРЕНОСА ВОДНЫХ СУСПЕНЗИЙ НАНОАЛМАЗОВ

© 2020 г. М. И. Пряжников^{1, 2}, А. В. Минаков^{1, 2}, *, А. И. Лямкин¹,

В. Е. Редькин¹, С. М. Жарков^{1, 3}, Г. М. Зеер¹

¹Сибирский федеральный университет, Свободный просп., 79, Красноярск, 660041 Россия ²Институт теплофизики им. С.С. Кутателадзе СО РАН, просп. Академика Лаврентьева, 1, Новосибирск, 630090 Россия ³Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН, Академгородок, 50/38, Красноярск, 660036 Россия *e-mail: Aminakov@sfu-kras.ru Поступила в редакцию 24.08.2018 г. После доработки 02.07.2020 г. Принята к публикации 06.07.2020 г.

В работе представлены результаты экспериментальных исследований коэффициентов вязкости, теплопроводности, электропроводности и спектров поглощения суспензий ультрадисперсных алмазов. В экспериментах использовали суспензии частиц детонационных наноалмазов УДА-С и УДП-А, а также алмазографитового порошка УДП-АГ. Концентрацию наноалмазов в дистиллированной воде варьировали от 0.5 до 5 мас. %. Показано, что технология очистки порошков алмаза от побочных продуктов синтеза существенно сказывается на физико-химических свойствах водных суспензий этих порошков.

DOI: 10.31857/S0023291220060105

введение

В 1982—84 гг. Ставером с сотрудниками Института гидродинамики им. М.А. Лаврентьева СО РАН был предложен способ получения ультрадисперсных алмазографитовых и алмазных порошков из взрывчатых веществ (**BB**) с избыточным содержанием углерода [1, 2]. Считается, что способ получения ультрадисперсных материалов из BB достаточно подробно изучен, установлены экспериментальные соотношения между основными параметрами (массой и типом BB, объемом камеры, теплоемкостью газа и др.), позволяющие оптимизировать процесс синтеза и сохранение возникающей твердой фазы [3, 4].

Первое промышленное производство ультрадисперсных алмазографитовых (УДАГ) и алмазных (УДА) порошков было организовано в 1985 г. в НПО "Алтай" (г. Бийск). Там же был впервые выполнен большой комплекс научно-исследовательских и опытно-технологических работ в области создания, исследования и внедрения технологий и материалов с использованием УДАГ и УДА [3–5].

Чуть позже, под руководством Ставера совместные работы в этой области были развернуты в отделе физики КНЦ СО РАН и проблемной научно-исследовательской лаборатории ультрадисперсных материалов Красноярского государственного технического университета. Были созданы несколько производственных участков синтеза ультрадисперсных алмазографитового (УДП-АГ – по ТУ 40-2067910-01-91) и алмазного (УДП-А – по ТУ 3974-001-10172699-94) порошков. Разработаны несколько десятков различных материалов на основе порошков УДП-А и УДП-АГ [5-7]. Порошки УДП-А и УДП-АГ были успешно использованы в качестве присадок в моторные и смазочные масла, структурных модификаторов резин и полимерных композитов, добавок к лакокрасочным и гальваническим покрытиям, присадок для улучшения свойств алюминиевых сплавов и для многих других целей.

Целью данной работы являлось исследование широкого ряда физико-химических свойств водных суспензий детонационных наноалмазов различной технологии производства.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовались порошок алмазов УДА-С (ТУ 84-1124-87), приобретенный у ФНПЦ "Алтай", а также порошок УДП-А и алмазогра-

Образец	<i>d</i> ₁ , нм	<i>d</i> ₂ , нм	pН	Дзета-потенциал, мВ
Суспензия УДП-АГ	55	1010	8.23	+0.42
Суспензия УДА-С	36	690	5.52	-9.47
Суспензия УДП-А	28	290	3.07	-21.6

Таблица 1. Средний размер и дзета-потенциал частиц и рН их суспензий

фитовый порошок УДП-АГ. УДП-АГ является продуктом детонационного превращения органических нитросоединений и представляет собой порошок черного цвета, состоящий из алмаза кубической модификации и графита. Фактически, УДП-АГ является исходным сырьем, из которого в процессе очистки получаются алмазные порошки УДА-С и УДП-А.

Все рассматриваемые суспензии были приготовлены и исследованы по одинаковым методикам. Суспензии получали добавлением необходимого количества ультрадисперсного порошка в дистиллированную воду с последующим механическим перемешиванием. Далее суспензии подвергали обработке с помощью ультразвукового диспергатора "Сапфир ТЦ-10338" в течение 30 мин. Дальнейшая обработка ультразвуком не приводила к изменению свойств рассматриваемых суспензий. Седиментационная устойчивость суспензий УДП-АГ после воздействия ультразвука сохраняется в течение 6-8 ч, для суспензий УДП-С и УДП-А это время составляет от полутора до двух суток. Проведенные измерения показали, что в пределах этого времени физические свойства суспензий оставались стабильными. Контроль стабильности свойств исследуемых суспензий осуществлялся, прежде всего, путем измерений коэффициента их вязкости. Вязкость коллоидной системы является свойством, очень чувствительным к процессам седиментации и агрегации частиц, кроме того, коэффициент вязкости измеряется достаточно быстро и просто. По истечении времени в суспензиях появлялся видимый глазом осадок. Поэтому во избежание влияния осаждения наночастиц все эксперименты проводились в пределах нескольких часов после обработки суспензий ультразвуком.

Вязкость суспензий измеряли с помощью ротационного вискозиметра-Brookfield DV2T со шпинделями LV-61 и LV-62, а также с адаптером для малой вязкости ULA(0). Описание установки и результаты ее апробации для измерения вязкости наносуспензий приведены в работе [8]. Погрешность измерения коэффициента вязкости была не более 2%.

Коэффициент теплопроводности суспензий измеряли по методике, разработанной нами ранее [9]. Она основана на нестационарном методе нагреваемой нити [10]. Спектры поглощения суспензий регистрировали на спектрофотометре Genesys 10S Vis (Thermo Fisher Scientific).

Размеры частиц и их электрокинетический (дзета-) потенциал в водных суспензиях измеряли с применением акустического/электроакустического спектрометра DT1200 (Dispersion Technologies).

Микроструктуру и фазовый состав порошков исследовали в просвечивающем электронном микроскопе (ПЭМ) высокого разрешения JEM-2100 (JEOL, Япония), оснащенном энергодисперсионным спектрометром Oxford Inca x-sight.

Дифрактограммы алмазных порошков были получены на автоматическом рентгеновском дифрактометре Bruker D8 Advance (Германия) с использованием Си*К* α 1-излучения (λ = 1.54056 Å) в диапазоне углов рассеяния 2 θ от 20° до 85° с шагом 0.05°.

Для измерения удельной электропроводности суспензий использовали кондуктометр АНИОН 7025. Диапазон измерения удельной электрической проводимости – от 10⁻⁴ до 10 См/м; предел допускаемой основной относительной погрешности составляет ±2%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Средний размер и дзета-потенциал частиц

Дзета-потенциал и размеры наночастиц, а также значения pH для рассматриваемых суспензий с концентрацией 5 мас. % приведены в табл. 1. Представленные данные являются средними значениями 5 измерений, выполненных при температуре 25°С.

Данные табл. 1 свидетельствуют о существенных различиях в свойствах рассматриваемых суспензий. Суспензия алмазографитовых частиц УДП-АГ является слабощелочной, в то время как суспензии алмазных частиц имеют кислую среду. Кроме того, значительно различаются и значения дзета-потенциала, который по модулю максимален у частиц суспензии УДП-А. Как следствие, данная суспензия имеет существенно бо́льшую устойчивость. Это подтверждается наблюдениями за скоростью образования осадка.

На рис. 1 приведены функции плотности распределения частиц по размерам в суспензиях с концентрацией 5 мас. %, измеренные сразу после

Рис. 1. Кривые распределения частиц по размерам в суспензиях УДА-С (1), УДП-А (2) и УДП-АГ (3).

их приготовления. Как следует из приведенных кривых, наблюдается бимодальное распределение частиц по размеру. Размеры наночастиц, соответствующие максимумам бимодального распределения, приведены в табл. 1. В суспензии алмазографитового порошка присутствуют частицы со средними размерами 55 и 1010 нм, в суспензии УДА-С — частицы с размерами 37 и 690 нм, а в суспензии УДП-А — 28 и 290 нм. Таким образом, размеры агрегатов в суспензии УДП-А являются минимальными.

Вязкость суспензий

Важным с точки зрения многих практических приложений свойством суспензий является их вязкость. На рис. 2 приведены зависимости коэффициента вязкости μ и напряжения сдвига τ от скорости сдвига $\dot{\gamma}$ для рассматриваемых суспензий при массовой концентрации частиц $C_{\rm m} =$ = 5 мас. %. Наблюдаются значительные различия в поведении коэффициента вязкости. Коэффициент вязкости суспензии частиц УДП-А намного меньше коэффициентов вязкости суспензий УДП-АГ и УДА-С при любом значении скорости сдвига. Суспензии УДП-АГ и УДА-С имеют близкую эффективную вязкость. Кроме того, как следует из графиков на рис. 2а, при данной концентрации наночастиц вязкость зависит от скорости сдвига. Это говорит о том, что данные суспензии являются неньютоновскими.

Реология исследованных суспензий в общем виде описывалась моделью Гершеля–Балкли:

$$\mu(\dot{\gamma}) = (K\dot{\gamma}^n + \tau_0)/\dot{\gamma},$$

где K — показатель консистенции, τ_0 — предел текучести вязкопластичной жидкости. На рис. 3 приведены зависимости τ_0 , K и показателя степени n от массовой концентрации частиц. С ростом $C_{\rm m}$ показатель консистенции уменьшается, а значения и τ_0 увеличиваются. Аналогичное реологическое поведение ранее отмечалось и для других наносуспензий [11, 12].

Анализ результатов показывает, что суспензии УДП-АГ и УДА-С начинают проявлять неньютоновские свойства уже при массовой концентрации частиц более 0.5%. В то же время суспензия УДП-А остается ньютоновской при $C_{\rm m} \leq 2.5\%$. Рисунки 26 и 3а демонстрируют еще одно важное различие в реологических свойствах рассматриваемых наносуспензий. Для суспензий УДП-АГ и УДА-С, начиная с массовой концентрации примерно 1%, появляется предельное напряжение сдвига τ_0 , которое возрастает с увеличением $C_{\rm m}$. Однако для суспензии УДП-А даже при максимальной концентрации предельное напряжение

Рис. 2. Зависимости коэффициента вязкости (а) и напряжения сдвига (б) суспензий от скорости сдвига: *1* – УДА-С, *2* – УДП-А, *3* – УДП-АГ.

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 6 2020

Рис. 3. Зависимости предела текучести τ_0 (а), индекса консистенции *K* (б) и показателя степени *n* (в) суспензий от концентрации частиц: *1* – УДА-С, *2* – УДП-А, *3* – УДП-АГ.

сдвига практически равно нулю. Реология суспензии УДП-А лучше описывается степенной моделью: $\mu(\dot{\gamma}) = K \dot{\gamma}^{n-1}$.

Таким образом, суспензии УДП-АГ и УДА-С при высоких концентрациях являются вязкопла-

стичными жидкостями, а суспензии УДП-А псевдопластичными. Появление неньютоновских свойств, по всей видимости, вызвано структурообразованием в суспензиях. Склонность частиц УДА к образованию сетки агрегатов обусловлена высокой удельной поверхностью частиц и развитостью функционального покрова на их поверхности. Различия в природе и количестве функциональных групп на поверхности частиц УДП-А и УДА-С вызывают различия в их адсорбционных свойствах и способности к агрегации и соответственно приводят к разному реологическому поведению их суспензий. В работах Чигановой [23, 31] при исследовании агрегативной и седиментационной устойчивости водных суспензий наноалмазов было обнаружено, что критическая концентрация структурообразования равна 0.85 об. %. Это значение хорошо согласуется с данными наших измерений реологических свойств суспензий УДП-А, для которых начало неньютоновского поведения наблюдалось при концентрации частиц, большей 0.8 об. %. При этом неньютоновское поведение суспензий УДА-С начинает проявляться при гораздо меньших концентрациях (около 0.2 об. %). Размер агрегатов в суспензии УДА-С в несколько раз больше, чем при тех же условиях в суспензии УДП-А (см. табл. 1). Это, по-видимому, и приводит к появлению неньютоновских свойств у суспензии УДА-С при меньших концентрациях частиц по сравнению с суспензией УДП-А.

Полученные значения коэффициента вязкости суспензий (для тех концентраций, когда вязкость еще ньютоновская) были сопоставлены со значениями, рассчитанными по классическому уравнению Эйнштейна [13] $\mu = \mu_0 (1 + 5/2 \phi)$, где ϕ — объемная концентрация частиц. Для ϕ = 1.4% $(C_{\rm m} \approx 2.5\%)$ формула Эйнштейна дает относительный коэффициент вязкости $\mu/\mu_0 = 1.035$. Это значение намного меньше измеренных для рассматриваемых суспензий ($\mu/\mu_0 = 1.27$ для УДП-А). Представленные данные еще раз подтверждают, что классическая теория Эйнштейна во многих случаях некорректно описывает вязкость наносуспензий, поскольку не учитывает ни размер наночастиц, ни, тем более, свойства их поверхности [14, 15].

Теплопроводность суспензий

Еще одним важным свойством суспензии является ее теплопроводность. Теплопроводность жидкостей играет важную роль при эксплуатации оборудования, выделяющего тепло. Одним из приемов, улучшающих теплопроводность, является введение в жидкость частиц с высоким значением коэффициента теплопроводности [16, 17]. В этом смысле представляет интерес исследовать

Рис. 4. Зависимости коэффициента теплопроводности суспензий от концентрации частиц: *1* – УДА-С, *2* – УДП-А, *3* – УДП-АГ, *4* – расчет по модели Максвелла.

коэффициент теплопроводности рассматриваемых алмазных наносуспензий.

Результаты измерений коэффициента теплопроводности суспензий наноалмазов и УДП-АГ приведены на рис. 4. Здесь под относительным коэффициентом теплопроводности понимается отношение коэффициента теплопроводности суспензии к коэффициенту теплопроводности воды при температуре 25°С. Для сравнения на этом же графике приведены значения коэффициента теплопроводности, полученные согласно теории Максвелла [18]:

$$\frac{\lambda}{\lambda_{\rm f}} = \frac{\lambda_{\rm p} + 2\lambda_{\rm f} + 2\phi(\lambda_{\rm p} - \lambda_{\rm f})}{\lambda_{\rm p} + 2\lambda_{\rm f} - \phi(\lambda_{\rm p} - \lambda_{\rm f})},$$

где λ_p , λ_f — коэффициенты теплопроводности материала частиц и воды соответственно. Объемную концентрацию ϕ можно определить из следующих соотношений: $\rho = \phi \rho_p + (1 - \phi) \rho_f$, $\rho C_m = \rho_p \phi$, где ρ , ρ_p , ρ_f — плотность суспензии, частиц и воды соответственно.

Из рис. 4 следует, что измеренные значения теплопроводности суспензий хорошо описываются классической теорией Максвелла. Отклонение от теории лежит в пределах погрешности измерения. Формально максимальное приращение коэффициента теплопроводности суспензии наблюдается в случае алмазографитового порошка УДП-АГ.

Спектры поглощения суспензий

В последнее время появилось достаточно большое количество работ, посвященных применению наносуспензий в качестве рабочего тела в солнечных коллекторах [19, 20]. В отличие от

КОЛЛОИДНЫЙ ЖУРНАЛ том 82 № 6 2020

Рис. 5. Спектры поглощения суспензий: *1* – УДА-С, *2* – УДП-А, *3* – УДП-АГ.

большинства чистых жидкостей, используемых в качестве теплоносителей, наносуспензии, за счет наличия в них твердых частиц, хорошо поглощают солнечное излучение. В связи с этим, практический интерес представляет информация об эффективности поглощения излучения рассматриваемыми суспензиями. Спектры поглощения суспензий приведены на рис. 5. Во всем изученном спектральном диапазоне максимальным коэффициентом поглощения обладают суспензии частиц алмазографитового порошка. Кроме того, установлено, что коэффициент поглощения у суспензии УДА-С примерно в три раза выше, чем у суспензии УДП-А. Отметим, что порошок УДА-С и его суспензии имеют гораздо более темный цвет. Это обусловлено разной степенью очистки порошков алмаза от частиц графита в разных технологиях производства.

Электропроводность суспензий

С помощью кондуктометра были измерены значения электропроводности суспензий (рис. 6). Максимальную электропроводность имеет суспензия, приготовленная из алмазографитового порошка, минимальную – суспензия УДП-А. Зависимости удельной электропроводности суспензий от концентрации частиц имеют линейный вид: $S = AC_m + B$. Коэффициент *B* равен 3.1 × $\times 10^{-4}$ См/м. Для суспензий УДП-С коэффициент *A* равен 148 $\times 10^{-4}$ См/(м мас. %), для суспензий УДП-А – 106 $\times 10^{-4}$ См/(м мас. %), а для суспензий УДП-АГ – 379 $\times 10^{-4}$ См/(м мас. %).

Данные по электропроводности так же, как и данные по дзета-потенциалу, pH и вязкости, показывают, что суспензия УДА-С по своим свойствам гораздо ближе к суспензии алмазографитовых

Рис. 6. Концентрационные зависимости удельной электропроводности суспензий: *1* – УДА-С, *2* – УДП-А, *3* – УДП-АГ.

частиц. Анализ литературы показал, что эффективная электропроводность наночастиц алмазов более чем на порядок выше электропроводности фоновых электролитов, связанных с примесями [21, 22].

При этом в работе [21] показано, что основной вклад в электропроводность водной суспензии алмазов вносит диффузная часть двойного электрического слоя, образующегося вблизи частицы в результате ионизации функциональных групп на ее поверхности. Как правило, в случае наноалмазов образование заряда на поверхности частиц обусловлено ионизацией поверхностных функциональных групп, протекающей по кислотному или основному типу [23–26].

Просвечивающая электронная микроскопия

Согласно электронно-микроскопическим исследованиям в образце УДП-А присутствуют наночастицы алмаза со средним размером 4—8 нм, иногда встречаются частицы размером до 15 нм (рис. 7а), а в образце УДА-С – первичные наночастицы алмаза размером 4—6 нм (рис. 76).

На вставках на рис. 7 приведены картины микродифракции электронов. Дифракционные рефлексы УДА-С и УДП-А соответствуют фазе кубического алмаза (пространственная группа *Fd3m*, параметр решетки a = 3.567 Å, PDF 4+ card #00-006-0675 [27]).

Электронно-микроскопические исследования алмазографитового порошка УДП-АГ (рис. 8) показали, что мелкие частицы — это наноалмазы и нанографит. Кроме наноалмазов и нанографита в образце присутствуют частицы размером от 30 нм до 0.5 мкм с формой, близкой к сферической. В этих частицах высоко содержание железа до 40 мас. % (рис. 86, табл. 2). Также наблюдаются "стержни" длиной до 10 мкм и больше, которые состоят из чистого углерода (рис. 86, табл. 2).

Рентгеноструктурный анализ порошков

Анализ алмазных порошков (рис. 9) показал, что пики на рентгенограммах соответствуют фазе алмаза. Так, при $2\theta \approx 44.3^{\circ}$ для частиц УДА-С параметр решетки равен 2.06635 Å, для частиц УДП-А – 2.07042 Å, а при угле $2\theta \approx 76.3^{\circ}$, соответственно, 1.26079 Å и 1.26370 Å. Согласно [27] для алмаза межплоскостное расстояние d (111) = 2.060 Å, a d (220) =1.261 Å. На рентгенограмме алмазографитового порошка помимо пиков алмаза присут-

Рис. 7. ПЭМ-изображения алмазных порошков УДП-А (а) и УДА-С (б).

Рис. 8. ПЭМ-изображения алмазографитового порошка: (а) увеличение ×150000, (б) увеличение ×15000. Крестиками обозначены точки, в которых регистрировали спектры 1–4 для определения элементного состава.

<u>(б</u>

20 нм

ствуют пики графита, магнетита Fe_3O_4 и гематита Fe_2O_3 .

51/нм

ЗАКЛЮЧЕНИЕ

В работе представлены результаты экспериментального исследования свойств водных суспензий ультрадисперсных алмазов УДА-С и УДП-А, а также алмазографитового порошка УДП-АГ с концентрацией частиц от 0.5 до 5 мас. %. Определены коэффициенты вязкости, теплопроводности, электропроводности и значения рН суспензий и дзета-потенциала частиц, а также распределения частиц по размерам; измерены спектры поглощения суспензий.

Данные по электропроводности так же, как и данные по дзета-потенциалу, pH и вязкости показывают, что суспензия УДА-С по своим свойствам гораздо ближе к суспензии алмазографитовых частиц, чем суспензия УДП-А. Обнаруженное существенное различие в свойствах рассматриваемых суспензий обусловлено различной технологией очистки исходного алмазографитового порошка от неалмазных компонентов.

В выполненных ранее исследованиях [28–31] было показано, что используемые методы очистки наноалмазов от примесей играют определяющую роль в формировании состава функциональных групп на их поверхности. Ультрадисперсные алмазы, извлеченные из продуктов их синтеза с использованием борного ангидрида (УДП-А), отличаются более высоким содержанием кислорода (до 15%, по сравнению с 9% для УДА-С) и значительным количеством бора (2.3%) [31]. Легирование бором приводит к появлению у УДП-А дополнительных полезных свойств, например, повышенной стойкости порошка к слеживаемости и устойчивости его водных суспензий. Очистка УДА-С смесью серной и азотной кислот ведет к повышению содержания азота и серы. Исследования поверхности показали также наличие углеводородных фрагментов (метильных и ароматических) и кислородосодержащих групп (карбонильных, карбоксильных и гидроксильных). При этом анализ поверхностных функциональных групп свидетельствует о том [31], что в случае УДА-С доля сильнокислотных карбоксильных групп меньше – около 30% от общего количества, в то время как для УДП-А она доходит до 60%.

Спектр 1

Спектр 4

500 нм

Влияние способа очистки УДА на состав функциональных групп обусловлено высокой долей поверхностных атомов и образованием химических связей с веществами, участвующими в процессе очистки. Условия окисления неалмазного углерода влияют также на содержание кислорода в функциональном покрове частиц. Соответственно, способ очистки УДА существенно

Таблица 2. Количественное соотношение элементов (%) в выбранных точках образца УДП-АГ (см. рис. 8б)

Номер спектра	С	О	Fe	Итого
Спектр 1	60.24	16.66	23.10	100.00
Спектр 2	58.12	15.84	26.03	100.00
Спектр 3	45.54	14.87	39.59	100.00
Спектр 4	31.32	68.68	—	100.00

Интенсивность 1600 1200 400 400 100

Рис. 9. Рентгенограммы порошков: *1* – УДА-С, *2* – УДП-А, *3* – УДП-АГ.

сказывается на физико-химических свойствах получаемых суспензий.

Полученные в работе результаты могут быть полезны при использовании суспензий наноалмазов в различных областях (медицина, интенсификация теплообмена, электрохимия, гальваника, трибология, присадки к смазкам и многие др.).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (проект № FSRZ-2020-0012).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ставер А.М., Губарева Н.В., Лямкин А.И., Петров Е.А. А. с. 1165007 СССР. 1982.
- Лямкин А.И., Петров Е.А., Ершов А.П., Сакович Г.В., Ставер А.М., Титов В.М. // Докл. АН СССР. 1988. Т. 302. С. 611.
- Ставер А.М., Губарева Н.В., Лямкин А.И., Петров Е.А. // Физика горения и взрыва. 1984. № 5. С. 100.
- 4. Сакович Г.В., Комаров В.Ф., Петров Е.А. // Сверхтвердые материалы. 2002. № 3. С. 3.
- 5. *Чиганова Г.А, Чиганов А.С. //* Журн. прикл. химии. 1998. Т. 71. С. 1832.

- 6. *Редькин В.Е., Мишин А.А.* // Решетневские чтения. 2011. Т. 1. С. 403.
- 7. *Сакович Г.В., Жарков А.С., Петров Е.А.* // Рос. нанотехнологии. 2013. Т. 8. № 9–10. С. 11.
- Рудяк В.Я., Минаков А.В., Сметанина М.С., Пряжников М.И. // Докл. АН. 2016. Т. 467. С. 289.
- 9. Минаков А.В., Рудяк В.Я., Гузей Д.В., Пряжников М.И., Лобасов А.С. // Инж.-физ. журн. 2015. Т. 88. С. 148.
- Платунов Е.С., Баранов И.В., Буравой С.Е., Курепин В.В. Теплофизические измерения: учебное пособие / Под ред. Платунова Е.С. СПб: СПбГУНиПТ, 2010.
- Minakov A.V., Rudyak V.Y., Pryazhnikov M.I. // Colloids Surf. A. 2018. V. 554. P. 279.
- 12. Sharma A.K., Tiwari A.K., Dixit A.R. // Renew. Sust. Energ. Rev. 2016. V. 53. P. 779.
- 13. Batchelor G.K. // J. Fluid Mech. 1977. V. 83. P. 97.
- 14. Пузырь А.П., Минаков А.В., Буров А.Е., Жарков С.М., Максимов Н.Г., Пряжников М.И. // Коллоид. журн. 2017. Т. 79. С. 206.
- 15. *Rudyak V.Ya., Minakov A.V.* // Eur. Phys. J. E. 2018. V. 41. 15.
- Keblinski P., Eastman J.A., Cahill D.G. // Mater. Today. 2005. V. 8. № 6. P. 36.
- 17. Pryazhnikov M.I., Minakov A.V., Rudyak V.Ya., Guzei D.V.// Int. J. Heat Mass Transf. 2017. V. 104. P. 1275.
- Hamilton R.L., Crosser O.K. // Ind. Eng. Chem. Fundam. 1962. V. 1. P. 187.
- Leong K.Y., Ong H.C., Amer N.H., Norazrina M.J., Risby M.S., Ku Ahmad K.Z. // Renew. Sust. Energ. Rev. 2016. V. 53. P. 1092.
- Bellos E., Tzivanidis C. // J. Therm. Anal. Calorim. 2019. V. 135. P. 763.
- Жуков А.Н., Гареева Ф.Р. Алексенский А.Е. // Коллоид. журн. 2012. Т. 74. С. 483.
- Швидченко А.В., Жуков А.Н., Дидейкин А.Т., Байдакова М.В., Шестаков М.С., Шнитов В.В., Вуль А.Я. // Коллоид. журн. 2016. Т. 78. С. 218.
- 23. Чиганова Г.А. // Коллоид. журн. 2000. Т. 62. С. 272.
- Gibson N., Shenderova O., Luo T.J.M., Moseenkov S., Bondar V., Puzyr A., Purtov K., Fitzgerald Z., Brenner D.W. // Diam. Relat. Mater. 2009. V. 18. P. 620.
- 25. Maier F., Riedel M., Mantel B., Ristein J., Ley L. // Phys. Rev. Lett. 2000. V. 85. P. 3472.
- Chakrapani V., Angus J.C., Anderson A.B., Wolter S.D., Stoner B.R., Sumanasekera G.U. // Science. 2007. V. 318. P. 1424.
- 27. https://www.icdd.com/products/PDF-4+, 2014.
- 28. Долматов В.Ю. // Успехи химии. 2001. Т. 70. С. 687.
- 29. Jiang T., Xu K. // Carbon. 1995. V. 33. P. 1663.
- 30. Кощеев А.П. // Рос. хим. журн. 2008. Т. 52. № 5. С. 88.
- 31. Чиганова Г.А. // Коллоид. журн. 1994. Т. 56. С. 266.