УДК 544.774

ЧИСЛА ПЕРЕНОСА ОДНО-, ДВУХ- И ТРЕХЗАРЯДНОГО КАТИОНОВ В ПОРИСТЫХ СТЕКЛАХ

© 2021 г. Л. Э. Ермакова^{1, *}, А. С. Кузнецова^{1, 2}, Т. В. Антропова²

¹Санкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт-Петербург, 199034 Россия ²Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Адмирала Макарова, 2, Санкт-Петербург, 199034 Россия *e-mail: ermakova3182@yandex.ru, l.ermakova@spbu.ru Поступила в редакцию 08.12.2020 г. После доработки 21.12.2020 г. Принята к публикации 25.12.2020 г.

Исследованы числа переноса противоионов натрия, никеля и лантана в микропористых (средний радиус пор r = 2-3.4 нм) и макропористых (r = 16-27 нм) стеклах, не содержащих и содержащих магнетит в структуре матрицы. Установлено, что соотношение чисел переноса исследованных катионов в случае микропористых стекол определяется, в первую очередь, структурой вторичного кремнезема в поровых каналах. Для мембран из макропористых стекол значения чисел переноса катионов в поровом пространстве зависят от величины поверхностного заряда, а также от структуры двойного электрического слоя.

DOI: 10.31857/S0023291221030034

ВВЕДЕНИЕ

Числа переноса ионов являются важными транспортными характеристиками мембранных систем, знание которых необходимо для понимания взаимосвязи механизмов процессов переноса через мембраны, возникающих при наложении внешних полей, со структурными и электроповерхностными параметрами мембран различного химического состава. Представляет также интерес анализ влияния заряда противоиона на транспортные характеристики пористых стекол (ПС). Эти стекла могут использоваться в качестве мембран для разделения жидких сред и функциональных элементов микроаналитических систем (микрофлюидных чипов, электроосмотических насосов и др.) [1-7], а селективность и другие рабочие характеристики таких мембранных систем связаны с числами переноса и подвижностью ионов в поровом пространстве.

В качестве объектов исследования нами были выбраны ПС, полученные из натриевоборосиликатного стекла, а также ПС, содержащие в своей структуре гематит, для которых ранее были изучены структурные и электрокинетические характеристики в растворах различных электролитов [8–12]. Сопоставление их транспортных характеристик проводили в растворах хлоридов натрия, никеля и лантана. Это позволило проанализировать влияние заряда противоиона (катиона) на свойства таких мембранных систем, обладающих отрицательным зарядом поверхности, при постоянном коионе – ионе хлора.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

ПС со средним радиусом пор r = 1.3 нм (микропористые, МИП) были получены в Институте химии силикатов им. И.В. Гребенщикова РАН из монолитных двухфазных стекол путем сквозного кислотного выщелачивания (3 М соляная или азотная кислота, 100°С) термообработанного двухфазного натриевоборосиликатного стекла с двухкаркасной структурой [10]. По условиям синтеза оно имело следующий состав (мол. %): $Na_2O - 8$, $B_2O_3 - 22$, SiO₂ - 70. Макропористые (МАП) стекла 8В-НТ со средними радиусами пор 19.7-25.5 нм готовили путем щелочной обработки МИП-стекол 0.5 М раствором КОН при комнатной температуре. Полученные ПС содержали более 95% оксида кремния, т.е. являлись типичными высококремнеземными канальными наноструктурами. Объемная пористость образцов (отношение объема пор к общему объему мембраны) составляла 0.23-0.24 для МИП-стекол и 0.51-0.61 для МАП-стекол.

В ходе проведения измерений чисел переноса средний радиус пор мембраны 8В-НТ МИП возрастал до 2–3.4 нм за счет выхода растворенного

вторичного кремнезема из порового пространства. Для мембраны 8В-НТ МАП увеличение размера поровых каналов происходило за счет небольшого растворения кремнеземного скелета и было невелико — значения r возрастали до 20— 27 нм [12].

Гематит вводили в стекло, добавляя оксид железа в шихту при его варке. Полученное монолитное стекло (Fe-4-5), содержавшее 11.16 мол. % оксидов железа, подвергали термообработке для достижения фазового разделения, а затем использовали для изготовления микро- и макропористых стекол путем кислотного выщелачивания и щелочной обработки [9, 12]. Содержание железа составляло в среднем по объему 21.1 \pm 1 мас. % для свежеприготовленных микро- и макропористых мембран и 15.6 мас. % для мембран, длительное время контактировавших с растворами электролита [12]. Средний радиус пор мембран Fe-4-5 МИП составлял 1.8-1.9 нм, мембран Fe-4-5 МАП -16.5-18.1 нм. Объемная пористость была равна 0.19 и 0.45 для МИП- и МАП-образцов соответственно. Средний радиус пор железосодержащих мембран при длительном контакте с электролитами увеличивался до 2.4-3 нм для МИП-образцов и до 17-19 нм для МАП-образцов [9, 12].

Мембраны всех типов, использовавшиеся при измерениях чисел переноса ионов, представляли собой диски толщиной около 1 мм и диаметром 30 мм. В маркировке мембран указаны условия их получения.

Число переноса *i*-го иона (n_i , transport number) – это доля электричества, переносимая ионами типа *i* по отношению к общему количеству электричества. Молярное число переноса (t_i , transference number) *i*-го иона – это число молей *i*-го сорта, переносимое одним фарадеем электричества через поперечное сечение проводника в направлении электрического тока [13]. При таком определении необходимо учитывать, что молярное число переноса анионов отрицательно. Для чисел переноса справедливо соотношение

$$\sum_{i} n_i = \sum_{i} z_i t_i = 1, \tag{1}$$

где z_i — заряд иона с учетом знака. Отметим, что для 1 : 1-зарядного электролита величины n_i и t_i совпадают, для анионов — с точностью до знака.

Если считать, что молярные числа переноса ионов обоих знаков — величины положительные, то можно записать:

$$\sum_{i} |z_i| t_i = 1.$$

Одним из методов экспериментального определения молярных чисел переноса является метод мембранного потенциала. Мембранный потенциал измерялся в концентрационной цепи с переносом, э. д. с. которой равна *E*. Схема концентрационной цепи с переносом имеет следующий вид:

Обратимый электрод Ag/AgCl	Раствор 1 <i>a</i> _{±(1)}		Мембрана		Раствор 2 $a_{\pm(2)}$		Обратимый электрод Ag/AgCl
Электродный потенциал		ϕ_D^I		ϕ_D^{II}		Электродный потенциал	
Диффузионный потенциал в мембране							

Здесь ϕ_D^I и ϕ_D^{II} — потенциалы Доннана, $a_{\pm(1)}$ и $a_{\pm(2)}$ — средние активности растворов электролитов, контактирующих с мембраной. Измерения обычно проводят при отношении $a_{\pm(1)}/a_{\pm(2)} \approx 2$.

Величина E является суммой мембранного диффузионного потенциала $E_{\rm M}$ и разности электродных потенциалов. В том случае, когда используются растворы хлоридов в качестве электролитов и обратимые хлорсеребряные электроды, измеряемая разность электродных потенциалов $\Delta E_{\rm E}$ включает концентрационный потенциал $E_{\rm C}$ и потенциал асимметрии электродов $E_{\rm AS}$.

Предполагая, что в достаточно узком концентрационном интервале числа переноса ионов в мембране слабо зависят от концентрации электролита, мы использовали следующее уравнение связи величин $E_{\rm M}$ и t_- – числа переноса ионов Cl⁻ (будем считать, что $t_- > 0$), которые для отрицательно заряженных ПС являются коионами [13]:

$$E_{\rm M} = -\frac{RT}{z_+F} \left[\ln \frac{a_{+(2)}}{a_{+(1)}} - (z_+ - z_-)t_- \ln \frac{a_{\pm(2)}}{a_{\pm(1)}} \right].$$
(3)

Разность электродных потенциалов в нашем случае имеет следующий вид:

$$\Delta E_{\rm E} = E_{\rm C} + E_{\rm AS} = \frac{RT}{z_{-}F} \ln \frac{a_{-(2)}}{a_{-(1)}} + E_{\rm AS}, \qquad (4)$$

где $a_{+(1)}$, $a_{+(2)}$ – активности противоионов, $a_{-(1)}$, $a_{-(2)}$ – активности коионов, $a_{\pm(1)}$, $a_{\pm(2)}$ – средние активности электролита с разных сторон мембра-

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 3 2021

<i>I</i> , моль/л		NiCl ₂		LaCl ₃			
	С, моль/л	h	$C_{\rm K}$, моль/л	С, моль/л	h	$C_{ m K}$, моль/л	
3×10^{-1}	1.00×10^{-1}	1.10×10^{-5}	1.10×10^{-6}	5×10^{-2}	2.00×10^{-5}	1.00×10^{-6}	
10^{-1}	3.33×10^{-2}	1.90×10^{-5}	6.32×10^{-7}	1.67×10^{-2}	3.46×10^{-5}	5.78×10^{-7}	
10^{-2}	3.33×10^{-3}	6.01×10^{-5}	2.00×10^{-7}	1.67×10^{-3}	1.09×10^{-4}	1.82×10^{-7}	
10^{-3}	3.33×10^{-4}	1.90×10^{-4}	6.32×10^{-8}	1.67×10^{-4}	3.46×10^{-4}	5.78×10^{-8}	
10^{-4}	3.33×10^{-5}	6.01×10^{-4}	2.00×10^{-8}	1.67×10^{-5}	1.09×10^{-3}	1.82×10^{-8}	

Таблица 1. Степень гидролиза и концентрация гидролизованных форм катионов никеля и лантана

ны. Предполагая, что в исследованном интервале

концентраций $\frac{a_{+(2)}}{a_{+(1)}} \cong \frac{a_{-(2)}}{a_{-(1)}} \cong \frac{a_{\pm(2)}}{a_{\pm(1)}}$, можно получить:

$$E_{\rm M} + E_{\rm C} = \frac{RT(z_+ - z_-)}{z_+ z_- F} \ln \frac{a_{+(2)}}{a_{+(1)}} (1 + z_- t_-).$$
(5)

Тогда для $z_+:z_-$ -электролита выражение для молярного числа переноса катиона приобретает следующий вид:

$$t_{+} = \frac{1}{z_{+}} n_{+} = \frac{z_{-}(\Delta E_{\rm E} - E_{\rm AS})}{\frac{(z_{+} - z_{-})RT}{F} \ln(a_{\pm(2)}/a_{\pm(1)})}.$$
 (6)

Используя уравнение (6), для 1 : 1-зарядного электролита получим хорошо известное выражение для числа переноса катионов в мембране:

$$t_{+} = n_{+} = \frac{\Delta E_{\rm E} - E_{\rm AS}}{\frac{2RT}{F} \ln(a_{\pm(1)}/a_{\pm(2)})}.$$
 (7)

Числа переноса также могут быть выражены через ионные эквивалентные электропроводности катиона и аниона λ_i , входящих в состав электролита, или через подвижности ионов U_i ($\lambda_i = FU_i$) [14, 15]:

$$n_i = \lambda_i / \sum_i \lambda_i = U_i / \sum_i U_i \,. \tag{8}$$

При расчете чисел переноса катионов в области значений ионной силы растворов $I \le 0.1$ М вместо отношения средних активностей электролита с разных сторон мембраны использовалось отношение удельных электропроводностей этих растворов κ_v , которые определяли на переменном токе с частотой 1 кГц (измеритель иммитанса E7-21). Измерения мембранных потенциалов (мультиметр Fluke 8846A/Su) проводили в проточной ячейке [16] при температуре 22 ± 2°C в нейтральной области рН (5.6–5.7).

Растворы готовили на деионизованной воде ($\kappa_V \leq 1.5 \times 10^{-6} \text{ Om}^{-1} \text{ см}^{-1}$, система очистки воды Аквалаб AL Plus) с использованием реактивов

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 3 2021

марки "ос. ч." или "х. ч.". Погрешность определения величин n_+ не превышала $\pm 0.02 - 0.03$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование и сопоставление транспортных характеристик микро- и макропористых стекол различного состава в растворах хлоридов натрия, никеля и лантана проводили при одинаковой ионной силе растворов $I = 0.5 \sqrt{\sum_{i} z_i^2 C_i} (10^{-4} - 10^{-1} \text{ M})$. Это обеспечивало постоянство величин приведенной толщины двойного электрического слоя (ДЭС) и практически одинаковые степени перекрывания ДЭС в поровых каналах мембран при близких величинах среднего радиуса пор.

Рассмотрим сначала характеристики исследованных катионов в свободных растворах соответствующих электролитов. Известно, что в растворах электролитов типа NaCl процессы гидролиза практически отсутствуют. В растворах хлоридов никеля и лантана образование гидролизованных форм катионов возможно, поэтому были проведены оценки степени гидролиза *h* исходя из параметров 1-ой ступени гидролиза – констант диссоциации соответствующих гидроксокомплексов K_D , которые равны $10^{-3.08}$ и $10^{-3.3}$ для никеля и лантана на соответственно [17]:

$$h = \sqrt{K_{\rm H}/C} = \sqrt{K_{\rm W}/K_{\rm D}C},\tag{9}$$

где $K_{\rm H}$ – константа гидролиза, $K_{\rm W}$ – ионное произведение воды, C – молярная концентрация электролита. Величины h и концентрации гидролизованных форм катионов никеля – NiOH⁺ и лантана – LaOH²⁺ ($C_{\rm K} = Ch$) для исследованного интервала значений ионной силы электролитов представлены в табл. 1. Видно, что во всем исследованном диапазоне составов жидкой фазы значения концентрации гидроксокомплексов никеля и лантана на 4–5 порядков меньше, чем концентрации электролитов, и их влиянием на свойства мембранных систем можно пренебречь.

Радиусы исследованных катионов при координационном числе, равном 6, по Гольдшмиту $r_{\rm G}$ [17], Белову и Бокию $r_{\rm B}$ [18], Шеннону и

Параметр	Na ⁺	Ni ²⁺	La ³⁺
<i>r</i> _G , нм	0.098	0.078	0.122
<i>r</i> _В , нм	0.098	0.074	0.104
r _{Sh} , нм	0.102	0.069	0.103
λ_0 , Ом ⁻¹ г-экв ⁻¹ см ²	50.1	54	69.7
r _{St} , нм	0.184	0.341	0.396
r _{cor} , HM	0.33	0.43	0.46
$(V - V_{\rm C}), {\rm Hm}^3$	0.146	0.331-0.332	0.403-0.406
k	5	11	13-14

Таблица 2. Структурные и электрохимические характеристики катионов натрия, никеля и лантана

Превиту $r_{\rm Sh}$ [19], а также их эквивалентные электропроводности при бесконечном разбавлении λ_0 (при 25°С) [20] суммированы в табл. 2. В этой же таблице приведены значения стоксовского радиуса этих ионов

$$r_{\rm St} = \frac{|z_i|F^2}{6\pi\eta N\lambda_0} \tag{10}$$

и радиусы *r*_{сог}, найденные с учетом поправок к закону Стокса [21].

Величины r_{cor} были использованы для расчета объема гидратированных ионов V и числа молекул воды в гидратной оболочке k:

Рис. 1. Зависимости чисел переноса катионов от эквивалентной концентрации электролитов для пористых стекол 8В-НТ. I - 8B-НТ (3 М HCl) МИП, NaCl; 2 - 8B-НТ (3 М HCl) МИП, NiCl₂; 3 - 8B-НТ МИП, LaCl₃; 4 - 8B-НТ (3 М HNO₃, 0.5 М КОН) МАП, NaCl; 5 - 8B-НТ (3 М HCl, 0.5 М КОН) МАП, NiCl₂; 6 - 8B-НТ (3 М HNO₃, 0.5 М КОН) МАП, LaCl₃. 7, 8 и 9 - свободные растворы NaCl, NiCl₂ и LaCl₃ cooтветственно.

$$k = (V - V_{\rm C}) / V_{\rm H,0},$$
 (11)

где $V_{\rm C}$ – объемы ионов, найденные из величин $r_{\rm G}$, $r_{\rm B}$ и $r_{\rm Sh}$ (приведены интервалы значений ($V - V_{\rm C}$)), объем молекулы воды $V_{\rm H_{2O}}$ принимался равным 0.03 нм³ [21]. Полученные результаты представлены в табл. 2. Видно, что метод оценки собственных размеров катионов практически не сказывается на количестве молекул воды в гидратной оболочке.

Результаты расчета чисел переноса катионов из измеренных величин мембранного потенциала в исследованных системах, а также имеющиеся в литературе значения чисел переноса в свободных растворах исследованных электролитов (приведенные на графиках точки для самых разбавленных растворов соответствуют предельному разбавлению) [20] представлены на рис. 1–6.

Поскольку все справочные электрохимические данные для одно- и многозарядных ионов в растворах приводятся при одинаковых значениях эквивалентной концентрации, т.е. в расчете на один заряд, то аналогичные зависимости были построены и для чисел переноса в ПС (рис. 1, 2). Видно, что во всех случаях наблюдаются обычные зависимости n_+ от концентрации электролита – в поровом пространстве числа переноса противоионов с разными величинами заряда возрастают с разбавлением, достигая единицы в самых разбавленных растворах для всех МИП-стекол. Мембраны становятся идеально селективными, поскольку в этом случае степень перекрывания ДЭС в поро-

Рис. 2. Зависимости чисел переноса катионов от эквивалентной концентрации электролитов для пористых стекол Fe-4-5. 1 - Fe-4-5 (3 M HCl) МИП, NaCl [9]; 2 - Fe-4-5 (3 M HCl) МИП, LaCl₃; 3 - Fe-4-5 (3 M HCl, 0.5 M KOH) МАП, NaCl [9]; 4 - Fe-4-5 (3 M HCl, 0.5 M KOH) МАП, LaCl₃. 5 и 6 - свободные растворыNaCl и LaCl₃ соответственно.

Рис. 3. Зависимости чисел переноса катионов от ионной силы электролитов для пористых стекол 8В-НТ. I - 8B-HT (3 M HCl) МИП, NaCl; 2 - 8B-HT (3 M HCl) МИП, NiCl₂; 3 - 8B-HT МИП (3 M HCl), LaCl₃; 4 - 8B-HT (3 M HNO₃, 0.5 M KOH) МАП, NaCl; 5 - 8B-HT (3 M HCl, 0.5 M KOH) МАП, NiCl₂; 6 - 8B-HT(3 M HNO₃, 0.5 M KOH) МАП, LaCl₃. 7, 8 и 9 - свободные растворы NaCl, NiCl₂ и LaCl₃ соответственно.

Рис. 5. Зависимости чисел переноса катионов от ионной силы растворов NaCl: *1* – 8B-HT (3 M HCl) МИП, *2* – 8B-HT (3 M HNO₃, 0.5 M KOH) МАП, *3* – Fe-4-5 (3 M HCl) МИП [9], *4* – Fe-4-5 (3 M HCl, 0.5 M KOH) МАП [9].

вом пространстве велика — значения электрокинетического радиуса кг (к = $\left[\left(F^2 \sum_i z_i^2 C_i \right) / \varepsilon \varepsilon_0 RT \right]^{1/2}$ параметр Дебая) в исследованных МИП-стеклах лежат в интервале 0.08—0.14. Это означает, что коионы в мембраны практически не входят, и их

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 3 2021

Рис. 4. Зависимости чисел переноса катионов от ионной силы электролитов для пористых стекол Fe-4-5. *I* – Fe-4-5 (3 M HCl) МИП, NaCl [9]; *2* – Fe-4-5 (3 M HCl) МИП, LaCl₃; Fe-4-5 (3 M HCl, 0.5 M KOH) МАП, NaCl [9]; *4* – Fe-4-5 (3 M HCl, 0.5 M KOH) МАП, LaCl₃. 5 и 6 – свободные растворы NaCl и La-Cl₃ соответственно.

Рис. 6. Зависимости чисел переноса катионов от ионной силы растворов LaCl₃: *1* – 8B-HT (3 M HCl) МИП, *2* – 8B-HT (3 M HNO₃, 0.5 M KOH) МАП, *3* – Fe-4-5 (3 M HCl) МИП, *4* – Fe-4-5 (3 M HCl, 0.5 M KOH) МАП.

концентрация на несколько порядков меньше, чем концентрация противоионов [22].

При одной и той же концентрации равновесного раствора в интервале $1.8 \times 10^{-4} < C < 1 \times 10^{-1}$ г-экв/л максимальные значения n_+ наблюдаются для ионов Na⁺ в МИП-стеклах обоих типов. В самом концентрированном растворе NaCl (0.1 M) числа переноса ионов Na⁺ в микро- и макропористых мембранах 8В-НТ практически совпадают со значением, соответствующим свободному раствору, а для мембран Fe-4-5 незначительно превышают таковое (0.41–0.42 против 0.385 в растворе).

В свободных растворах переход от однозарядного иона Na⁺ к двухзарядному иону Ni²⁺ приводит к небольшому росту числа переноса (рис. 1), поскольку эквивалентная электропроводность и, следовательно, подвижность иона также почти не изменяются (табл. 1), так как наряду с ростом заряда иона увеличивается размер его гидратной оболочки (величина *k* возрастает в 2 раза). При дальнейшем увеличении заряда катиона, т.е. при переходе к иону La³⁺, изменение размеров гидратной оболочки уже не столь значительно, поэтому наблюдается рост значений эквивалентной электропроводности, подвижности и числа переноса, по сравнению с ионами натрия и никеля.

В поровом пространстве мембран 8В-НТ МИП при равновесных концентрациях меньших, чем 1.8×10^{-4} г-экв/л, число переноса ионов натрия больше, чем многозарядных ионов, причем для ионов Ni²⁺ и La³⁺ величины n_+ совпадают в пределах погрешности эксперимента (рис. 1, зависимости 1-3). Это свидетельствует о существенном снижении подвижности ионов Ni²⁺ и La³⁺, размеры которых больше, чем иона Na⁺, в порах МИПстекол, содержаших вторичный кремнезем. Отметим также, что при одинаковой эквивалентной концентрации молярная концентрация уменьшается при переходе от 1:1 к 2:1 и, далее, к 3:1 зарядному электролиту, что может приводить к увеличению степени набухания вторичного кремнезема и снижению полвижности многозарялных катионов в порах. По-видимому, играет роль и то, что при примерно одинаковых размерах катионов взаимодействие двух- и трехзарядных ионов с поверхностью поровых каналов сильнее за счет большего кулоновского притяжения к отрицательно заряженной поверхности оксида кремния, что вызывает более значительное снижение подвижности катионов Ni²⁺ и La³⁺ по сравнению с их подвижностью в свободных растворах.

Переход от микропористых стекол 8В-НТ к макропористым приводит к обычно наблюдающемуся уменьшению значений n_+ вследствие роста размеров поровых каналов, сопровождающегося снижением степени перекрывания ДЭС и ростом концентрации коионов в поровом пространстве. Селективность МАП-мембран в самом разбавленном растворе достаточно высока – $n_+ =$ = 0.91 ± 0.4, поскольку величины электрокинетических радиусов лежат в интервале 0.18–0.28 и степень перекрывания ДЭС остается большой. Отметим, что для макропористых стекол 8В-НТ, в порах которых тонкодисперсный вторичный кремнезем отсутствует, при $C > 3.2 \times 10^{-4}$ г-экв/л величины *n*₊ для всех трех электролитов близки межлу собой. В области меньших концентраций влияние электростатического взаимодействия ионов с поверхностью на их подвижность ослабляется вследствие уменьшения абсолютной величины поверхностного заряда $|\sigma_0|$, что приводит к небольшому росту значений *n*₊ для ионов никеля и лантана по сравнению с ионами натрия. В случае железосодержащих ПС Fe-4-5, поверхностный заряд $|\sigma_0|$ которых выше, чем ПС 8В-НТ [11], снижение подвижности ионов лантана в МИПмембране настолько велико, что значения n_{+} при радиусе пор 3-3.4 нм становятся меньше, чем в МАП-мембране с радиусом пор 17–19 нм (рис. 2, зависимости 2, 3).

Следует также отметить, что в самых концентрированных растворах, когда абсолютная величина заряда поверхности максимальна, снижение подвижности многозарядных ионов в поровой жидкости для всех исследованных мембран приводит к тому, что числа переноса ионов Ni^{2+} и La³⁺ становятся меньше, чем в соответствующих свободных растворах, чего не наблюдалось для ионов Na^+ .

Зависимости чисел переноса исследованных катионов от ионной силы растворов электролитов І представлены на рис. 3, 4. Это позволяет сравнивать транспортные свойства мембранных систем в условиях постоянства приведенной толщины ДЭС $\delta = 1/\kappa$, т.е. при одинаковой степени перекрывания ДЭС во всех электролитах. Видно, что при I = солst для мембраны 8В-НТ МИП наблюдается совпадение величин *n*₊ для катионов Na^+ и La^{3+} , а число переноса ионов Ni^{2+} несколько меньше (рис. 3, зависимости 1-3). Проведенные ранее исследования показали, что в МИП-стеклах поверхностный заряд в электролитах, содержащих противоионы с разной величиной заряда, при I = const также является практически постоянным [23]. Поэтому основными факторами, влияющими на величины чисел переноса, по-видимому, являются снижение подвижности противоионов в порах, содержащих вторичный кремнезем, и электростатическое взаимодействие противоионов с разной величиной заряда с поверхностью при постоянной величине $|\sigma_0|$.

Для МИП-стекол 8В-НТ при одинаковых зарядах поверхности и степенях перекрывания ДЭС характер зависимости числа переноса от заряда катиона становится близким к наблюдающемуся в свободных растворах (рис. 3). Особенности, связанные с ионным транспортом в заряженных мембранах, проявляются при $I \le 3 \times 10^{-3}$ М – чис-

ла переноса ионов Ni^{2+} и La^{3+} становятся практически одинаковыми (рис. 3, зависимости 4–6). Полученные результаты позволяют также сделать вывод о том, что при одинаковой структуре ДЭС в поровом пространстве основное влияние на подвижность и число переноса противоионов оказывает, наряду с зарядом поверхности, определяющим количество ко- и противоионов в порах, наличие (или отсутствие) вторичного кремнезема в поровых каналах.

Результаты определения величин n_+ в железосодержащих мембранах при постоянной ионной силе показывают, что увеличение поверхностного заряда приводит к такому снижению подвижности трехзарядного катиона, что числа переноса ионов лантана в МИП-стекле становятся равными числам переноса ионов натрия в МАП-стекле (рис. 4, зависимости 2, 3).

На рис. 5 и 6 представлены зависимости чисел переноса катионов Na^{2+} и La^{3+} от ионной силы растворов электролитов для микро- и макропористых стекол различного состава. Оказалось, что при постоянной ионной силе и близких величинах среднего радиуса пор (2-2.5 нм и 2.5-3 нм для ПС 8В-НТ МИП и Fe-4-5 МИП соответственно) состав МИП-стекла практически не влияет на число переноса ионов натрия (рис. 5, зависимости 1. 3). Числа переноса ионов La^{3+} в ПС Fe-4-5 МИП меньше, чем в ПС 8В-НТ МИП (рис. 6, зависимости 1, 3), что подтверждает высказанное ранее [12] предположение о разной структуре вторичного кремнезема в порах содержащих и не содержащих магнетит мембран. Более высокий поверхностный заряд и меньшие размеры поровых каналов ПС Fe-4-5 МАП приводят и к более высоким, по сравнению с ПС 8В-НТ МАП, значениям чисел переноса ионов Na^+ и La^{3+} (рис. 5 и 6, зависимости 2, 4).

ЗАКЛЮЧЕНИЕ

Для микро- и макропористых стекол различного состава исследовано влияние заряда противоионов на примере катионов натрия, никеля и лантана (при постоянном коионе Cl⁻) на их числа переноса (n_{+}) в поровых каналах. Для каждого из электролитов наблюдаются классические закономерности: увеличение концентрации равновесного раствора и размера поровых каналов при постоянном составе стекла приводит к снижению значений *n*₊ вследствие уменьшения вклада ионов ДЭС в транспортные процессы. В самых разбавленных растворах, при ионной силе $I = 10^{-4} \, \mathrm{M}$, как макропористые, так и микропористые мембраны обладают высокой селективностью — значения n_+ лежат в интервале 0.87–1.0. Следует отметить, что в случае самых концентрированных растворов ($I \ge 0.1$ M) числа переноса многозаряд-

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 3 2021

ных катионов Ni²⁺ и La³⁺ меньше, чем в соответствующих свободных растворах, чего не наблюдается в случае хлорида натрия.

Анализ полученных результатов также показывает, что соотношение чисел переноса противоионов в том или ином микропористом стекле обусловлено влиянием на их подвижность структуры нахоляшегося в порах вторичного кремнезема. Это влияние проявляется как при постоянной ионной силе, обеспечивающей одинаковые величины заряда поверхности и степени перекрывания ДЭС в разных электролитах. так и при переменной структуре ДЭС в условиях постоянства эквивалентной концентрации растворов. Для макропористых стекол, в порах которых нет вторичного кремнезема, соотношение величин n_+ становится при I < 0.1 М близким к наблюдающемуся в свободных растворах электролитов. Влияние состава микропористых стекол на число переноса противоиона натрия при постоянной ионной силе (одинаковой степени перекрывания ДЭС в поровых каналах) практически отсутствует. В то же время в железосодержащем ПС Fe-4-5 МИП числа переноса противоионов лантана меньше, чем в ПС 8В-МИП, что связано с различной структурой вторичного кремнезема в этих пористых стеклах.

БЛАГОДАРНОСТИ

Авторы благодарят профессора Н.В. Чежину за полезные консультации и И.Н. Анфимову за помощь при получении стекол. Двухфазные стекла были изготовлены в Институте химии силикатов им. И.В. Гребенщикова РАН (тема № 0097-2019-0015).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант № 20-03-00544а.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мазурин О.В., Роскова Г.П., Аверьянов В.И., Антропова Т.*В. Двухфазные стекла: структура, свойства, применение. Л.: Наука, 1991.
- Yairi M., Richter C. // Sens. Actuators, A. 2007. V. 137. P. 350.
- 3. Evstrapov A.A., Esikova N.A., Rudnitskaja G.E., Antropova T.V. // Opt. Appl. 2008. V. 38. P. 31.
- He F., Liao Y., Lin J., Song J., Qiao L., Cheng Y., Sugioka K. // Sensors. 2014. V. 14. P. 19402.
- 5. Заколдаев Р.А., Сергеев М.М., Сиверс А.Н., Данилов П.А., Вейко В.П., Кудряшов С.И., Костюк Г.К.,

Ионин А.А., Анфимова И.Н., Антропова Т.В. // Физика и химия стекла. 2018. Т. 44. С. 534.

- Andreeva Y.M., Sergeev M.M., Zakoldaev R.A., Gabysheva U.E. et al., Veiko V.P., Kudryashov S.I., Ionin A.A., Vocanson F., Itina T.E., Antropova T.V., Medvedev O.S. // J. Laser Micro/Nanoeng. 2018. V. 13. P. 193.
- Veiko V.P., Zakoldaev R.A Sergeev M.M., Danilov P.A., Kudryashov S.I., Kostiuk G.K., Sivers A.N., Ionin A.A., Antropova T.V., Medvedev O.S. // Opt. Express. 2018. V. 26. P. 28152.
- Волкова А.В., Ермакова Л.Э., Кашпурина Е.А., Пшенко О.А., Антропова Т.В. // Физика и химия стекла. 2016. Т. 42. С. 446.
- 9. Ермакова Л.Э., Гринкевич Е.А., Волкова А.В., Антропова Т.В. // Коллоид. журн. 2018. Т. 80. С. 518.
- Ермакова Л.Э., Антропова Т.В., Волкова А.В., Кузнецова А.С., Гринкевич Е.А., Анфимова И.Н. // Физика и химия стекла. 2018. Т. 44. С. 346.
- Ермакова Л.Э., Гринкевич Е.А., Волкова А.В., Кузнецова А.С., Куриленко Л.Н., Антропова Т.В. // Коллоид. журн. 2019. Т. 81. С. 306.
- Ермакова Л.Э., Кузнецова А.С., Антропова Т.В., Волкова А.В., Анфимова И.Н. // Коллоид. журн. 2020. Т. 82. С. 310.

- Гельферих Ф. Иониты. Основы ионного обмена. М.: ИЛ, 1962.
- 14. Герасимов Я.И., Древинг В.П., Еремин Е.Н. и др. Курс физической химии. Т. 2. М.: Химия, 1973.
- Справочник по электрохимии / Под ред. А.М. Сухотина. Л.: Химия, 1981.
- Григоров О.Н., Козьмина З.П., Маркович А.В., Фридрихсберг Д.А. Электрокинетические свойства капиллярных систем. М.–Л.: Изд-во АН СССР, 1956.
- 17. Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник. М.: Дрофа, 2006.
- Справочник химика. Т. 1 / Под ред. Б.П. Никольского. М.–Л.: Химия, 1966.
- Shannon R.D., Prewitt C.T. // Acta Cryst. B. 1969. V. 25. P. 925.
- 20. Справочник химика. Т. 3 / Под ред. Б.П. Никольского. М.–Л.: Химия, 1965.
- 21. Робинсон Р., Стокс Р. Растворы электролитов. М.: ИЛ, 1963.
- 22. Ермакова Л.Э., Волкова А.В. // Коллоид. журн. 2017. Т. 79. С. 410
- 23. *Ермакова Л.Э.* Электроповерхностные явления в нанодисперсных системах. Дис. ... докт. хим. наук. СПб.: СПбГУ, 2001.